Quantum Computation

Topological matter with collective encoding and Rydberg blockade

Date: 
2010-11-23
Author(s): 

Anne E. B. Nielsen, K. Mølmer

Reference: 

Phys Rev A 82, 052326 (2010)
http://arxiv.org/abs/1006.5664

We propose to use a permutation symmetric sample of multi-level atoms to simulate the properties of topologically ordered states. The Rydberg blockade interaction is used to prepare states of the sample which are equivalent to resonating valence bond states, Laughlin states, and string-net condensates and to create and study the properties of their quasi-particle-like fundamental excitations.

Speeding up critical system dynamics through optimized evolution

Date: 
2011-07-12
Author(s): 

T. Caneva, T. Calarco, R. Fazio, G. E. Santoro, S. Montangero

Reference: 

Phys. Rev. A 84, 012312 (2011)

The number of defects which are generated upon crossing a quantum phase transition can be minimized by choosing properly designed time-dependent pulses. In this work we determine what are the ultimate limits of this optimization. We discuss under which conditions the production of defects across the phase transition is vanishing small.

Fast and robust quantum computation with ionic Wigner crystals

Date: 
2011-04-15
Author(s): 

J. D. Baltrusch, A. Negretti, J. M. Taylor, T. Calarco

Reference: 

Phys. Rev. A 83, 042319 (2011).

We present a detailed analysis of the modulated-carrier quantum phase gate implemented with Wigner crystals of ions confined in Penning traps. We elaborate on a recent scheme, proposed by two of the authors, to engineer two-body interactions between ions in such crystals. We analyze for the first time the situation in which the cyclotron (w_c) and the crystal rotation (w_r) frequencies do not fulfill the condition w_c=2w_r.

Mathematics and Quantum Information

Research Type: 
Theory

Quantum many-body systems

Bell inequalities, non-locality and communication complexity

Quantum channels

Leader: 
David Perez-Garcia

Open Quantum Systems and Entanglement

Website: 
Research Type: 
Theory
Leader: 
Prof. Sabrina Maniscalco

Basel Quantum Transport Lab

Research Type: 
Experiment

Quantum Transport, Nanoscience, Low-Temperature Physics, Quantum Coherence and Quantum Computation

Leader: 
Dominik Zumbuhl

Fabrication and heating rate study of microscopic surface electrode ion traps

Date: 
2010-09-15
Reference: 

N. Daniilidis, S. Narayanan, S. A. Moeller, R. Clark, T. E. Lee, P. J. Leek, A. Wallraff, St. Schulz, F. Schmidt-Kaler, H. Haeffner
http://arxiv.org/abs/1009.2834

We report heating rate measurements in a microfabricated gold-on-sapphire surface electrode ion trap with trapping height of approximately 240 micron. Using the Doppler recooling method, we characterize the trap heating rates over an extended region of the trap. The noise spectral density of the trap falls in the range of noise spectra reported in ion traps at room temperature. We find that during the first months of operation the heating rates increase by approximately one order of magnitude.

Storage of Multiple Coherent Microwave Excitations in an Electron Spin Ensemble

Date: 
2010-09-27
Author(s): 

Hua Wu, Richard E. George, Janus H. Wesenberg, Klaus Mølmer, David I. Schuster, Robert J. Schoelkopf, Kohei M. Itoh, Arzhang Ardavan, John J. L. Morton, and G. Andrew D. Briggs

Reference: 

Phys. Rev. Lett. 105, 140503 (2010)

Strong coupling between a microwave photon and electron spins, which could enable a long-lived quantum memory element for superconducting qubits, is possible using a large ensemble of spins. This represents an inefficient use of resources unless multiple photons, or qubits, can be orthogonally stored and retrieved. Here we employ holographic techniques to realize a coherent memory using a pulsed magnetic field gradient and demonstrate the storage and retrieval of up to 100 weak 10 GHz coherent excitations in collective states of an electron spin ensemble.

Trapped ions as quantum bits: Essential numerical tools (Colloquium)

Date: 
2010-09-14
Author(s): 

K. Singer, U. Poschinger, M. Murphy, P. Ivanov, F. Ziesel, T. Calarco, F. Schmidt-Kaler

Reference: 

Rev. Mod. Phys. 82, 2609 (2010)

Trapped laser-cooled atoms and ions are quantum systems which can be experimentally controlled with an as yet unmatched degree of precision. Due to the control of the motion and the internal degrees of freedom, these quantum systems can be adequately described by a well-known Hamiltonian. In this colloquium, powerful numerical tools for the optimization of the external control of the motional and internal states of trapped neutral atoms, explicitly applied to the case of trapped laser-cooled ions in a segmented ion-trap are presented.

Quantum Photonics

Research Type: 
Experiment
  • ion trapping
  • atom trapping
  • entangled photons
  • atom-photon interfaces
  • single-photon sources
  • cavity QED
  • laser cooling
Leader: 
Jürgen Eschner
Syndicate content