Physics

Multi-ensemble metrology by programming local rotations with atom movements. (arXiv:2303.16885v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Thu, 2023-12-07 04:45

Current optical atomic clocks do not utilize their resources optimally. In particular, an exponential gain in sensitivity could be achieved if multiple atomic ensembles were to be controlled or read-out individually, even without entanglement. However, controlling optical transitions locally remains an outstanding challenge for neutral atom based clocks and quantum computing platforms. Here we show arbitrary, single-site addressing for an optical transition via sub-wavelength controlled moves of tweezer-trapped atoms, which we perform with $99.84(5)\%$ fidelity and with $0.1(2)\%$ crosstalk to non-addressed atoms. The scheme is highly robust as it relies only on relative position changes of tweezers and requires no additional addressing beams. Using this technique, we implement single-shot, dual-quadrature readout of Ramsey interferometry using two atomic ensembles simultaneously, and show an enhancement of the usable interrogation time at a given phase-slip error probability. Finally, we program a sequence which performs local dynamical decoupling during Ramsey evolution to evolve three ensembles with variable phase sensitivities, a key ingredient of optimal clock interrogation. Our results demonstrate the potential of fully programmable quantum optical clocks even without entanglement and could be combined with metrologically useful entangled states in the future.

Categories: Journals, Physics

Fluctuation theorems and expected utility hypothesis. (arXiv:2307.12358v2 [cond-mat.stat-mech] UPDATED)

arXiv.org: Quantum Physics - Thu, 2023-12-07 04:45

The expected utility hypothesis is a popular concept in economics that is useful for making decisions when the payoff is uncertain. In this paper, we investigate the implications of a fluctuation theorem in the theory of expected utility. In particular, we wonder whether entropy could serve as a guideline for gambling. We prove the existence of a bound involving the certainty equivalent which depends on the entropy produced. Then, we examine the dependence of the certainty equivalent on the entropy by looking at specific situations, in particular the work extraction from a nonequilibrium initial state.

Categories: Journals, Physics

Analog quantum simulation of partial differential equations. (arXiv:2308.00646v3 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Thu, 2023-12-07 04:45

Quantum simulators were originally proposed for simulating one partial differential equation (PDE) in particular - Schrodinger's equation. Can quantum simulators also efficiently simulate other PDEs? While most computational methods for PDEs - both classical and quantum - are digital (PDEs must be discretised first), PDEs have continuous degrees of freedom. This suggests that an analog representation can be more natural. While digital quantum degrees of freedom are usually described by qubits, the analog or continuous quantum degrees of freedom can be captured by qumodes. Based on a method called Schrodingerisation, we show how to directly map D-dimensional linear PDEs onto a (D+1)-qumode quantum system where analog or continuous-variable Hamiltonian simulation on D+1 qumodes can be used. This very simple methodology does not require one to discretise PDEs first, and it is not only applicable to linear PDEs but also to some nonlinear PDEs and systems of nonlinear ODEs. We show some examples using this method, including the Liouville equation, heat equation, Fokker-Planck equation, Black-Scholes equations, wave equation and Maxwell's equations. We also devise new protocols for linear PDEs with random coefficients, important in uncertainty quantification, where it is clear how the analog or continuous-variable framework is most natural. This also raises the possibility that some PDEs may be simulated directly on analog quantum systems by using Hamiltonians natural for those quantum systems.

Categories: Journals, Physics

Vacuum Branching, Dark Energy, Dark Matter. (arXiv:2308.05569v6 [gr-qc] UPDATED)

arXiv.org: Quantum Physics - Thu, 2023-12-07 04:45

Beginning with the Everett-DeWitt many-worlds interpretation of quantum mechanics, there have been a series of proposals for how the state vector of a quantum system might split at any instant into orthogonal branches, each of which exhibits approximately classical behavior. In an earlier version of the present work, we proposed a decomposition of a state vector into branches by finding the minimum of a measure of the mean squared quantum complexity of the branches in the branch decomposition. In the present article, we adapt the earlier version to quantum electrodynamics of electrons and protons on a lattice in Minkowski space. The earlier version, however, here is simplified by replacing a definition of complexity based on the physical vacuum with a definition based on the bare vacuum. As a consequence of this replacement, the physical vacuum itself is expected to branch yielding branches with energy densities slightly larger than that of the unbranched vacuum but no observable particle content. If the vacuum energy renormalization constant is chosen as usual to give 0 energy density to the unbranched vacuum, vacuum branches will appear to have a combination of dark energy and dark matter densities. The hypothesis that vacuum branching is the origin of the observed dark energy and dark matter densities leads to an estimate of $O(10^{-18} m^3)$ for the parameter $b$ which enters the complexity measure governing branch formation and sets the boundary between quantum and classical behavior.

Categories: Journals, Physics

First Passage Times for Continuous Quantum Measurement Currents. (arXiv:2308.07810v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Thu, 2023-12-07 04:45

The First Passage Time (FPT) is the time taken for a stochastic process to reach a desired threshold. In this letter we address the FPT of the stochastic measurement current in the case of continuously measured quantum systems. Our approach is based on a charge-resolved master equation, which is related to the Full-Counting statistics of charge detection. In the quantum jump unravelling this takes the form of a coupled system of master equations, while for quantum diffusion it becomes a type of quantum Fokker-Planck equation. In both cases, we show that the FPT can be obtained by introducing absorbing boundary conditions, making their computation extremely efficient {and analytically tractable}. The versatility of our framework is demonstrated with two relevant examples. First, we show how our method can be used to study the tightness of recently proposed kinetic uncertainty relations (KURs) for quantum jumps, which place bounds on the signal-to-noise ratio of the FPT. Second, we study the usage of qubits as threshold detectors for Rabi pulses, and show how our method can be employed to maximize the detection probability while, at the same time, minimize the occurrence of false positives.

Categories: Journals, Physics

A Framework for Curriculum Transformation in Quantum Information Science and Technology Education. (arXiv:2308.10371v2 [physics.ed-ph] UPDATED)

arXiv.org: Quantum Physics - Thu, 2023-12-07 04:45

The field of Quantum Information Science and Technology (QIST) is booming. Due to this, many new educational courses and university programs are needed in order to prepare a workforce for the developing industry. Owing to its specialist nature, teaching approaches in this field can suffer with being disconnected from the substantial degree of science education research which aims to support the best approaches to teaching in STEM fields. In order to connect these two communities with a pragmatic and repeatable methodology, we have synthesised this educational research into a decision-tree based theoretical model for the transformation of QIST curricula, intended to provide a didactical perspective for practitioners. The QCTF consists of four steps: 1. choose a topic, 2. choose one or more targeted skills, 3. choose a learning goal and 4. choose a teaching approach that achieves this goal. We show how this can be done using an example curriculum and more specifically quantum teleportation as a basic concept of quantum communication within this curriculum. By approaching curriculum creation and transformation in this way, educational goals and outcomes are more clearly defined which is in the interest of the individual and the industry alike. The framework is intended to structure the narrative of QIST teaching, and with future testing and refinement it will form a basis for further research in the didactics of QIST.

Categories: Journals, Physics

Photocurrents in bulk tellurium. (arXiv:2308.12741v2 [cond-mat.mes-hall] UPDATED)

arXiv.org: Quantum Physics - Thu, 2023-12-07 04:45

We report a comprehensive study of polarized infrared/terahertz photocurrents in bulk tellurium crystals. We observe different photocurrent contributions and show that, depending on the experimental conditions, they are caused by the trigonal photogalvanic effect, the transverse linear photon drag effect, and the magnetic field induced linear and circular photogalvanic effects. All observed photocurrents have not been reported before and are well explained by the developed phenomenological and microscopic theory. We show that the effects can be unambiguously distinguished by studying the polarization, magnetic field, and radiation frequency dependence of the photocurrent. At frequencies around 30 THz, the photocurrents are shown to be caused by the direct optical transitions between subbands in the valence band. At lower frequencies of 1 to 3 THz, used in our experiment, these transitions become impossible and the detected photocurrents are caused by the indirect optical transitions (Drude-like radiation absorption).

Categories: Journals, Physics

Multi-site Integrated Optical Addressing of Trapped Ions. (arXiv:2308.14918v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Thu, 2023-12-07 04:45

One of the most effective ways to advance the performance of quantum computers and quantum sensors is to increase the number of qubits or quantum resources in the system. A major technical challenge that must be solved to realize this goal for trapped-ion systems is scaling the delivery of optical signals to many individual ions. In this paper we demonstrate an approach employing waveguides and multi-mode interferometer splitters to optically address multiple $^{171}\textrm{Yb}^+$ ions in a surface trap by delivering all wavelengths required for full qubit control. Measurements of hyperfine spectra and Rabi flopping were performed on the E2 clock transition, using integrated waveguides for delivering the light needed for Doppler cooling, state preparation, coherent operations, and detection. We describe the use of splitters to address multiple ions using a single optical input per wavelength and use them to demonstrate simultaneous Rabi flopping on two different transitions occurring at distinct trap sites. This work represents an important step towards the realization of scalable integrated photonics for atomic clocks and trapped-ion quantum information systems.

Categories: Journals, Physics

Thermometry by correlated dephasing of impurities in a 1D Fermi gas. (arXiv:2307.10132v3 [cond-mat.quant-gas] UPDATED)

arXiv.org: Quantum Physics - Thu, 2023-12-07 04:45

We theoretically investigate the pure dephasing dynamics of two static impurity qubits embedded within a common environment of ultracold fermionic atoms, which are confined to one spatial dimension. Our goal is to understand how bath-mediated interactions between impurities affect their performance as nonequilibrium quantum thermometers. By solving the dynamics exactly using a functional determinant approach, we show that the impurities become correlated via retarded interactions of the Ruderman-Kittel-Kasuya-Yosida type. Moreover, we demonstrate that these correlations can provide a metrological advantage, enhancing the sensitivity of the two-qubit thermometer beyond that of two independent impurities. This enhancement is most prominent in the limit of low temperature and weak collisional coupling between the impurities and the gas. We show that this precision advantage can be exploited using standard Ramsey interferometry, with no need to prepare correlated initial states nor to individually manipulate or measure the impurities. We also quantitatively assess the impact of ignoring these correlations when constructing a temperature estimate, finding that acceptable precision can still be achieved from a simplified model of independent impurities. Our results demonstrate the rich nonequilibrium physics of impurities dephasing in a common Fermi gas, and may help to provide better temperature estimates at ultralow temperatures.

Categories: Journals, Physics

Gauging tensor networks with belief propagation. (arXiv:2306.17837v4 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Thu, 2023-12-07 04:45

Effectively compressing and optimizing tensor networks requires reliable methods for fixing the latent degrees of freedom of the tensors, known as the gauge. Here we introduce a new algorithm for gauging tensor networks using belief propagation, a method that was originally formulated for performing statistical inference on graphical models and has recently found applications in tensor network algorithms. We show that this method is closely related to known tensor network gauging methods. It has the practical advantage, however, that existing belief propagation implementations can be repurposed for tensor network gauging, and that belief propagation is a very simple algorithm based on just tensor contractions so it can be easier to implement, optimize, and generalize. We present numerical evidence and scaling arguments that this algorithm is faster than existing gauging algorithms, demonstrating its usage on structured, unstructured, and infinite tensor networks. Additionally, we apply this method to improve the accuracy of the widely used simple update gate evolution algorithm.

Categories: Journals, Physics

Prediction of the neutron drip line in oxygen isotopes using quantum computation. (arXiv:2306.06432v2 [nucl-th] UPDATED)

arXiv.org: Quantum Physics - Thu, 2023-12-07 04:45

In the noisy intermediate-scale quantum era, variational algorithms have become a standard approach to solving quantum many-body problems. Here, we present variational quantum eigensolver (VQE) results of selected oxygen isotopes within the shell model description. The aim of the present work is to locate the neutron drip line of the oxygen chain using unitary coupled cluster (UCC) type ansatze with different microscopic interactions (DJ16, JISP16, and N3LO), in addition to a phenomenological USDB interaction. While initially infeasible to execute on contemporary quantum hardware, the size of the problem is reduced significantly using qubit tapering techniques in conjunction with custom circuit design and optimization. The optimal values of ansatz parameters from classical simulation are taken for the DJ16 interaction, and the tapered circuits are run on IonQ's Aria, a trapped-ion quantum computer. After applying gate error mitigation for three isotopes, we reproduced exact ground state energies within a few percent error. The post-processed results from hardware also clearly show $^{24}$O as the drip line nucleus of the oxygen chain. Future improvements in quantum hardware could make it possible to locate drip lines of heavier nuclei.

Categories: Journals, Physics

Thermal cycle and polaron formation in structured bosonic environments. (arXiv:2306.04248v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Thu, 2023-12-07 04:45

Chain-mapping techniques combined with the time-dependent density matrix renormalization group are powerful tools for simulating the dynamics of open quantum systems interacting with structured bosonic environments. Most interestingly, they leave the degrees of freedom of the environment open to inspection. In this work, we fully exploit the access to environmental observables to illustrate how the evolution of the open quantum system can be related to the detailed evolution of the environment it interacts with. In particular, we give a precise description of the fundamental physics that enables the finite temperature chain-mapping formalism to express dynamical equilibrium states. Furthermore, we analyze a two-level system strongly interacting with a super-Ohmic environment, where we discover a change in the spin-boson ground state that can be traced to the formation of polaronic states.

Categories: Journals, Physics

Ownerless island and partial entanglement entropy in island phases. (arXiv:2305.04259v3 [hep-th] UPDATED)

arXiv.org: Quantum Physics - Thu, 2023-12-07 04:45

In the context of partial entanglement entropy (PEE), we study the entanglement structure of the island phases realized in several 2-dimensional holographic set-ups. The self-encoding property of the island phase changes the way we evaluate the PEE. With the contributions from islands taken into account, we give a generalized prescription to construct PEE and balanced partial entanglement entropy (BPE). Here the ownerless island region, which lies inside the island $\text{Is}(AB)$ of $A\cup B$ but outside $\text{Is}(A)\cup \text{Is}(B)$, plays a crucial role. Remarkably, we find that under different assignments for the ownerless island, we get different BPEs, which exactly correspond to different saddles of the entanglement wedge cross-section (EWCS) in the entanglement wedge of $A\cup B$. The assignments can be settled by choosing the one that minimizes the BPE. Furthermore, under this assignment we study the PEE and give a geometric picture for the PEE in holography, which is consistent with the geometric picture in the no-island phases.

Categories: Journals, Physics

Quantum butterfly effect at the crossroads of symmetry breaking. (arXiv:2304.14272v4 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Thu, 2023-12-07 04:45

We investigate the effect of symmetry breaking on chaos in one-dimensional quantum mechanical models using the numerical chaos diagnostic tool, Out-of-Time-Order Correlator(OTOC). Previous research has primarily shown that OTOC shows exponential growth in the neighbourhood of a local maximum. If this is true, the exponential growth should disappear once the local maximum is removed from the system. However, we find that removing the local maximum by a small symmetry-breaking(perturbation) term to the Hamiltonian does not drastically affect the behaviour of OTOC. Instead, with the increase of perturbation strength, the broken symmetric region expands, causing the exponential growth of OTOC to spread over a broader range of eigenstates. We adopt various potentials and find this behaviour universal. We also use other chaos diagnostic tools, such as Loschmidt Echo(LE) and spectral form factor(SFF), to confirm this. This study confirms that a broken symmetric region is responsible for the exponential growth of the microcanonical and thermal OTOC rather than the local maximum. In other words, OTOC is sensitive to symmetry breaking in the Hamiltonian, which is often synonymous with the butterfly effect.

Categories: Journals, Physics

Constraints on physical computers in holographic spacetimes. (arXiv:2304.09900v2 [hep-th] UPDATED)

arXiv.org: Quantum Physics - Thu, 2023-12-07 04:45

Within the setting of the AdS/CFT correspondence, we ask about the power of computers in the presence of gravity. We show that there are computations on $n$ qubits which cannot be implemented inside of black holes with entropy less than $O(2^n)$. To establish our claim, we argue computations happening inside the black hole must be implementable in a programmable quantum processor, so long as the inputs and description of the unitary to be run are not too large. We then prove a bound on quantum processors which shows many unitaries cannot be implemented inside the black hole, and further show some of these have short descriptions and act on small systems. These unitaries with short descriptions must be computationally forbidden from happening inside the black hole.

Categories: Journals, Physics

Majorana Scars as Group Singlets. (arXiv:2212.11914v3 [cond-mat.str-el] UPDATED)

arXiv.org: Quantum Physics - Thu, 2023-12-07 04:45

In some quantum many-body systems, the Hilbert space breaks up into a large ergodic sector and a much smaller scar subspace. It has been suggested [arXiv:2007.00845] that the two sectors may be distinguished by their transformation properties under a large group whose rank grows with the system size (it is not a symmetry of the Hamiltonian). The quantum many-body scars are invariant under this group, while all other states are not. Here we apply this idea to lattice systems containing $M$ Majorana fermions per site. The Hilbert space for $N$ sites may be decomposed under the action of the O$(N)\times$O$(M)$ group, and the scars are the SO$(N)$ singlets. For any even $M$ there are two families of scars. One of them, which we call the $\eta$ states, is symmetric under the group O$(N)$. The other, the $\zeta$ states, has the SO$(N)$ invariance. For $M=4$, where our construction reduces to spin-$1/2$ fermions on a lattice with local interactions, the former family are the $N+1$ $\eta$-pairing states, while the latter are the $N+1$ states of maximum spin. We generalize this construction to $M>4$. For $M=6$ we exhibit explicit formulae for the scar states and use them to calculate the bipartite entanglement entropy analytically. For large $N$, it grows logarithmically with the sub-system size. We present a general argument that any group-invariant scars should have the entanglement entropy that is parametrically smaller than that of typical states. The energies of the scars we find are not equidistant in general but can be made so by choosing Hamiltonian parameters. For $M>6$ we find that with local Hamiltonians the scars typically have certain degeneracies. The scar spectrum can be made ergodic by adding a non-local interaction term. We derive the dimension of each scar family and show the scars could have a large contribution to the density of states for small $N$.

Categories: Journals, Physics

Fully Passive Measurement-Device-Independent Quantum Key Distribution. (arXiv:2309.07673v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Thu, 2023-12-07 04:45

A recently proposed fully passive QKD removes all source modulator side channels. In this work, we combine the fully passive sources with MDI-QKD to remove simultaneously side channels from source modulators and detectors. We show a numerical simulation of the passive MDI-QKD, and we obtain an acceptable key rate while getting much better implementation security, as well as ease of implementation, compared with a recently proposed fully passive TF-QKD, paving the way towards more secure and practical QKD systems. We have proved that a fully passive protocol is compatible with MDI-QKD and we also proposed a novel idea that could potentially improve the sifting efficiency.

Categories: Journals, Physics

A new quantum computational set-up for algebraic topology via simplicial sets. (arXiv:2309.11304v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Thu, 2023-12-07 04:45

In this paper, we lay down the foundation of a quantum computational framework for algebraic topology based on simplicial set theory. This extends previous work, which was limited to simplicial complexes and aimed mostly to topological data analysis. Our set--up applies to any parafinite simplicial set and proceeds by associating with it a finite dimensional simplicial Hilbert space, whose simplicial operator structure we study in depth. We show in particular how the problem of determining the simplicial set's homology can be solved within the simplicial Hilbert framework. We examine further the conditions under which simplicial set theoretic algorithms can be implemented in a quantum computational setting taking into account a quantum computer's finite resources. We outline finally a quantum algorithmic scheme capable to compute the simplicial homology spaces and Betti numbers of a simplicial set combining a number of basic quantum algorithms.

Categories: Journals, Physics

Measurement-induced phase transition for free fermions above one dimension. (arXiv:2309.12405v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Thu, 2023-12-07 04:45

A theory of the measurement-induced entanglement phase transition for free-fermion models in $d>1$ dimensions is developed. The critical point separates a gapless phase with $\ell^{d-1} \ln \ell$ scaling of the second cumulant of the particle number and of the entanglement entropy and an area-law phase with $\ell^{d-1}$ scaling, where $\ell$ is a size of the subsystem. The problem is mapped onto an SU($R$) replica non-linear sigma model in $d+1$ dimensions, with $R\to 1$. Using renormalization-group analysis, we calculate critical indices in one-loop approximation justified for $d = 1+ \epsilon$ with $\epsilon \ll 1$. Further, we carry out a numerical study of the transition for a $d=2$ model on a square lattice, determine numerically the critical point, and estimate the critical index of the correlation length, $\nu \approx 1.4$.

Categories: Journals, Physics

Symmetries as Ground States of Local Superoperators. (arXiv:2309.15167v2 [cond-mat.stat-mech] UPDATED)

arXiv.org: Quantum Physics - Thu, 2023-12-07 04:45

Symmetry algebras of quantum many-body systems with locality can be understood using commutant algebras, which are defined as algebras of operators that commute with a given set of local operators. In this work, we show that these symmetry algebras can be expressed as frustration-free ground states of a local superoperator, which we refer to as a "super-Hamiltonian". We demonstrate this for conventional symmetries such as $Z_2$, $U(1)$, and $SU(2)$, where the symmetry algebras map to various kinds of ferromagnetic ground states, as well as for unconventional ones that lead to weak ergodicity breaking phenomena of Hilbert space fragmentation and quantum many-body scars. In addition, we show that this super-Hamiltonian is exactly the superoperator that governs the operator relaxation in noisy symmetric Brownian circuits. This physical interpretation provides a novel interpretation for Mazur bounds for autocorrelation functions, and relates the low-energy excitations of the super-Hamiltonian to approximate symmetries that determine slowly relaxing modes in symmetric systems. We find examples of gapped/gapless super-Hamiltonians indicating the absence/presence of slow-modes, which happens in the presence of discrete/continuous symmetries. In the gapless cases, we recover slow-modes such as diffusion, tracer diffusion, and asymptotic scars in the presence of $U(1)$ symmetry, Hilbert space fragmentation, and a tower of quantum scars respectively. In all, this demonstrates the power of the commutant algebra framework in obtaining a comprehensive understanding of symmetries and their dynamical consequences in systems with locality.

Categories: Journals, Physics
Syndicate content