Emulating Solid-State Physics with a Hybrid System of Ultracold Ions and Atoms

Printer-friendly versionSend by emailPDF version
Date: 
2013-08-20
Author(s): 

U. Bissbort, D. Cocks, A. Negretti, Z. Idziaszek, T. Calarco, F. Schmidt-Kaler; W. Hoffstetter, R. Gerritsma

Reference: 

URL: http://link.aps.org/doi/10.1103/PhysRevLett.111.080501
DOI: 10.1103/PhysRevLett.111.080501
PACS: 03.67.Ac, 37.10.Ty, 71.10.Fd

We propose and theoretically investigate a hybrid system composed of a crystal of trapped ions coupled to a cloud of ultracold fermions. The ions form a periodic lattice and induce a band structure in the atoms. This system combines the advantages of high fidelity operations and detection offered by trapped ion systems with ultracold atomic systems. It also features close analogies to natural solid-state systems, as the atomic degrees of freedom couple to phonons of the ion lattice, thereby emulating a solid-state system. Starting from the microscopic many-body Hamiltonian, we derive the low energy Hamiltonian, including the atomic band structure, and give an expression for the atom-phonon coupling. We discuss possible experimental implementations such as a Peierls-like transition into a period-doubled dimerized state.