RySQ : Results

Results of the project.

There are currently 76 records in this database matching the search criteria. Login to add an entry.

You can use the filters below to refine your search.

Format: 2017-07-27
Format: 2017-07-27
Format: 2017-07-27


29th Jun 2017

Coherent many-body quantum dynamics lies at the heart of quantum simulation and quantum computation. Both require coherent evolution in the exponentially large Hilbert space of an interacting many-body system. To date, trapped ions have defined the state of the art in terms of achievable coherence times in interacting spin chains. Here, we establish an alternative platform by reporting on the observation of coherent, fully interaction-driven quantum revivals of the magnetization in Rydberg-dressed Ising spin chains of atoms trapped in an optical lattice.


22nd Jun 2017

There is a significant ongoing effort in realizing quantum annealing with different physical platforms. The challenge is to achieve a fully programmable quantum device featuring coherent adiabatic quantum dynamics. Here we show that combining the well-developed quantum simulation toolbox for Rydberg atoms with the recently proposed Lechner-Hauke-Zoller~(LHZ) architecture allows one to build a prototype for a coherent adiabatic quantum computer with all-to-all Ising interactions and, therefore, a novel platform for quantum annealing.


22nd Jun 2017

We present optimal control protocols to prepare different many-body quantum states of Rydberg atoms in optical lattices. Specifically, we show how to prepare highly ordered many-body ground states, GHZ states as well as some superposition of symmetric excitation number Fock states, that inherit the translational symmetry from the Hamiltonian, within sufficiently short excitation times minimizing detrimental decoherence effects.


22nd Jun 2017

We use the sensitive response to electric fields of Rydberg atoms to characterize all three vector components of the local electric field close to an atom-chip surface. We measured Stark-Zeeman maps of S and D Rydberg states using an elongated cloud of ultracold Rubidium atoms (T ~2.5 µK) trapped magnetically 100 µm from the chip surface. The spectroscopy of S states yields a calibration for the generated local electric field at the position of the atoms.


3rd May 2017

In conventional nonlinear optics, linear quantum optics


3rd May 2017

Quantum-state engineering is of critical importance to the development of quantum technologies. One promising platform is thermal atomic vapours, because they offer long coherence times with reproducible and scalable hardware. However, the inability to address isolated atomic states in a controlled manner, due to multi-level degeneracy and motional broadening, is a major obstacle to their wider application.


3rd May 2017

We present an object-oriented Python library for computation of properties of highly-excited Rydberg states of alkali atoms.


3rd May 2017

We investigate the nonequilibrium dynamics of a driven-dissipative spin ensemble with competing power-law interactions. We demonstrate that dynamical phase transitions as well as bistabilities can emerge for asymptotic van der Waals interactions, but critically rely on the presence of a slower decaying potential core.


3rd May 2017

We demonstrate a method for probing interaction effects in a thermal beam of strontium atoms using simultaneous measurements of Rydberg EIT and spontaneously created ions or electrons. We present a Doppler-averaged optical Bloch equation model that reproduces the optical signals and allows us to connect the optical coherences and the populations.


2nd May 2017

We address the technical challenges when performing quantum information experiments with ultracold Rydberg atoms in lattice geometries. We discuss the following key aspects: (i) the coherent manipulation of atomic ground states, (ii) the coherent excitation of Rydberg states, and (iii) spatial addressing of individual lattice sites.


2nd May 2017

We study the influence of Rydberg-dressed interactions in a one-dimensional (1D) Bose-Einstein condensate (BEC). We show that a 1D geometry offers several advantages over a three-dimensional geometry for observing BEC Rydberg dressing. The effects of dressing are studied by investigating collective BEC dynamics after a rapid switch-off of the Rydberg dressing interaction.


28th Apr 2017

Fundamental quantum fluctuations caused by the Heisenberg principle limit measurement precision.

Syndicate content