Journals

Shot-frugal and Robust quantum kernel classifiers. (arXiv:2210.06971v3 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Tue, 2024-01-02 16:45

Quantum kernel methods are a candidate for quantum speed-ups in supervised machine learning. The number of quantum measurements N required for a reasonable kernel estimate is a critical resource, both from complexity considerations and because of the constraints of near-term quantum hardware. We emphasize that for classification tasks, the aim is reliable classification and not precise kernel evaluation, and demonstrate that the former is far more resource efficient. Furthermore, it is shown that the accuracy of classification is not a suitable performance metric in the presence of noise and we motivate a new metric that characterizes the reliability of classification. We then obtain a bound for N which ensures, with high probability, that classification errors over a dataset are bounded by the margin errors of an idealized quantum kernel classifier. Using chance constraint programming and the subgaussian bounds of quantum kernel distributions, we derive several Shot-frugal and Robust (ShofaR) programs starting from the primal formulation of the Support Vector Machine. This significantly reduces the number of quantum measurements needed and is robust to noise by construction. Our strategy is applicable to uncertainty in quantum kernels arising from any source of unbiased noise.

Categories: Journals, Physics

A distribution testing oracle separation between QMA and QCMA. (arXiv:2210.15380v4 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Tue, 2024-01-02 16:45

It is a long-standing open question in quantum complexity theory whether the definition of $\textit{non-deterministic}$ quantum computation requires quantum witnesses $(\textsf{QMA})$ or if classical witnesses suffice $(\textsf{QCMA})$. We make progress on this question by constructing a randomized classical oracle separating the respective computational complexity classes. Previous separations [Aaronson-Kuperberg (CCC'07), Fefferman-Kimmel (MFCS'18)] required a quantum unitary oracle. The separating problem is deciding whether a distribution supported on regular un-directed graphs either consists of multiple connected components (yes instances) or consists of one expanding connected component (no instances) where the graph is given in an adjacency-list format by the oracle. Therefore, the oracle is a distribution over $n$-bit boolean functions.

Categories: Journals, Physics

Grothendieck inequalities characterize converses to the polynomial method. (arXiv:2212.08559v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Tue, 2024-01-02 16:45

A surprising 'converse to the polynomial method' of Aaronson et al. (CCC'16) shows that any bounded quadratic polynomial can be computed exactly in expectation by a 1-query algorithm up to a universal multiplicative factor related to the famous Grothendieck constant. Here we show that such a result does not generalize to quartic polynomials and 2-query algorithms, even when we allow for additive approximations. We also show that the additive approximation implied by their result is tight for bounded bilinear forms, which gives a new characterization of the Grothendieck constant in terms of 1-query quantum algorithms. Along the way we provide reformulations of the completely bounded norm of a form, and its dual norm.

Categories: Journals, Physics

Quantum Simulations of SO(5) Many-Fermion Systems using Qudits. (arXiv:2305.11941v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Tue, 2024-01-02 16:45

The structure and dynamics of quantum many-body systems are the result of a delicate interplay between underlying interactions, which leads to intricate entanglement structures. Despite this apparent complexity, symmetries emerge and have long been used to determine the relevant degrees of freedom and simplify classical descriptions of these systems. In this work, we explore the potential utility of quantum computers with arrays of qudits in simulating interacting fermionic systems, when the qudits can naturally map these relevant degrees of freedom. The Agassi model of fermions is based on an underlying $so(5)$ algebra, and the systems it describes can be partitioned into pairs of modes with five basis states, which naturally embed in arrays of $d=5$ qudits (qu5its). Classical noiseless simulations of the time evolution of systems of fermions embedded in up to twelve qu5its are performed using Google's cirq software. The resource requirements of the qu5it circuits are analyzed and compared with two different mappings to qubit systems, a physics-aware Jordan-Wigner mapping and a state-to-state mapping. We find advantages in using qudits, specifically in lowering the required quantum resources and reducing anticipated errors that take the simulation out of the physical space. A previously unrecognized sign problem has been identified from Trotterization errors in time evolving high-energy excitations. This has implications for quantum simulations in high-energy and nuclear physics, specifically of fragmentation and highly inelastic, multi-channel processes.

Categories: Journals, Physics

Operator growth and Krylov Complexity in Bose-Hubbard Model. (arXiv:2306.05542v2 [hep-th] UPDATED)

arXiv.org: Quantum Physics - Tue, 2024-01-02 16:45

We study Krylov complexity of a one-dimensional Bosonic system, the celebrated Bose-Hubbard Model. The Bose-Hubbard Hamiltonian consists of interacting bosons on a lattice, describing ultra-cold atoms. Apart from showing superfluid-Mott insulator phase transition, the model also exhibits both chaotic and integrable (mixed) dynamics depending on the value of the interaction parameter. We focus on the three-site Bose Hubbard Model (with different particle numbers), which is known to be highly mixed. We use the Lanczos algorithm to find the Lanczos coefficients and the Krylov basis. The orthonormal Krylov basis captures the operator growth for a system with a given Hamiltonian. However, the Lanczos algorithm needs to be modified for our case due to the instabilities instilled by the piling up of computational errors. Next, we compute the Krylov complexity and its early and late-time behaviour. Our results capture the chaotic and integrable nature of the system. Our paper takes the first step to use the Lanczos algorithm non-perturbatively for a discrete quartic bosonic Hamiltonian without depending on the auto-correlation method.

Categories: Journals, Physics

Mapping Electronic Decoherence Pathways in Molecules. (arXiv:2306.08574v3 [physics.chem-ph] UPDATED)

arXiv.org: Quantum Physics - Tue, 2024-01-02 16:45

Establishing the fundamental chemical principles that govern molecular electronic quantum decoherence has remained an outstanding challenge. Fundamental questions such as how solvent and intramolecular vibrations or chemical functionalization contribute to the decoherence remain unanswered and are beyond the reach of state-of-the-art theoretical and experimental approaches. Here we address this challenge by developing a strategy to isolate electronic decoherence pathways for molecular chromophores immersed in condensed phase environments that enables elucidating how electronic quantum coherence is lost. For this, we first identify resonance Raman spectroscopy as a general experimental method to reconstruct molecular spectral densities with full chemical complexity at room temperature, in solvent, and for fluorescent and non-fluorescent molecules. We then show how to quantitatively capture the decoherence dynamics from the spectral density and identify decoherence pathways by decomposing the overall coherence loss into contributions due to individual molecular vibrations and solvent modes. We illustrate the utility of the strategy by analyzing the electronic decoherence pathways of the DNA base thymine in water. Its electronic coherences decay in ~ 30 fs. The early-time decoherence is determined by intramolecular vibrations while the overall decay by solvent. Chemical substitution of thymine modulates the decoherence with hydrogen-bond interactions of the thymine ring with water leading to the fastest decoherence. Increasing temperature leads to faster decoherence as it enhances the importance of solvent contributions but leaves the early-time decoherence dynamics intact. The developed strategy opens key opportunities to establish the connection between molecular structure and quantum decoherence as needed to develop chemical strategies to rationally modulate it.

Categories: Journals, Physics

A SAT Solver and Computer Algebra Attack on the Minimum Kochen-Specker Problem. (arXiv:2306.13319v5 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Tue, 2024-01-02 16:45

One of the fundamental results in quantum foundations is the Kochen-Specker (KS) theorem, which states that any theory whose predictions agree with quantum mechanics must be contextual, i.e., a quantum observation cannot be understood as revealing a pre-existing value. The theorem hinges on the existence of a mathematical object called a KS vector system. While many KS vector systems are known, the problem of finding the minimum KS vector system in three dimensions has remained stubbornly open for over 55 years. In this paper, we present a new method based on a combination of a Boolean satisfiability (SAT) solver and a computer algebra system (CAS) to address this problem. Our approach shows that a KS system in three dimensions must contain at least 24 vectors. Our SAT+CAS method is over 35,000 times faster at deriving the previously known lower bound of 22 vectors than the prior CAS-based searches. More importantly, we provide the first computer-verifiable proof certificate of a lower bound in the KS problem with a proof size of 41.6 TiB in order 23. The increase in efficiency is due to the fact we are able to exploit the powerful combinatorial search-with-learning capabilities of SAT solvers, together with the CAS-based isomorph-free exhaustive method of orderly generation of graphs. To the best of our knowledge, our work is the first application of a SAT+CAS method to a problem in the realm of quantum foundations and the first lower bound in the minimum Kochen-Specker problem with a computer-verifiable proof certificate.

Categories: Journals, Physics

Multi-Body Entanglement and Information Rearrangement in Nuclear Many-Body Systems. (arXiv:2306.16535v2 [nucl-th] UPDATED)

arXiv.org: Quantum Physics - Tue, 2024-01-02 16:45

We examine how effective-model-space (EMS) calculations of nuclear many-body systems rearrange and converge multi-particle entanglement. The generalized Lipkin-Meshkov-Glick (LMG) model is used to motivate and provide insight for future developments of entanglement-driven descriptions of nuclei. The effective approach is based on a truncation of the Hilbert space together with a variational rotation of the qubits (spins), which constitute the relevant elementary degrees of freedom. The non-commutivity of the rotation and truncation allows for an exponential improvement of the energy convergence throughout much of the model space. Our analysis examines measures of correlations and entanglement, and quantifies their convergence with increasing cut-off. We focus on one- and two-spin entanglement entropies, mutual information, and $n$-tangles for $n=2,4$ to estimate multi-body entanglement. The effective description strongly suppresses entropies and mutual information of the rotated spins, while being able to recover the exact results to a large extent with low cut-offs. Naive truncations of the bare Hamiltonian, on the other hand, artificially underestimate these measures. The $n$-tangles in the present model provide a basis-independent measures of $n$-particle entanglement. While these are more difficult to capture with the EMS description, the improvement in convergence, compared to truncations of the bare Hamiltonian, is significantly more dramatic. We conclude that the low-energy EMS techniques, that successfully provide predictive capabilities for low-lying observables in many-body systems, exhibit analogous efficacy for quantum correlations and multi-body entanglement in the LMG model, motivating future studies in nuclear many-body systems and effective field theories relevant to high-energy physics and nuclear physics.

Categories: Journals, Physics

Measurement-assisted non-Gaussian gate for Schr\"odinger cat states preparation: Fock resource state versus cubic phase state. (arXiv:2307.06349v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Tue, 2024-01-02 16:45

In this paper, we consider the preparation of Schr\"odinger cat states using a measurement-assisted gate based on the Fock resource state, the quantum non-demolition (QND) entangling operation, and the homodyne measurement. Previously we have investigated the gate, which for the same goal uses the ancillary non-Gaussian cubic phase state generated from quadrature squeezed states at realistic (finite) squeezing. It is of evident interest to compare the efficiency of both schemes, that is, their ability to produce cat-like superpositions with high fidelity and probability of success. We introduce, in parallel with the exact theoretical description of the gate operation, a clear visual interpretation of the output state based on the semiclassical mapping of the input field variables. The emergence of the superpositions of copies of the input state in both schemes is due to the fact that such mapping is compatible with two (or, in general, more) sets of values of the output field observables. We demonstrate that even fine details of the output of both gates are effectively predicted and interpreted in our approach. We examine the fidelity and success probability and reveal the ranges of physical parameters where the Fock state-based and the cubic phase state-based gates demonstrate comparable fidelity and (or) probability of success.

Categories: Journals, Physics

A Novel Approach to Threshold Quantum Images by using Unsharp Measurements. (arXiv:2310.10753v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Tue, 2024-01-02 16:45

We propose a hybrid quantum approach to threshold and binarize a grayscale image through unsharp measurements (UM) relying on image histogram. Generally, the histograms are characterized by multiple overlapping normal distributions corresponding to objects, or image features with small but significant overlaps, making it challenging to establish suitable thresholds. The proposed methodology uses peaks of the overlapping Gaussians and the distance between neighboring local minima as the variance, based on which the UM parameters are chosen, that maps the normal distribution into a localized delta function. To demonstrate its efficacy, subsequent implementation is done on noisy quantum environments in Qiskit. This process is iteratively repeated for a multimodal histogram to obtain more thresholds, which are then applied to various life-like pictures to get high-contrast images, resulting in comparable peak signal-to-noise ratio and structural similarity index measure values. The obtained thresholds are used to binarize a grayscale image by using novel enhanced quantum image representation integrated with a threshold encoder and an efficient quantum comparator (QC) that depicts the whole binarized picture. This approach significantly reduces the complexity of the proposed QC and of the whole algorithm when compared to earlier models.

Categories: Journals, Physics

Multiplexed Processing of Quantum Information Across an Ultra-wide Optical Bandwidth. (arXiv:2310.17819v3 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Tue, 2024-01-02 16:45

Protocols of quantum information processing are the foundation of quantum technology, allowing to share secrets at a distance for secure communication (quantum key distribution), to teleport quantum states, and to implement quantum computation. While various protocols have already been realized, and even commercialized, the throughput and processing speed of standard protocols is generally low, limited by the narrow electronic bandwidth of the measurement apparatus in the MHz-to-GHz range, which is orders-of-magnitude lower than the optical bandwidth of available quantum optical sources (10-100 THz). We present a general concept and methods to process quantum information in parallel over multiplexed frequency channels using parametric homodyne detection for measurement of all the channels simultaneously, thereby harnessing the optical bandwidth for quantum information in an efficient manner. We exemplify the concept through two basic protocols: Multiplexed Continuous-Variable Quantum Key Distribution (CV-QKD) and multiplexed continuous-variable quantum teleportation. We demonstrate the multiplexed CV-QKD protocol in a proof-of-principle experiment, where we successfully carry out QKD over 23 uncorrelated spectral channels, with capability to detect eavesdropping in any channel. These multiplexed methods (and similar) will enable to carry out quantum processing in parallel over hundreds of channels, potentially increasing the throughput of quantum protocols by orders of magnitude.

Categories: Journals, Physics

Synthesis and Arithmetic of Single Qutrit Circuits. (arXiv:2311.08696v3 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Tue, 2024-01-02 16:45

In this paper we study single qutrit quantum circuits consisting of words over the Clifford+ $\mathcal{D}$ gate set, where $\mathcal{D}$ consists of cyclotomic gates of the form $\text{diag}(\pm\xi^{a},\pm\xi^{b},\pm\xi^{c}),$ where $\xi$ is a primitive $9$-th root of unity and $a,b,c$ are integers. We characterize classes of qutrit unit vectors $z$ with entries in $\mathbb{Z}[\xi, \frac{1}{\chi}]$ based on the possibility of reducing their smallest denominator exponent (sde) with respect to $\chi := 1 - \xi,$ by acting an appropriate gate in Clifford+$\mathcal{D}$. We do this by studying the notion of `derivatives mod $3$' of an arbitrary element of $\mathbb{Z}[\xi]$ and using it to study the smallest denominator exponent of $HDz$ where $H$ is the qutrit Hadamard gate and $D \in \mathcal{D}.$ In addition, we reduce the problem of finding all unit vectors of a given sde to that of finding integral solutions of a positive definite quadratic form along with some additional constraints. As a consequence we prove that the Clifford + $\mathcal{D}$ gates naturally arise as gates with sde $0$ and $3$ in the group $U(3,\mathbb{Z}[\xi, \frac{1}{\chi}])$ of $3 \times 3$ unitaries with entries in $\mathbb{Z}[\xi, \frac{1}{\chi}]$

Categories: Journals, Physics

Entanglement measures for detectability. (arXiv:2311.11189v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Tue, 2024-01-02 16:45

We propose new entanglement measures as the detection performance based on the hypothesis testing setting. We clarify how our measures work for detecting an entangled state by extending the quantum Sanov theorem. Our analysis covers the finite-length setting. Exploiting this entanglement measure, we present how to derive entanglement witness to detect the given entangled state by using the geometrical structure of this measure. We derive their calculation formulas for maximally correlated states, and propose their algorithms that work for general entangled states. In addition, we investigate how our algorithm works for solving the membership problem for separability.

Categories: Journals, Physics

Quantum Mechanics on a background modulo observation. (arXiv:2311.12493v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Tue, 2024-01-02 16:45

In this work we will answer the following question: What remains of Quantum Mechanics when we transform the background space-time into a space modularized by observation or measurement regions ? This new moduli space is constructed by identifying regions of space-time where quantum phase comparison (observation, measurement) is implied. We call it Observation Modular space (OM-space). In addition we replace in QM statements the Plank constant (h) by the quantity $\zeta_0 4 \pi^2$ (where $\zeta_0$ is the Plank Length) or otherwise, replacing $P_0$ (the Planck Momentum) by $4 \pi^2$. This maps Quantum Mechanics into a very rich dual Number Theory which we call Observation Modular Quantum Mechanics (OM-QM). We find the OM-dual to the Dirac Equation, the quantum Wave Function and a free particle's mass. The OM-QM counterparts of the Energy turns out to be a simple function of the zeroes of the Riemann zeta function. We also find the OM-QM correspondents to the electron spin, the electron charge, the Electric Field and the Fine Structure Constant. We also find the OM-QM correspondents of the Heisemberg uncertainty relation and Einstein's General Relativity Field equation emerging as certain limits of a unique OM-QM equation. We also get the OM-QM correspondents of the Gravitational Constant and the Cosmological Constant. We find the analog of holography in the OM-QM side and we get an interpretation of spin as a high dimensional curvature. An interpretation of the OM-QM correspondence is proposed as giving the part of QM information which is not measurement or observation dependent. Some potential future applications of this correspondence are discussed.

Categories: Journals, Physics

Resolved Raman sideband cooling of a single optically trapped cesium atom. (arXiv:2311.17494v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Tue, 2024-01-02 16:45

We developed a resolved Raman sideband cooling scheme that can efficiently prepare a single optically trapped cesium (Cs) atom in its motional ground states. A two-photon Raman process between two outermost Zeeman sublevels in a single hyperfine state is applied to reduce the phonon number. Our scheme is less sensitive to the variation in the magnetic field than the commonly used scheme where the two outermost Zeeman sublevels belonging to the two separate ground hyperfine states are taken. Fast optical pumping with less spontaneous emission guarantees the efficiency of the cooling process. After cooling for 50 ms, 82% of the Cs atoms populate their three-dimensional ground states. Our scheme improves the long-term stability of Raman sideband cooling in the presence of magnetic field drift and is thus suitable for cooling other trapped atoms or ions with abundant magnetic sublevels.

Categories: Journals, Physics

Large-Area Spatially Ordered Mesa Top Single Quantum Dots: Suitable Single Photon Emitters for On-Chip Integrated Quantum Information Processing Platforms. (arXiv:2312.15132v3 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Tue, 2024-01-02 16:45

Realization of the long sought on-chip scalable photonic quantum information processing networks has been thwarted by the absence of spatially-ordered and scalable on-demand single photon emitters with emission figures-of-merit exceeding the required thresholds across large numbers. The positioning must meet the required degree of accuracy that enables fabricating their interconnection to create the desired functional network. Here we report on the realization of large-area spatially-ordered arrays of mesa-top single quantum dots (MTSQDs) that are demonstrated [1] to be on-demand single photon emitters with characteristics that meet the requirements for implementing quantum photonic circuits/platforms aimed at quantum key distribution, linear optical quantum computing, simulations of quantum many-body problems, and metrology/sensing. The reported GaAs/InGaAs/GaAs MTSQD arrays, grown via SESRE (substrate-encoded size-reducing epitaxy) are in multiple arrays of up to 100x100 with 5um pitch, across a centimeter radius area. We show illustrative large-area images of the emission intensity (brightness) and color-coded wavelength distribution exhibiting ~3.35nm standard deviation. Scanning transmission electron microscopy shows a remarkable control on the QD location to within ~3nm accuracy laterally and ~1nm vertically. The primary remaining challenge is the control on the uniformity of the currently wet-chemically etched as-patterned nanomesa lateral size across the substrate, a surmountable technical issue. Thus, SESRE offers the most promising approach to realizing on-chip scalable spatially-ordered arrays of on-demand bright single quantum emitters meeting the figures-of-merit required for on-chip fully integrated quantum photonic circuit platforms-monolithic (such as based upon AlGaAs on insulator) or hybrid that leverage the silicon-on-insulator (SOI) photonic integrated circuit (PIC).

Categories: Journals, Physics

Coherence time of 20 s with a single cesium atom in an optical dipole trap. (arXiv:2312.11196v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Tue, 2024-01-02 16:45

We analyze the decoherence between two ground electronic states of an optically trapped atom by adopting a full description of the atomic wavefunction. The motional state, i.e., the phonon state, is taken into account. In addition to the decoherence due to the variance of differential light shift (DLS), a new decoherence mechanism, phonon-jumping-induced decoherence (PJID), is discovered and verified experimentally. A coherence time of $T_2\approx 20$ s is then obtained for a single Cs atom by suppressing both variances of DLS and PJID by trapping the atom in a blue-detuned BBT and preparing the atom into its three-dimensional motional ground states. Our work opens a new prospect to extend the coherence time of optically trapped single atoms.

Categories: Journals, Physics

Measurement-Device-Independent Detection of Beyond-Quantum State. (arXiv:2312.06151v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Tue, 2024-01-02 16:45

In quantum theory, a quantum state on a composite system of two parties realizes a non-negative probability with any measurement element with a tensor product form. However, there also exist non-quantum states which satisfy the above condition. Such states are called beyond-quantum states, and cannot be detected by standard Bell tests. To distinguish a beyond-quantum state from quantum states, we propose a measurement-device-independent (MDI) test for beyond-quantum state detection, which is composed of quantum input states on respective parties and quantum measurements across the input system and the target system on respective parties. The performance of our protocol is independent of the forms of the tested states and the measurement operators, which provides an advantage in practical scenarios. We also discuss the importance of tomographic completeness of the input sets to the detection.

Categories: Journals, Physics

Cutoff brane vs the Karch-Randall brane: the fluctuating case. (arXiv:2312.03531v2 [hep-th] UPDATED)

arXiv.org: Quantum Physics - Tue, 2024-01-02 16:45

Recently, certain holographic Weyl transformed CFT$_2$ is proposed to capture the main features of the AdS$_3$/BCFT$_2$ correspondence \cite{Basu:2022crn,Basu:2023wmv}. In this paper, by adapting the Weyl transformation, we simulate a generalized AdS/BCFT set-up where the fluctuation of the Karch-Randall (KR) brane is considered. In the gravity dual of the Weyl transformed CFT, the so-called cutoff brane induced by the Weyl transformation plays the same role as the KR brane. Unlike the non-fluctuating configuration, in the $2d$ effective theory the additional twist operator is inserted at a different places, compared with the one inserted on the brane. Though this is well-understood in the Weyl transformed CFT set-up, it is confusing in the AdS/BCFT set-up where the effective theory is supposed to locate on the brane. This confusion indicates that the KR brane may be emergent from the boundary CFT$_2$ via the Weyl transformations.

We also calculate the balanced partial entanglement (BPE) in the fluctuating brane configurations and find it coincide with the entanglement wedge cross-section (EWCS). This is a non-trivial test for the correspondence between the BPE and the EWCS, and a non-trivial consistency check for the Weyl transformed CFT set-up.

Categories: Journals, Physics

Decomposition of State Spaces into Subobjects in Quantum Field Theory. (arXiv:2312.17275v1 [quant-ph])

arXiv.org: Quantum Physics - Mon, 2024-01-01 11:45

This paper introduces a comprehensive formalism for decomposing the state space of a quantum field into several entangled subobjects, i.e., fields generating a subspace of states. Projecting some of the subobjects onto degenerate background states reduces the system to an effective field theory depending on parameters representing the degeneracies. Notably, these parameters are not exogenous. The entanglement among subobjects in the initial system manifests as an interrelation between parameters and non-projected subobjects. Untangling this dependency necessitates imposing linear first-order equations on the effective field. The geometric characteristics of the parameter spaces depend on both the effective field and the background of the projected subobjects. The system, governed by arbitrary variables, has no dynamics, but the projection of some subobjects can be interpreted as slicing the original state space according to the lowest eigenvalues of a parameter-dependent family of operators. The slices can be endowed with amplitudes similar to some transitions between each other, contingent upon these eigenvalues. Averaging over all possible transitions shows that the amplitudes are higher for maps with increased eigenvalue than for maps with decreasing eigenvalue.

Categories: Journals, Physics
Syndicate content