Quantum Computation

From Rotating Atomic Rings to Quantum Hall States

Date: 
2011-07-25
Author(s): 

M. Roncaglia, M. Rizzi, J. Dalibard

Reference: 

M. Roncaglia, M. Rizzi & J. Dalibard
From rotating atomic rings to quantum Hall states
Scientific Reports 1, 43 (2011)

Considerable efforts are currently devoted to the preparation of ultracold neutral atoms in the strongly correlated quantum Hall regime. However, the necessary angular momentum is very large and in experiments with rotating traps this means spinning frequencies extremely near to the deconfinement limit; consequently, the required control on parameters turns out to be too stringent. Here we propose instead to follow a dynamic path starting from the gas initially confined in a rotating ring.

Staying adiabatic with unknown energy gap

Date: 
2011-05-09
Author(s): 

J. Nehrkorn, S. Montangero, A. Ekert, A. Smerzi, R. Fazio, T. Calarco

We introduce an algorithm to perform an optimal adiabatic evolution that operates without an apriori knowledge of the system spectrum. By probing the system gap locally, the algorithm maximizes the evolution speed, thus minimizing the total evolution time. We test the algorithm on the Landau-Zener transition and then apply it on the quantum adiabatic computation of 3-SAT: The result is compatible with an exponential speed-up for up to twenty qubits with respect to classical algorithms. We finally study a possible algorithm improvement by combining it with the quantum Zeno effect.

Quantum computing implementations with neutral particles

Date: 
2011-05-05
Author(s): 

A. Negretti, P. Treutlein, T. Calarco

Reference: 

Quantum Inf. Process. 10, 721 (2011).
From the issue entitled "Special Issue on Neutral Particles".

We review quantum information processing with cold neutral particles, that is, atoms or polar molecules. First, we analyze the best suited degrees of freedom of these particles for storing quantum information, and then we discuss both single- and two-qubit gate implementations. We focus our discussion mainly on collisional quantum gates, which are best suited for atom-chip-like devices, as well as on gate proposals conceived for optical lattices.

A Rydberg quantum simulator

Date: 
2010-03-14
Author(s): 

H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, H. P. Büchler

Reference: 

Nature Phys. 6, 382 (2010)

A universal quantum simulator is a controlled quantum device that reproduces the dynamics of any other many-particle quantum system with short-range interactions. This dynamics can refer to both coherent Hamiltonian and dissipative open-system evolution. Here we propose that laser-excited Rydberg atoms in large-spacing optical or magnetic lattices provide an efficient implementation of a universal quantum simulator for spin models involving n-body interactions, including such of higher order.

An open system quantum simulator with trapped ions

Date: 
2011-02-23
Author(s): 

J.T. Barreiro, M. Müller, P. Schnindler, D. Nigg, T. Monz, M. chwalla, M. Hennrich, C.F. Roos, P. Zoller, R. Blatt

Reference: 

Nature 470, 486 (2011)

The control of quantum systems is of fundamental scientific interest and promises powerful applications and technologies. Impressive progress has been achieved in isolating quantum systems from the environment and coherently controlling their dynamics, as demonstrated by the creation and manipulation of entanglement in various physical systems. However, for open quantum systems, engineering the dynamics of many particles by a controlled coupling to an environment remains largely unexplored.

International Science Day

Date: 
2011-06-05
Place: 
Turku, Finland

I'd like to invite you to the International Science Day (ISD), an event to celebrate Science taking place on June 5th in Turku (Finland), the 2011 European Capital of Culture.

Cavity-Based Single Atom preparation and High-Fidelity Hyperfine State Readout

Date: 
2010-05-20
Author(s): 

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B.L. lev, R. Long, J. Estève, J. Reichel

Reference: 

Phys. Rev. Lett. 104, 203602 (2010)

Prospects for fast Rydberg gates on an atom chip

Date: 
2011-04-21
Author(s): 

Matthias M. Müller, Harald R. Haakh, Tommaso Calarco, Christiane P. Koch, Carsten Henkel

Atom chips are a promising candidate for a scalable architecture for quantum information processing provided a universal set of gates can be implemented with high fidelity. The difficult part in achieving universality is the entangling two-qubit gate. We consider a Rydberg phase gate for two atoms trapped on a chip and employ optimal control theory to find the shortest gate that still yields a reasonable gate error. Our parameters correspond to a situation where the Rydberg blockade regime is not yet reached.

Optimizing entangling quantum gates for physical systems

Date: 
2011-09-15
Author(s): 

M. M. Müller, D. M. Reich, M. Murphy, H. Yuan, J. Vala, K. B. Whaley, T. Calarco, C. P. Koch

Reference: 

Phys. Rev. A 84, 042315 (2011).

Optimal control theory is a versatile tool that presents a route to significantly improving figures of merit for quantum information tasks. We combine it here with the geometric theory for local equivalence classes of two-qubit operations to derive an optimization algorithm that determines the best entangling two-qubit gate for a given physical setting. We demonstrate the power of this approach for trapped polar molecules and neutral atoms.

A single ion as a shot noise limited magnetic field gradient probe

Date: 
2011-06-23
Author(s): 

A. Walther, U. Poschinger, F. Ziesel, M. Hettrich, A. Wiens, J. Welzel, F. Schmidt-Kaler

Reference: 

Phys. Rev. A 83, 062329 (2011)
ariXiv:1103.2253
doi: 10.1103/PhysRevA.83.062329

It is expected that ion trap quantum computing can be made scalable through protocols that make use of transport of ion qubits between sub-regions within the ion trap. In this scenario, any magnetic field inhomogeneity the ion experiences during the transport, may lead to dephasing and loss of fidelity. Here we demonstrate a scalable way to measure the magnetic field gradient inside a segmented ion trap, by transporting a single ion over variable distances.

Syndicate content