Journals

Quantifying the unextendibility of entanglement. (arXiv:1911.07433v3 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Mon, 2024-01-08 22:45

Entanglement is a striking feature of quantum mechanics, and it has a key property called unextendibility. In this paper, we present a framework for quantifying and investigating the unextendibility of general bipartite quantum states. First, we define the unextendible entanglement, a family of entanglement measures based on the concept of a state-dependent set of free states. The intuition behind these measures is that the more entangled a bipartite state is, the less entangled each of its individual systems is with a third party. Second, we demonstrate that the unextendible entanglement is an entanglement monotone under two-extendible quantum operations, including local operations and one-way classical communication as a special case. Normalization and faithfulness are two other desirable properties of unextendible entanglement, which we establish here. We further show that the unextendible entanglement provides efficiently computable benchmarks for the rate of exact entanglement or secret key distillation, as well as the overhead of probabilistic entanglement or secret key distillation.

Categories: Journals, Physics

Multimarked Spatial Search by Continuous-Time Quantum Walk. (arXiv:2203.14384v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Mon, 2024-01-08 22:45

The quantum-walk-based spatial search problem aims to find a marked vertex using a quantum walk on a graph with marked vertices. We describe a framework for determining the computational complexity of spatial search by continuous-time quantum walk on arbitrary graphs by providing a recipe for finding the optimal running time and the success probability of the algorithm. The quantum walk is driven by a Hamiltonian derived from the adjacency matrix of the graph modified by the presence of the marked vertices. The success of our framework depends on the knowledge of the eigenvalues and eigenvectors of the adjacency matrix. The spectrum of the Hamiltonian is subsequently obtained from the roots of the determinant of a real symmetric matrix $M$, the dimensions of which depend on the number of marked vertices. The eigenvectors are determined from a basis of the kernel of $M$. We show each step of the framework by solving the spatial searching problem on the Johnson graphs with a fixed diameter and with two marked vertices. Our calculations show that the optimal running time is $O(\sqrt{N})$ with an asymptotic probability of $1+o(1)$, where $N$ is the number of vertices.

Categories: Journals, Physics

Three-state coherent control using narrowband and passband sequences. (arXiv:2205.14432v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Mon, 2024-01-08 22:45

In this work, we propose a comprehensive design for narrowband and passband composite pulse sequences by involving the dynamics of all states in the three-state system. The design is quite universal as all pulse parameters can be freely employed to modify the coefficients of error terms. Two modulation techniques, the strength and phase modulations, are used to achieve arbitrary population transfer with a desired excitation profile, while the system keeps minimal leakage to the third state. Furthermore, the current sequences are capable of tolerating inaccurate waveforms, detunings errors, and work well when rotating wave approximation is not strictly justified. Therefore, this work provides versatile adaptability for shaping various excitation profiles in both narrowband and passband sequences.

Categories: Journals, Physics

Variational Quantum and Quantum-Inspired Clustering. (arXiv:2206.09893v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Mon, 2024-01-08 22:45

Here we present a quantum algorithm for clustering data based on a variational quantum circuit. The algorithm allows to classify data into many clusters, and can easily be implemented in few-qubit Noisy Intermediate-Scale Quantum (NISQ) devices. The idea of the algorithm relies on reducing the clustering problem to an optimization, and then solving it via a Variational Quantum Eigensolver (VQE) combined with non-orthogonal qubit states. In practice, the method uses maximally-orthogonal states of the target Hilbert space instead of the usual computational basis, allowing for a large number of clusters to be considered even with few qubits. We benchmark the algorithm with numerical simulations using real datasets, showing excellent performance even with one single qubit. Moreover, a tensor network simulation of the algorithm implements, by construction, a quantum-inspired clustering algorithm that can run on current classical hardware.

Categories: Journals, Physics

Macroscopic noise amplification by asymmetric dyads in non-Hermitian optical systems for generative diffusion models. (arXiv:2206.12200v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Mon, 2024-01-08 22:45

A new generation of sensors, hardware random number generators, and quantum and classical signal detectors are exploiting strong responses to external perturbations of system noise. Here, we study noise amplification by asymmetric dyads in freely expanding non-Hermitian optical systems.

We show that modifications of the pumping strengths can counteract bias from natural imperfections of the system's hardware, while couplings between dyads lead to systems with non-uniform statistical distributions. Our results suggest that asymmetric non-Hermitian dyads are promising candidates for efficient sensors and ultra-fast random number generators. We propose that the integrated light emission from such asymmetric dyads can be efficiently used for analog all-optical degenerative diffusion models of machine learning to overcome the digital limitations of such models in processing speed and energy consumption.

Categories: Journals, Physics

Quantum artificial vision for defect detection in manufacturing. (arXiv:2208.04988v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Mon, 2024-01-08 22:45

In this paper we consider several algorithms for quantum computer vision using Noisy Intermediate-Scale Quantum (NISQ) devices, and benchmark them for a real problem against their classical counterparts. Specifically, we consider two approaches: a quantum Support Vector Machine (QSVM) on a universal gate-based quantum computer, and QBoost on a quantum annealer. The quantum vision systems are benchmarked for an unbalanced dataset of images where the aim is to detect defects in manufactured car pieces. We see that the quantum algorithms outperform their classical counterparts in several ways, with QBoost allowing for larger problems to be analyzed with present-day quantum annealers. Data preprocessing, including dimensionality reduction and contrast enhancement, is also discussed, as well as hyperparameter tuning in QBoost. To the best of our knowledge, this is the first implementation of quantum computer vision systems for a problem of industrial relevance in a manufacturing production line.

Categories: Journals, Physics

Probabilistic state synthesis based on optimal convex approximation. (arXiv:2303.10860v3 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Mon, 2024-01-08 22:45

When preparing a pure state with a quantum circuit, there is an unavoidable approximation error due to the compilation error in fault-tolerant implementation. A recently proposed approach called probabilistic state synthesis, where the circuit is probabilistically sampled, is able to reduce the approximation error compared to conventional deterministic synthesis. In this paper, we demonstrate that the optimal probabilistic synthesis quadratically reduces the approximation error. Moreover, we show that a deterministic synthesis algorithm can be efficiently converted into a probabilistic one that achieves this quadratic error reduction. We also numerically demonstrate how this conversion reduces the $T$-count and analytically prove that this conversion halves an information-theoretic lower bound on the circuit size. In order to derive these results, we prove general theorems about the optimal convex approximation of a quantum state. Furthermore, we demonstrate that this theorem can be used to analyze an entanglement measure.

Categories: Journals, Physics

Photocounting measurements with dead time and afterpulses in the continuous-wave regime. (arXiv:2303.14246v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Mon, 2024-01-08 22:45

The widely used experimental technique of continuous-wave detection assumes counting pulses of photocurrent from a click-type detector inside a given measurement time window. With such a procedure we miss out the photons detected after each photocurrent pulse during the detector dead time. Additionally, each pulse may initialize so-called afterpulse, which is not associated with the real photons. We derive the corresponding quantum photocounting formula and experimentally verify its validity. Statistics of photocurrent pulses appears to be nonlinear with respect to quantum state, which is explained by the memory effect of the previous measurement time windows. Expressions -- in general, nonlinear -- connecting statistics of photons and pulses are derived for different measurement scenarios. We also consider an application of the obtained results to quantum state reconstruction with unbalanced homodyne detection.

Categories: Journals, Physics

Unique Steady-State Squeezing in a Driven Quantum Rabi Model. (arXiv:2305.14290v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Mon, 2024-01-08 22:45

Squeezing is essential to many quantum technologies and our understanding of quantum physics. Here we develop a theory of steady-state squeezing that can be generated in the closed and open quantum Rabi as well as Dicke model. To this end, we eliminate the spin dynamics which effectively leads to an abstract harmonic oscillator whose eigenstates are squeezed with respect to the physical harmonic oscillator. The generated form of squeezing has the unique property of time-independent uncertainties and squeezed dynamics, a novel type of quantum behavior. Such squeezing might find applications in continuous back-action evading measurements and should already be observable in optomechanical systems and Coulomb crystals.

Categories: Journals, Physics

Witnessing environment dimension through temporal correlations. (arXiv:2305.19175v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Mon, 2024-01-08 22:45

We introduce a framework to compute upper bounds for temporal correlations achievable in open quantum system dynamics, obtained by repeated measurements on the system. As these correlations arise by virtue of the environment acting as a memory resource, such bounds are witnesses for the minimal dimension of an effective environment compatible with the observed statistics. These witnesses are derived from a hierarchy of semidefinite programs with guaranteed asymptotic convergence. We compute non-trivial bounds for various sequences involving a qubit system and a qubit environment, and compare the results to the best known quantum strategies producing the same outcome sequences. Our results provide a numerically tractable method to determine bounds on multi-time probability distributions in open quantum system dynamics and allow for the witnessing of effective environment dimensions through probing of the system alone.

Categories: Journals, Physics

The BHL-BCL crossover: from nonlinear to linear quantum amplification. (arXiv:2306.05458v3 [cond-mat.quant-gas] UPDATED)

arXiv.org: Quantum Physics - Mon, 2024-01-08 22:45

The black-hole laser (BHL) effect is the self-amplification of Hawking radiation between a pair of horizons which act as a resonant cavity. In a flowing atomic condensate, the BHL effect arises in a finite supersonic region, where Bogoliubov-Cherenkov-Landau (BCL) radiation is resonantly excited by any static perturbation. Thus, experimental attempts to produce a BHL unavoidably deal with the presence of a strong BCL background, making the observation of the BHL effect still a major challenge in the analogue gravity field. Here, we perform a theoretical study of the BHL-BCL crossover using an idealized model where both phenomena can be unambiguously isolated. By drawing an analogy with an unstable pendulum, we distinguish three main regimes according to the interplay between quantum fluctuations and classical stimulation: quantum BHL, classical BHL, and BCL. Based on quite general scaling arguments, the nonlinear amplification of quantum fluctuations up to saturation is identified as the most robust trait of a quantum BHL. A classical BHL behaves instead as a linear quantum amplifier, where the output is proportional to the input. The BCL regime also acts as a linear quantum amplifier, but its gain is exponentially smaller as compared to a classical BHL. Complementary signatures of black-hole lasing are a decrease in the amplification for increasing BCL amplitude or a nonmonotonic dependence of the growth rate with respect to the background parameters. We also identify interesting analogue phenomena such as Hawking-stimulated white-hole radiation or quantum BCL-stimulated Hawking radiation. The results of this work not only are of interest for analogue gravity, where they help to distinguish each phenomenon and to design experimental schemes for a clear observation of the BHL effect, but they also open the prospect of finding applications of analogue concepts in quantum technologies.

Categories: Journals, Physics

Development of a Boston-area 50-km fiber quantum network testbed. (arXiv:2307.15696v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Mon, 2024-01-08 22:45

Distributing quantum information between remote systems will necessitate the integration of emerging quantum components with existing communication infrastructure. This requires understanding the channel-induced degradations of the transmitted quantum signals, beyond the typical characterization methods for classical communication systems. Here we report on a comprehensive characterization of a Boston-Area Quantum Network (BARQNET) telecom fiber testbed, measuring the time-of-flight, polarization, and phase noise imparted on transmitted signals. We further design and demonstrate a compensation system that is both resilient to these noise sources and compatible with integration of emerging quantum memory components on the deployed link. These results have utility for future work on the BARQNET as well as other quantum network testbeds in development, enabling near-term quantum networking demonstrations and informing what areas of technology development will be most impactful in advancing future system capabilities.

Categories: Journals, Physics

Sufficient condition for universal quantum computation using bosonic circuits. (arXiv:2309.07820v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Mon, 2024-01-08 22:45

Continuous-variable bosonic systems stand as prominent candidates for implementing quantum computational tasks. While various necessary criteria have been established to assess their resourcefulness, sufficient conditions have remained elusive. We address this gap by focusing on promoting circuits that are otherwise simulatable to computational universality. The class of simulatable, albeit non-Gaussian, circuits that we consider is composed of Gottesman-Kitaev-Preskill (GKP) states, Gaussian operations, and homodyne measurements. Based on these circuits, we first introduce a general framework for mapping a continuous-variable state into a qubit state. Subsequently, we cast existing maps into this framework, including the modular and stabilizer subsystem decompositions. By combining these findings with established results for discrete-variable systems, we formulate a sufficient condition for achieving universal quantum computation. Leveraging this, we evaluate the computational resourcefulness of a variety of states, including Gaussian states, finite-squeezing GKP states, and cat states. Furthermore, our framework reveals that both the stabilizer subsystem decomposition and the modular subsystem decomposition (of position-symmetric states) can be constructed in terms of simulatable operations. This establishes a robust resource-theoretical foundation for employing these techniques to evaluate the logical content of a generic continuous-variable state, which can be of independent interest.

Categories: Journals, Physics

ZZ-Interaction-Free Single-Qubit-Gate Optimization in Superconducting Qubits. (arXiv:2309.13927v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Mon, 2024-01-08 22:45

Overcoming the issue of qubit-frequency fluctuations is essential to realize stable and practical quantum computing with solid-state qubits. Static ZZ interaction, which causes a frequency shift of a qubit depending on the state of neighboring qubits, is one of the major obstacles to integrating fixed-frequency transmon qubits. Here we propose and experimentally demonstrate ZZ-interaction-free single-qubit-gate operations on a superconducting transmon qubit by utilizing a semi-analytically optimized pulse based on a perturbative analysis. The gate is designed to be robust against slow qubit-frequency fluctuations. The robustness of the optimized gate spans a few MHz, which is sufficient for suppressing the adverse effects of the ZZ interaction. Our result paves the way for an efficient approach to overcoming the issue of ZZ interaction without any additional hardware overhead.

Categories: Journals, Physics

Generalized Black Hole Entropy is von Neumann Entropy. (arXiv:2309.15897v3 [hep-th] UPDATED)

arXiv.org: Quantum Physics - Mon, 2024-01-08 22:45

It was recently shown that the von Neumann algebras of observables dressed to the mass of a Schwarzschild-AdS black hole or an observer in de Sitter are Type II, and thus admit well-defined traces. The von Neumann entropies of "semi-classical" states were found to be generalized entropies. However, these arguments relied on the existence of an equilibrium (KMS) state and thus do not apply to, e.g., black holes formed from gravitational collapse, Kerr black holes, or black holes in asymptotically de Sitter space. In this paper, we present a general framework for obtaining the algebra of dressed observables for linear fields on any spacetime with a Killing horizon. We prove, assuming the existence of a stationary (but not necessarily KMS) state and suitable decay of solutions, a structure theorem that the algebra of dressed observables always contains a Type II factor "localized" on the horizon. These assumptions have been rigorously proven in most cases of interest. Applied to the algebra in the exterior of an asymptotically flat Kerr black hole, where the fields are dressed to the black hole mass and angular momentum, we find a product of a Type II$_{\infty}$ algebra on the horizon and a Type I$_{\infty}$ algebra at past null infinity. In Schwarzschild-de Sitter, despite the fact that we introduce an observer, the quantum field observables are dressed to the perturbed areas of the black hole and cosmological horizons and is the product of Type II$_{\infty}$ algebras on each horizon. In all cases, the von Neumann entropy for semiclassical states is given by the generalized entropy. Our results suggest that in all cases where there exists another "boundary structure" (e.g., an asymptotic boundary or another Killing horizon) the algebra of observables is Type II$_{\infty}$ and in the absence of such structures (e.g., de Sitter) the algebra is Type II$_{1}$.

Categories: Journals, Physics

Theory of non-Hermitian fermionic superfluidity on a honeycomb lattice: Interplay between exceptional manifolds and van Hove Singularity. (arXiv:2309.16191v2 [cond-mat.quant-gas] UPDATED)

arXiv.org: Quantum Physics - Mon, 2024-01-08 22:45

We study the non-Hermitian fermionic superfluidity subject to dissipation of Cooper pairs on a honeycomb lattice, for which we analyze the attractive Hubbard model with a complex-valued interaction. Remarkably, we demonstrate the emergence of the dissipation-induced superfluid phase that is anomalously enlarged by a cusp on the phase boundary. We find that this unconventional phase transition originates from the interplay between exceptional lines and van Hove singularity, which has no counterpart in equilibrium. Moreover, we demonstrate that the infinitesimal dissipation induces the nontrivial superfluid solution at the critical point. Our results can be tested in ultracold atoms with photoassociation techniques by postselcting special measurement outcomes with the use of quantum-gas microscopy and can lead to understanding the NH many-body physics triggered by exceptional manifolds in open quantum systems.

Categories: Journals, Physics

Boundary transfer matrix spectrum of measurement-induced transitions. (arXiv:2310.03078v2 [cond-mat.dis-nn] UPDATED)

arXiv.org: Quantum Physics - Mon, 2024-01-08 22:45

Measurement-induced phase transitions (MIPTs) are known to be described by non-unitary conformal field theories (CFTs) whose precise nature remains unknown. Most physical quantities of interest, such as the entanglement features of quantum trajectories, are described by boundary observables in this CFT. We introduce a transfer matrix approach to study the boundary spectrum of this field theory, and consider a variety of boundary conditions. We apply this approach numerically to monitored Haar and Clifford circuits, and to the measurement-only Ising model where the boundary scaling dimensions can be derived analytically. Our transfer matrix approach provides a systematic numerical tool to study the spectrum of MIPTs.

Categories: Journals, Physics

Thermodynamic Matrix Exponentials and Thermodynamic Parallelism. (arXiv:2311.12759v2 [cond-mat.stat-mech] UPDATED)

arXiv.org: Quantum Physics - Mon, 2024-01-08 22:45

Thermodynamic computing exploits fluctuations and dissipation in physical systems to efficiently solve various mathematical problems. For example, it was recently shown that certain linear algebra problems can be solved thermodynamically, leading to an asymptotic speedup scaling with the matrix dimension. The origin of this "thermodynamic advantage" has not yet been fully explained, and it is not clear what other problems might benefit from it. Here we provide a new thermodynamic algorithm for exponentiating a real matrix, with applications in simulating linear dynamical systems. We describe a simple electrical circuit involving coupled oscillators, whose thermal equilibration can implement our algorithm. We also show that this algorithm also provides an asymptotic speedup that is linear in the dimension. Finally, we introduce the concept of thermodynamic parallelism to explain this speedup, stating that thermodynamic noise provides a resource leading to effective parallelization of computations, and we hypothesize this as a mechanism to explain thermodynamic advantage more generally.

Categories: Journals, Physics

The Dirac Delta as a Singular Potential for the 2D Schrodinger Equation. (arXiv:2312.15126v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Mon, 2024-01-08 22:45

In the framework of distributionally generalized quantum theory, the object $H\psi$ is defined as a distribution. The mathematical significance is a mild generalization for the theory of para- and pseudo-differential operators (as well as a generalization of the weak eigenvalue problem), where the $\psi$-do symbol (which is not a proper linear operator in this generalized case) can have its coefficient functions take on singular distributional values. Here, a distribution is said to be singular if it is not L$^p(\mathbb{R}^d)$ for any $p\geq 1$. Physically, the significance is a mathematically rigorous method, which does not rely upon renormalization or regularization of any kind, while producing bound state energy results in agreement with the literature. In addition, another benefit is that the method does not rely upon self-adjoint extensions of the Laplace operator. This is important when the theory is applied to non-Schrodinger systems, as is the case for the Dirac equation and a necessary property of any finite rigorous version of quantum field theory. The distributional interpretation resolves the need to evaluate a wave function at a point where it fails to be defined. For $d=2$, this occurs as $K_o(a|x|)\delta(x)$, where $K_o$ is the zeroth order MacDonald function. Finally, there is also the identification of a missing anomalous length scale, owing to the scale invariance of the formal symbol(ic) Hamiltonian, as well as the common identity for the logarithmic function, with $a,\,b\in\mathbb{R}^+$, $\log(ab)=\log(a)+\log(b)$, which loses unitlessness in its arguments. Consequently, the energy or point spectrum is generalized as a family (set indexed by the continuum) of would-be spectral values, called the C-spectrum.

Categories: Journals, Physics

Entanglement topography of large-scale quantum networks. (arXiv:2312.16009v2 [quant-ph] UPDATED)

arXiv.org: Quantum Physics - Mon, 2024-01-08 22:45

Large-scale quantum networks, necessary for distributed quantum information processing, are posited to have quantum entangled systems between distant network nodes. The extent and quality of distributed entanglement in a quantum network, that is its functionality, depends on its topology, edge-parameter distributions and the distribution protocol. We uncover the parametric entanglement topography and introduce the notion of typical and maximal viable regions for entanglement-enabled tasks in a general model of large-scale quantum networks. We show that such a topographical analysis, in terms of viability regions, reveals important functional information about quantum networks, provides experimental targets for the edge parameters and can guide efficient quantum network design. Applied to a photonic quantum network, such a topographical analysis shows that in a network with radius $10^3$ kms and 1500 nodes, arbitrary pairs of nodes can establish quantum secure keys at a rate of $R_{sec}=1$ kHz using $1$ MHz entanglement generation sources on the edges and as few as 3 entanglement swappings at intermediate nodes along network paths.

Categories: Journals, Physics
Syndicate content