15.10.Nv Neutral atoms: vibrational states

Fast Quantum Gate via Feshbach-Pauli Blocking in a Nanoplasmonic Trap

Date: 
2014-06-25
Author(s): 

K. Jachymski, Z. Idziaszek, T. Calarco

Reference: 

Phys. Rev. Lett. 112, 250502 (2014)
http://dx.doi.org/10.1103/PhysRevLett.112.250502

We propose a simple idea for realizing a quantum gate with two fermions in a double well trap via external optical pulses without addressing the atoms individually. The key components of the scheme are Feshbach resonance and Pauli blocking, which decouple unwanted states from the dynamics. As a physical example we study atoms in the presence of a magnetic Feshbach resonance in a nanoplasmonic trap and discuss the constraints on the operation times for realistic parameters, reaching a fidelity above 99.9% within 42  μs, much shorter than existing atomic gate schemes.

Interferometry with non-classical motional states of a Bose–Einstein condensate

Date: 
2014-05-30 - 2014-11-27
Author(s): 

S. van Frank, A. Negretti, T. Berrada, R. Bücker, S. Montangero, J.-F.
Schaff, T. Schumm, T. Calarco, J. Schmiedmayer

Reference: 

Journal reference: Nature Communications 5, 4009 (2014)
DOI: 10.1038/ncomms5009
Cite as: arXiv:1402.0377 [quant-ph]

We demonstrate a two-pulse Ramsey-type interferometer for non-classical motional states of a Bose-Einstein condensate in an anharmonic trap. The control pulses used to manipulate the condensate wavefunction are obtained from Optimal Control Theory and directly optimised to maximise the interferometric contrast.

Ground-State Cooling of a Single Atom at the Center of an Optical Cavity

Date: 
2013-05-30
Author(s): 

A. Reiserer, C. Nölleke, S. Ritter, G. Rempe

Reference: 

Phys. Rev. Lett. 110, 223003 (2013)

A single neutral atom is trapped in a three-dimensional optical lattice at the center of a high-finesse optical resonator. Using fluorescence imaging and a shiftable standing-wave trap, the atom is deterministically loaded into the maximum of the intracavity field where the atom-cavity coupling is strong. After 5 ms of Raman sideband cooling, the three-dimensional motional ground state is populated with a probability of (89+/-2)%.

Feedback Cooling of a Single Neutral Atom

Date: 
2010-10-21
Author(s): 

M. Koch, C. Sames, A. Kubanek, M. Apel, M. Balbach, A. Ourjoumtsev, P.W.H. Pinkse, G. Rempe

Reference: 

Physical Review Letters 105, 173003 (2010)
doi: 10.1103/PhysRevLett.105.173003

We demonstrate feedback cooling of the motion of a single rubidium atom trapped in a high-finesse optical resonator to a temperature of about 160  μK. Time-dependent transmission and intensity-correlation measurements prove the reduction of the atomic position uncertainty. The feedback increases the 1/e storage time into the 1 s regime, 30 times longer than without feedback.

Simulating open quantum systems: from many-body interactions to stabilizer pumping

Date: 
2011-08-09
Author(s): 

M. Müller, K. Hammerer, Y. Zhou, C. F. Roos, P. Zoller

Reference: 

New J. Physics. 13, 085007
doi:10.1088/1367-2630/13/8/085007

In a recent experiment, Barreiro et al (2011 Nature 470 486) demonstrated the fundamental building blocks of an open-system quantum simulator with trapped ions. Using up to five ions, dynamics were realized by sequences that combined single- and multi-qubit entangling gate operations with optical pumping. This enabled the implementation of both coherent many-body dynamics and dissipative processes by controlling the coupling of the system to an artificial, suitably tailored environment.

From Rotating Atomic Rings to Quantum Hall States

Date: 
2011-01-28
Author(s): 

M. Roncaglia, M. Rizzi, and J. Dalibard

Reference: 

arXiv:1101.5593

Considerable efforts are currently devoted to the preparation of ultracold neutral atoms in the emblematic strongly correlated quantum Hall regime. The routes followed so far essentially rely on thermodynamics, i.e. imposing the proper Hamiltonian and cooling the system towards its ground state. In rapidly rotating 2D harmonic traps the role of the transverse magnetic field is played by the angular velocity.

Quantum jumps induced by matter-wave fluctuations

Date: 
2010-07-05
Reference: 

J. M. Torres, M. Bienert, S. Zippilli and G. Morigi
http://arxiv.org/abs/1007.0694

We theoretically study the occurrence of quantum jumps in the resonance fluorescence of a trapped atom. Here, the atom is laser cooled in a configuration of level such that the occurrence of a quantum jump is associated to a change of the vibrational center-of-mass motion by one phonon. The statistics of the occurrence of the dark fluorescence period is studied as a function of the physical parameters and the corresponding features in the spectrum of resonance fluorescence are identified.

Trapped ions as quantum bits: Essential numerical tools (Colloquium)

Date: 
2010-09-14
Author(s): 

K. Singer, U. Poschinger, M. Murphy, P. Ivanov, F. Ziesel, T. Calarco, F. Schmidt-Kaler

Reference: 

Rev. Mod. Phys. 82, 2609 (2010)

Trapped laser-cooled atoms and ions are quantum systems which can be experimentally controlled with an as yet unmatched degree of precision. Due to the control of the motion and the internal degrees of freedom, these quantum systems can be adequately described by a well-known Hamiltonian. In this colloquium, powerful numerical tools for the optimization of the external control of the motional and internal states of trapped neutral atoms, explicitly applied to the case of trapped laser-cooled ions in a segmented ion-trap are presented.

rf-field-induced Feshbach resonances

Date: 
2010-05-11
Reference: 

T. V. Tscherbul, T. Calarco, I. Lesanovsky, R. V. Krems, A. Dalgarno, and J. Schmiedmayer
Phys. Rev. A 81, 050701 (2010)

A rigorous quantum theory of atomic collisions in the presence of radio frequency (rf) magnetic fields is developed and applied to elucidate the effects of combined dc and rf magnetic fields on ultracold collisions of Rb atoms. We show that rf fields can be used to induce Feshbach resonances, which can be tuned by varying the amplitude and frequency of the rf field.

Lossless state detection of single neutral atoms

Date: 
2010-05-20
Author(s): 

Joerg Bochmann, Martin Mücke, Christoph Guhl, Stephan Ritter, Gerhard Rempe, David L. Moehring

Reference: 

Phys. Rev. Lett. 104, 203601 (2010)

We introduce lossless state detection of trapped neutral atoms based on cavity-enhanced fluorescence. In an experiment with a single 87-Rb atom, a hyperfine-state detection fidelity of 99.4% is achieved in 85 microseconds. The quantum bit is interrogated many hundred times without loss of the atom while a result is obtained in every read-out attempt. The fidelity proves robust against atomic frequency shifts induced by the trapping potential.

Syndicate content