arXiv.org: Quantum Physics

Syndicate content arXiv.org
Quantum Physics (quant-ph) updates on the arXiv.org e-print archive
Updated: 27 weeks 4 days ago

Analysis of chaos and regularity in the open Dicke model. (arXiv:2307.05675v2 [quant-ph] UPDATED)

Sat, 2024-01-13 02:45

We present an analysis of chaos and regularity in the open Dicke model, when dissipation is due to cavity losses. Due to the infinite Liouville space of this model, we also introduce a criterion to numerically find a complex spectrum which approximately represents the system spectrum. The isolated Dicke model has a well-defined classical limit with two degrees of freedom. We select two case studies where the classical isolated system shows regularity and where chaos appears. To characterize the open system as regular or chaotic, we study regions of the complex spectrum taking windows over the absolute value of its eigenvalues. Our results for this infinite-dimensional system agree with the Grobe-Haake-Sommers (GHS) conjecture for Markovian dissipative open quantum systems, finding the expected 2D Poisson distribution for regular regimes, and the distribution of the Ginibre unitary ensemble (GinUE) for the chaotic ones, respectively.

Categories: Journals, Physics

Exotic quantum liquids in Bose-Hubbard models with spatially-modulated symmetries. (arXiv:2307.08761v2 [cond-mat.quant-gas] UPDATED)

Sat, 2024-01-13 02:45

We investigate the effect that spatially modulated continuous conserved quantities can have on quantum ground states. We do so by introducing a family of one-dimensional local quantum rotor and bosonic models which conserve finite Fourier momenta of the particle number, but not the particle number itself. These correspond to generalizations of the standard Bose-Hubbard model (BHM), and relate to the physics of Bose surfaces. First, we show that while having an infinite-dimensional local Hilbert space, such systems feature a non-trivial Hilbert space fragmentation for momenta incommensurate with the lattice. This is linked to the nature of the conserved quantities having a dense spectrum and provides the first such example. We then characterize the zero-temperature phase diagram for both commensurate and incommensurate momenta. In both cases, analytical and numerical calculations predict a phase transition between a gapped (Mott insulating) and quasi-long range order phase; the latter is characterized by a two-species Luttinger liquid in the infrared, but dressed by oscillatory contributions when computing microscopic expectation values. Following a rigorous Villain formulation of the corresponding rotor model, we derive a dual description, from where we estimate the robustness of this phase using renormalization group arguments, where the driving perturbation has ultra-local correlations in space but power law correlations in time. We support this conclusion using an equivalent representation of the system as a two-dimensional vortex gas with modulated Coulomb interactions within a fixed symmetry sector. We conjecture that a Berezinskii-Kosterlitz-Thouless-type transition is driven by the unbinding of vortices along the temporal direction.

Categories: Journals, Physics

Forward and Backward Constrained Bisimulations for Quantum Circuits. (arXiv:2308.09510v5 [quant-ph] UPDATED)

Sat, 2024-01-13 02:45

Efficient methods for the simulation of quantum circuits on classic computers are crucial for their analysis due to the exponential growth of the problem size with the number of qubits. Here we study lumping methods based on bisimulation, an established class of techniques that has been proven successful for (classic) stochastic and deterministic systems such as Markov chains and ordinary differential equations. Forward constrained bisimulation yields a lower-dimensional model which exactly preserves quantum measurements projected on a linear subspace of interest. Backward constrained bisimulation gives a reduction that is valid on a subspace containing the circuit input, from which the circuit result can be fully recovered. We provide an algorithm to compute the constraint bisimulations yielding coarsest reductions in both cases, using a duality result relating the two notions. As applications, we provide theoretical bounds on the size of the reduced state space for well-known quantum algorithms for search, optimization, and factorization. Using a prototype implementation, we report significant reductions on a set of benchmarks. Furthermore, we show that constraint bisimulation complements state-of-the-art methods for the simulation of quantum circuits based on decision diagrams.

Categories: Journals, Physics

Eigenstate Thermalization in 2+1 dimensional SU(2) Lattice Gauge Theory. (arXiv:2308.16202v2 [hep-lat] UPDATED)

Sat, 2024-01-13 02:45

We present preliminary numerical evidence for the hypothesis that the Hamiltonian SU(2) gauge theory discretized on a lattice obeys the Eigenstate Thermalization Hypothesis (ETH). To do so we study three approximations: (a) a linear plaquette chain in a reduced Hilbert space limiting the electric field basis to $j=0,\frac{1}{2}$ , (b) a two-dimensional honeycomb lattice with periodic or closed boundary condition and the same Hilbert space constraint, and (c) a chain of only three plaquettes but such a sufficiently large electric field Hilbert space ($j \leq \frac{7}{2})$ that convergence of all energy eigenvalues in the analyzed energy window is observed. While an unconstrained Hilbert space is required to reach the continuum limit of SU(2) gauge theory, numerical resource constraints do not permit us to realize this requirement for all values of the coupling constant and large lattices. In each of the three studied cases we check first for random matrix theory (RMT) behavior in the eigenenergy spectrum and then analyze the diagonal as well as the off-diagonal matrix elements between energy eigenstates for a few operators. Within current uncertainties all results for (a), (b) and (c) agree with ETH predictions. Furthermore, we find the off-diagonal matrix elements of the electric energy operator exhibit RMT behavior in frequency windows that are small enough in (b) and (c). To unambiguously establish ETH behavior and determine for which class of operators it applies, an extension of our investigations is necessary.

Categories: Journals, Physics

Nonlocal Quantum Field Theory and Quantum Entanglement. (arXiv:2309.06576v3 [hep-th] UPDATED)

Sat, 2024-01-13 02:45

We discuss the nonlocal nature of quantum mechanics and the link with relativistic quantum mechanics such as formulated by quantum field theory. We use here a nonlocal quantum field theory (NLQFT) which is finite, satisfies Poincar\'e invariance, unitarity and microscopic causality. This nonlocal quantum field theory associates infinite derivative entire functions with propagators and vertices. We focus on proving causality and discussing its importance when constructing a relativistic field theory. We formulate scalar field theory using the functional integral in order to characterize quantum entanglement and the entanglement entropy of the theory. Using the replica trick, we compute the entanglement entropy for the theory in 3 + 1 dimensions on a cone. The result is free of UV divergences and we recover the area law.

Categories: Journals, Physics

Reversibility of quantum resources through probabilistic protocols. (arXiv:2309.07206v2 [quant-ph] UPDATED)

Sat, 2024-01-13 02:45

Among the most fundamental questions in the manipulation of quantum resources such as entanglement is the possibility of reversibly transforming all resource states. The most important consequence of this would be the identification of a unique entropic resource measure that exactly quantifies the limits of achievable transformation rates. Remarkably, previous results claimed that such asymptotic reversibility holds true in very general settings; however, recently those findings have been found to be incomplete, casting doubt on the conjecture. Here we show that it is indeed possible to reversibly interconvert all states in general quantum resource theories, as long as one allows protocols that may only succeed probabilistically. Although such transformations have some chance of failure, we show that their success probability can be ensured to be bounded away from zero, even in the asymptotic limit of infinitely many manipulated copies. As in previously conjectured approaches, the achievability here is realised through operations that are asymptotically resource non-generating. Our methods are based on connecting the transformation rates under probabilistic protocols with strong converse rates for deterministic transformations. We strengthen this connection into an exact equivalence in the case of entanglement distillation.

Categories: Journals, Physics

A Hybrid Quantum-assisted Column Generation Algorithm for the Fleet Conversion Problem. (arXiv:2309.08267v2 [quant-ph] UPDATED)

Sat, 2024-01-13 02:45

The problem of Fleet Conversion aims to reduce the carbon emissions and cost of operating a fleet of vehicles for a given set of tours. It can be modelled as a column generation scheme with the Maximum Weighted Independent Set (MWIS) problem as the slave. Quantum variational algorithms have gained significant interest in the past several years. Recently, a method to represent Quadratic Unconstrained Binary Optimization (QUBO) problems using logarithmically fewer qubits was proposed. Here we use this method to solve the MWIS Slaves and demonstrate how quantum and classical solvers can be used together to approach an industrial-sized use-case (up to 64 tours).

Categories: Journals, Physics

Experimental hierarchy of the nonclassicality of single-qubit states via potentials for entanglement, steering, and Bell nonlocality. (arXiv:2309.12878v2 [quant-ph] UPDATED)

Sat, 2024-01-13 02:45

Entanglement potentials are a promising way to quantify the nonclassicality of single-mode states. They are defined by the amount of entanglement (expressed by, e.g., the Wootters concurrence) obtained after mixing the examined single-mode state with a purely classical state; such as the vacuum or a coherent state. We generalize the idea of entanglement potentials to other quantum correlations: the EPR steering and Bell nonlocality, thus enabling us to study mutual hierarchies of these nonclassicality potentials. Instead of the usual vacuum and one-photon superposition states, we experimentally test this concept using specially tailored polarization-encoded single-photon states. One polarization encodes a given nonclassical single-mode state, while the other serves as the vacuum place-holder. This technique proves to be experimentally more convenient in comparison to the vacuum and a one-photon superposition as it does not require the vacuum detection.

Categories: Journals, Physics

Time Crystal Embodies Chimera in Periodically Driven Quantum Spin System. (arXiv:2309.16523v3 [cond-mat.stat-mech] UPDATED)

Sat, 2024-01-13 02:45

Chimera states are a captivating occurrence in which a system composed of multiple interconnected elements exhibits a distinctive combination of synchronized and desynchronized behavior. The emergence of these states can be attributed to the complex interdependence between quantum entanglement and the delicate balance of interactions among system constituents. The emergence of discrete-time crystal (DTC) in typical many-body periodically driven systems occurs when there is a breaking of time translation symmetry. Coexisting coupled DTC and a ferromagnetic dynamically many-body localized (DMBL) phase at distinct regions have been investigated under the controlled spin rotational error of a disorder-free spin-1/2 chain for different types of spin-spin interactions. We contribute a novel approach for the emergence of the DTC-DMBL-chimera phase, which is robust against external static fields in a periodically driven quantum many-body system.

Categories: Journals, Physics

The sine-Gordon model from coupled condensates: a Generalized Hydrodynamics viewpoint. (arXiv:2310.04493v2 [cond-mat.stat-mech] UPDATED)

Sat, 2024-01-13 02:45

The sine-Gordon model captures the low-energy effective dynamics of a wealth of one-dimensional quantum systems, stimulating the experimental efforts in building a versatile quantum simulator of this field theory and fueling the parallel development of new theoretical toolkits able to capture far-from-equilibrium settings. In this work, we analyze the realization of sine-Gordon from the interference pattern of two one-dimensional quasicondensates: we argue the emergent field theory is well described by its classical limit and develop its large-scale description based on Generalized Hydrodynamics. We show how, despite sine-Gordon being an integrable field theory, trap-induced inhomogeneities cause instabilities of excitations and provide exact analytical results to capture this effect.

Categories: Journals, Physics

Commitments from Quantum One-Wayness. (arXiv:2310.11526v3 [quant-ph] UPDATED)

Sat, 2024-01-13 02:45

One-way functions are central to classical cryptography. They are both necessary for the existence of non-trivial classical cryptosystems, and sufficient to realize meaningful primitives including commitments, pseudorandom generators and digital signatures. At the same time, a mounting body of evidence suggests that assumptions even weaker than one-way functions may suffice for many cryptographic tasks of interest in a quantum world, including bit commitments and secure multi-party computation. This work studies one-way state generators [Morimae-Yamakawa, CRYPTO 2022], a natural quantum relaxation of one-way functions. Given a secret key, a one-way state generator outputs a hard to invert quantum state. A fundamental question is whether this type of quantum one-wayness suffices to realize quantum cryptography. We obtain an affirmative answer to this question, by proving that one-way state generators with pure state outputs imply quantum bit commitments and secure multiparty computation. Along the way, we build an intermediate primitive with classical outputs, which we call a (quantum) one-way puzzle. Our main technical contribution is a proof that one-way puzzles imply quantum bit commitments.

Categories: Journals, Physics

Robust spectral $\pi$ pairing in the random-field Floquet quantum Ising model. (arXiv:2401.04809v1 [cond-mat.dis-nn] CROSS LISTED)

Sat, 2024-01-13 02:45

Motivated by an experiment on a superconducting quantum processor [Mi et al., Science 378, 785 (2022)], we study level pairings in the many-body spectrum of the random-field Floquet quantum Ising model. The pairings derive from Majorana zero and $\pi$ modes when writing the spin model in Jordan-Wigner fermions. Both splittings have lognormal distributions with random transverse fields. In contrast, random longitudinal fields affect the zero and $\pi$ splittings in drastically different ways. While zero pairings are rapidly lifted, the $\pi$ pairings are remarkably robust, or even strengthened, up to vastly larger disorder strengths. We explain our results within a self-consistent Floquet perturbation theory and study implications for boundary spin correlations. The robustness of $\pi$ pairings against longitudinal disorder may be useful for quantum information processing.

Categories: Journals, Physics

Breaking of reciprocity and the Pancharatnam-Berry phase for light scattered by a disordered cold atom cloud. (arXiv:2401.05297v2 [physics.optics] UPDATED)

Sat, 2024-01-13 02:45

Collective effects on the light scattered by disordered media such as Anderson localization and coherent backscattering critically depend on the reciprocity between interfering optical paths. In this work, we explore the breaking of reciprocity for the light scattered by a disordered cold atom setup, taking advantage of the non-commutation of optical elements that manipulate the polarization of the interfering paths. This breaking of symmetry manifests itself in the reduction of the fringes contrast as the light scattered by the cloud interferes with that from its mirror image. We provide a geometrical interpretation in terms of the Pancharatnam-Berry phase, which we directly access from the fringes displacement. Our work paves the way toward the manipulation of path reciprocity and interference for light scattered by disordered media.

Categories: Journals, Physics

Parameter Setting in Quantum Approximate Optimization of Weighted Problems. (arXiv:2305.15201v3 [quant-ph] UPDATED)

Sat, 2024-01-13 02:45

Quantum Approximate Optimization Algorithm (QAOA) is a leading candidate algorithm for solving combinatorial optimization problems on quantum computers. However, in many cases QAOA requires computationally intensive parameter optimization. The challenge of parameter optimization is particularly acute in the case of weighted problems, for which the eigenvalues of the phase operator are non-integer and the QAOA energy landscape is not periodic. In this work, we develop parameter setting heuristics for QAOA applied to a general class of weighted problems. First, we derive optimal parameters for QAOA with depth $p=1$ applied to the weighted MaxCut problem under different assumptions on the weights. In particular, we rigorously prove the conventional wisdom that in the average case the first local optimum near zero gives globally-optimal QAOA parameters. Second, for $p\geq 1$ we prove that the QAOA energy landscape for weighted MaxCut approaches that for the unweighted case under a simple rescaling of parameters. Therefore, we can use parameters previously obtained for unweighted MaxCut for weighted problems. Finally, we prove that for $p=1$ the QAOA objective sharply concentrates around its expectation, which means that our parameter setting rules hold with high probability for a random weighted instance. We numerically validate this approach on general weighted graphs and show that on average the QAOA energy with the proposed fixed parameters is only $1.1$ percentage points away from that with optimized parameters. Third, we propose a general heuristic rescaling scheme inspired by the analytical results for weighted MaxCut and demonstrate its effectiveness using QAOA with the XY Hamming-weight-preserving mixer applied to the portfolio optimization problem. Our heuristic improves the convergence of local optimizers, reducing the number of iterations by 7.4x on average.

Categories: Journals, Physics

A parametrically programmable delay line for microwave photons. (arXiv:2401.04724v2 [quant-ph] UPDATED)

Sat, 2024-01-13 02:45

Delay lines capable of storing quantum information are crucial for advancing quantum repeaters and hardware efficient quantum computers. Traditionally, they are physically realized as extended systems that support wave propagation, such as waveguides. But such delay lines typically provide limited control over the propagating fields. Here, we introduce a parametrically addressed delay line (PADL) for microwave photons that provides a high level of control over the dynamics of stored pulses, enabling us to arbitrarily delay or even swap pulses. By parametrically driving a three-waving mixing superconducting circuit element that is weakly hybridized with an ensemble of resonators, we engineer a spectral response that simulates that of a physical delay line, while providing fast control over the delay line's properties and granting access to its internal modes. We illustrate the main features of the PADL, operating on pulses with energies on the order of a single photon, through a series of experiments, which include choosing which photon echo to emit, translating pulses in time, and swapping two pulses. We also measure the noise added to the delay line from our parametric interactions and find that the added noise is much less than one photon.

Categories: Journals, Physics

Optimum parameter estimation of shaped phase objects. (arXiv:2302.14504v3 [quant-ph] UPDATED)

Sat, 2024-01-13 02:45

We show a general method to estimate with optimum precision, i.e., the best precision determined by the light-matter interaction process, a set of parameters that characterize a phase object. The method derives from ideas presented by Pezze et al., [Phys. Rev. Lett. 119, 130504 (2017)]. Our goal is to illuminate the main characteristics of this method as well as its applications to the physics community, probably not familiar with the formal quantum language usually employed in works related to quantum estimation theory. First, we derive precision bounds for the estimation of the set of parameters characterizing the phase object. We compute the Cr\`amer-Rao lower bound for two experimentally relevant types of illumination: a multimode coherent state with mean photon number N, and N copies of a multimode single-photon quantum state. We show under which conditions these two models are equivalent. Second, we show that the optimum precision can be achieved by projecting the light reflected/transmitted from the object onto a set of modes with engineered spatial shape. We describe how to construct these modes, and demonstrate explicitly that the precision of the estimation using these measurements is optimum. As example, we apply these results to the estimation of the height and sidewall angle of a cliff-like nanostructure, an object relevant in semiconductor industry for the evaluation of nanofabrication techniques.

Categories: Journals, Physics

Mutual averaged non-commutativity of quantum operator algebras. (arXiv:2312.14019v2 [quant-ph] UPDATED)

Sat, 2024-01-13 02:45

We introduce an elementary measure of non-commutativity between two algebras of quantum operators acting on the same Hilbert space. This quantity, which we call Mutual Averaged Non-commutativity (MAN), is a simple generalization of a type of averaged Out-of-Time-Order-Correlators used in the study of quantum scrambling and chaos. MAN is defined by a Haar averaged squared norm of a commutator and for some types of algebras is manifestly of entropic nature. In particular, when the two algebras coincide the corresponding self-MAN can be fully computed in terms of the structural data of the associated Hilbert space decomposition. Properties and bounds of MAN are established in general and several concrete examples are discussed. Remarkably, for an important class of algebras, -- which includes factors and maximal abelian ones -- MAN can be expressed in the terms of the algebras projections CP-maps. Assuming that the latter can be enacted as physical processes, one can devise operational protocols to directly estimate the MAN of a pair of algebras.

Categories: Journals, Physics

Polylogarithmic-depth controlled-NOT gates without ancilla qubits. (arXiv:2312.13206v4 [quant-ph] UPDATED)

Sat, 2024-01-13 02:45

Controlled operations are fundamental building blocks of quantum algorithms. Decomposing $n$-control-NOT gates ($C^n(X)$) into arbitrary single-qubit and CNOT gates, is a crucial but non-trivial task. This study introduces $C^n(X)$ circuits outperforming previous methods in the asymptotic and non-asymptotic regimes. Three distinct decompositions are presented: an exact one using one borrowed ancilla with a circuit depth $\Theta\left(\log(n)^{3}\right)$, an approximating one without ancilla qubits with a circuit depth $\mathcal O \left(\log(n)^{3}\log(1/\epsilon)\right)$ and an exact one with an adjustable-depth circuit which decreases with the number $m\leq n$ of ancilla qubits available as $O(log(2n/m)^3+log(m/2))$. The resulting exponential speedup is likely to have a substantial impact on fault-tolerant quantum computing by improving the complexities of countless quantum algorithms with applications ranging from quantum chemistry to physics, finance and quantum machine learning.

Categories: Journals, Physics

Symmetry-preserving and gate-efficient quantum circuits for quantum chemistry. (arXiv:2312.09761v2 [physics.chem-ph] UPDATED)

Sat, 2024-01-13 02:45

The ability of quantum computers to overcome the exponential memory scaling of many-body problems is expected to transform quantum chemistry. Quantum algorithms require accurate representations of electronic states on a quantum device, but current approximations struggle to combine chemical accuracy and gate-efficiency while preserving physical symmetries, and rely on measurement-intensive adaptive methods that tailor the wave function ansatz to each molecule. In this contribution, we present a spin-symmetry-preserving, gate-efficient ansatz that provides chemically accurate molecular energies with a well-defined circuit structure. Our approach exploits local qubit connectivity, orbital optimisation, and connections with generalised valence bond theory to maximise the accuracy that is obtained with shallow quantum circuits. Numerical simulations for molecules with weak and strong electron correlation, including benzene, water, and the singlet-triplet gap in tetramethyleneethane, demonstrate that chemically accurate energies are achieved with as much as 84% fewer two-qubit gates compared to the current state-of-the-art. These advances pave the way for the next generation of electronic structure approximations for future quantum computing.

Categories: Journals, Physics

Tailored and Externally Corrected Coupled Cluster with Quantum Inputs. (arXiv:2312.08110v2 [quant-ph] UPDATED)

Sat, 2024-01-13 02:45

We propose to use wavefunction overlaps obtained from a quantum computer as inputs for the classical split-amplitude techniques, tailored and externally corrected coupled cluster, to achieve balanced treatment of static and dynamic correlation effects in molecular electronic structure simulations. By combining insights from statistical properties of matchgate shadows, which are used to measure quantum trial state overlaps, with classical correlation diagnostics, we are able to provide quantum resource estimates well into the classically no longer exactly solvable regime. We find that rather imperfect wavefunctions and remarkably low shot counts are sufficient to cure qualitative failures of plain coupled cluster singles doubles and to obtain chemically precise dynamic correlation energy corrections. We provide insights into which wavefunction preparation schemes have a chance of yielding quantum advantage, and we test our proposed method using overlaps measured on Google's Sycamore device.

Categories: Journals, Physics