33.90.+e Entanglement between atoms and photons

Cavity-based quantum networks with single atoms and optical photons

Date: 
2015-12-01
Author(s): 

Andreas Reiserer, Gerhard Rempe

Reference: 

Rev. Mod. Phys. 87, 1379 (2015)

Distributed quantum networks will allow users to perform tasks and to interact in ways which are not possible with present-day technology. Their implementation is a key challenge for quantum science and requires the development of stationary quantum nodes that can send and receive as well as store and process quantum information locally. The nodes are connected by quantum channels for flying information carriers, i.e., photons. These channels serve both to directly exchange quantum information between nodes and to distribute entanglement over the whole network.

A quantum gate between a flying optical photon and a single trapped atom

Date: 
2014-04-09
Author(s): 

Andreas Reiserer, Norbert Kalb, Gerhard Rempe, Stephan Ritter

Reference: 

Nature 508, 237 (2014)

The steady increase in control over individual quantum systems has backed the dream of a quantum technology that provides functionalities beyond any classical device. Two particularly promising applications have been explored during the past decade: First, photon-based quantum communication, which guarantees unbreakable encryption but still has to be scaled to high rates over large distances. Second, quantum computation, which will fundamentally enhance computability if it can be scaled to a large number of quantum bits.

Syndicate content