33.60.+a Atomic systems <-> mesoscopic conductors

Interferometry with non-classical motional states of a Bose–Einstein condensate

Date: 
2014-05-30 - 2014-11-27
Author(s): 

S. van Frank, A. Negretti, T. Berrada, R. Bücker, S. Montangero, J.-F.
Schaff, T. Schumm, T. Calarco, J. Schmiedmayer

Reference: 

Journal reference: Nature Communications 5, 4009 (2014)
DOI: 10.1038/ncomms5009
Cite as: arXiv:1402.0377 [quant-ph]

We demonstrate a two-pulse Ramsey-type interferometer for non-classical motional states of a Bose-Einstein condensate in an anharmonic trap. The control pulses used to manipulate the condensate wavefunction are obtained from Optimal Control Theory and directly optimised to maximise the interferometric contrast.

Optimal preparation of quantum states on an atom chip device

Date: 
2014-05-27 - 2014-11-27
Author(s): 

C. Lovecchio, F Schäfer, S Cherukattil, A K Murtaza, I Herrera, F S Cataliotti, T Calarco, S Montangero, F Caruso

Reference: 

arXiv:1405.6918

Atom chips provide compact and robust platforms towards practical quantum technologies. A quick and faithful preparation of arbitrary input states for these systems is crucial but represents a very challenging experimental task. This is especially difficult when the dynamical evolution is noisy and unavoidable setup imperfections have to be considered.

Emulating Solid-State Physics with a Hybrid System of Ultracold Ions and Atoms

Date: 
2013-08-20
Author(s): 

U. Bissbort, D. Cocks, A. Negretti, Z. Idziaszek, T. Calarco, F. Schmidt-Kaler; W. Hoffstetter, R. Gerritsma

Reference: 

URL: http://link.aps.org/doi/10.1103/PhysRevLett.111.080501
DOI: 10.1103/PhysRevLett.111.080501
PACS: 03.67.Ac, 37.10.Ty, 71.10.Fd

We propose and theoretically investigate a hybrid system composed of a crystal of trapped ions coupled to a cloud of ultracold fermions. The ions form a periodic lattice and induce a band structure in the atoms. This system combines the advantages of high fidelity operations and detection offered by trapped ion systems with ultracold atomic systems.

Syndicate content