QUROPE Quantum Information Processing and Communication in Europe

  • QUTE-EUROPE
  • QIPC Databases
  • QIPC Projects
  • QIPC Roadmap
  • Virtual Institutes/Facilities
  • H2020
  • FP7

QUROPE Site

  • Services
  • Site Info
Home › 20. QUANTUM COMMUNICATION › 24. SOURCES

24.10.Od Single photons on demand

Dipolar exchange induced transparency with Rydberg atoms

Fri, 2017-06-23 10:05 - David Petrosyan
Date: 
2017-03-01
Author(s): 

D. Petrosyan

Reference: 

New J. Phys. 19, 033001 (2017)

URL: 

https://doi.org/10.1088/1367-2630/aa6170

  • 24.10.Od Single photons on demand
  • RySQ
  • Read more

Cavity-based quantum networks with single atoms and optical photons

Tue, 2016-05-31 10:28 - Stephan Ritter
Date: 
2015-12-01
Author(s): 

Andreas Reiserer, Gerhard Rempe

Reference: 

Rev. Mod. Phys. 87, 1379 (2015)

URL: 

http://dx.doi.org/10.1103/RevModPhys.87.1379

Distributed quantum networks will allow users to perform tasks and to interact in ways which are not possible with present-day technology. Their implementation is a key challenge for quantum science and requires the development of stationary quantum nodes that can send and receive as well as store and process quantum information locally. The nodes are connected by quantum channels for flying information carriers, i.e., photons. These channels serve both to directly exchange quantum information between nodes and to distribute entanglement over the whole network.

  • 15.10.–p Quantum Optics: Physical qubits
  • 23. LONG-DISTANCE QUANTUM COMMUNICATION
  • 24.10.Od Single photons on demand
  • 33.10.+a Cavity QED (atoms or ions)
  • 33.90.+e Entanglement between atoms and photons
  • QIPC
  • SIQS
  • 15.10.Ne Neutral atoms: electronic states
  • 15.10.Ph Photons
  • 15.20.–e Quantum Optics: Experimental system
  • 15.20.Ca Cavity QED
  • 20. QUANTUM COMMUNICATION
  • 30. QUANTUM NETWORKS
  • Read more

Interfacing GHz-bandwidth heralded single photons with a room-temperature Raman quantum memory

Mon, 2014-05-26 23:12 - Josh Nunn
Date: 
2014-05-27
Author(s): 

P. S. Michelberger, T. F. M. Champion, M. R. Sprague, K. T. Kaczmarek, M. Barbieri, X. M. Jin, D. G. England, W. S. Kolthammer, D. J. Saunders, J. Nunn, I. A. Walmsley

Reference: 

quant-ph > arXiv:1405.1470

URL: 

http://arxiv.org/abs/1405.1470

Photonics is a promising platform for quantum technologies. However, photon sources and two-photon gates currently only operate probabilistically. Large-scale photonic processing will therefore be impossible without a multiplexing strategy to actively select successful events.

  • 00. QUANTUM INFORMATION SCIENCE
  • 01. PHYSICS AND INFORMATION SCIENCE
  • 01.10.+i Encoding, processing and transmission of information via physical systems
  • 24.10.-s Single photons
  • 24.10.Od Single photons on demand
  • 24.40.+h High efficiency sources
  • 24.50.+m Multiphoton sources
  • 31.30.+c Characterization of quantum channels
  • 31.50.+m Quantum channel memory
  • 32.20.+m Quantum memories/storage of qubits
  • FP7
  • Photonics
  • 15.10.En Atomic ensembles
  • Quantum Metrology, Sensing and Imaging
  • Result
  • SIQS
  • Read more

Broadband single-photon-level memory in a hollow-core photonic crystal fibre

Mon, 2014-05-26 23:07 - Josh Nunn
Date: 
2014-05-26
Author(s): 

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand, P. St. J. Russell & I. A. Walmsley

Reference: 

Nature Photonics 8, 287–291 (2014)

doi:10.1038/nphoton.2014.45

URL: 

http://www.nature.com/nphoton/journal/v8/n4/abs/nphoton.2014.45.html

Storing information encoded in light is critical for realizing optical buffers for all-optical signal processing

  • 24.10.Od Single photons on demand
  • 24.40.+h High efficiency sources
  • 24.50.+m Multiphoton sources
  • 32.20.+m Quantum memories/storage of qubits
  • QIPC
  • FP7
  • Photonics
  • 01.30.+r Quantum states and dynamics as a resource for information processing
  • 15.10.En Atomic ensembles
  • Highlight
  • Quantum Metrology, Sensing and Imaging
  • Result
  • SIQS
  • Read more

Generation of single photons from an atom-cavity system

Mon, 2014-01-13 19:04 - Stephan Ritter
Date: 
2013-06-04
Author(s): 

Martin Mücke, Joerg Bochmann, Carolin Hahn, Andreas Neuzner, Christian Nölleke, Andreas Reiserer, Gerhard Rempe, Stephan Ritter

Reference: 

Phys. Rev. A 87, 063805 (2013)

URL: 

http://link.aps.org/doi/10.1103/PhysRevA.87.063805

A single rubidium atom trapped within a high-finesse optical cavity is an efficient source of single photons. We theoretically and experimentally study single-photon generation using a vacuum stimulated Raman adiabatic passage. We experimentally achieve photon generation efficiencies of up to 34% and 56% on the D1 and D2 line, respectively. Output coupling with 89% results in record-high efficiencies for single photons in one spatiotemporally well-defined propagating mode.

  • 24.10.Od Single photons on demand
  • SIQS
  • 15.10.Ph Photons
  • 15.20.Ca Cavity QED
  • Read more
Syndicate content

Copyright QUTE-EUROPE 2013 - 2017. All rights reserved.

EC flagFunding Opportunities from FET FP7

  • Site Services
  • Contact
  • Credits
  • Disclaimer

User login

(If you're a human, don't change the following field)
Your first name.
  • Create new account
  • Request new password