15.20.Ro Readout techniques in quantum optics

Direct imaging of topological edges states with cold atoms

Date: 
2013-04-08
Author(s): 

N. Goldman, J. Dalibard, A. Dauphin, F. Gerbier, M. Lewenstein, P. Zoller, I. Spielman

Reference: 

doi:10.1073/pnas.1300170110

etecting topological order in cold-atom experiments is an ongoing challenge, the resolution of which offers novel perspectives on topological matter. In material systems, unambiguous signatures of topological order exist for topological insulators and quantum Hall devices.

High-fidelity projective readout of a solid-state spin quantum register

Date: 
2011-09-21
Author(s): 

Lucio Robledo, Lilian Childress, Hannes Bernien, Bas Hensen, Paul F. A. Alkemade, Ronald Hanson

Reference: 

Nature 477, 547-578

Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms1, 2. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation1. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits3, 4, 5, 6.

Interaction of a Laser with a Qubit in Thermal Motion and its Application to Robust and Efficient Readout

Date: 
2011-09-16
Author(s): 

U. G. Poschinger, A. Walther, M. Hettrich, F. Ziesel, F. Schmidt-Kaler

Reference: 

arXiv:1109.3643 (2011)

We present a detailed theoretical and experimental study on the optical control of a trapped-ion qubit subject to thermally induced fluctuations of the Rabi frequency. The coupling fluctuations are caused by thermal excitation on three harmonic oscillator modes. We develop an effective Maxwell-Boltzmann theory which leads to a replacement of several quantized oscillator modes by an effective continuous probability distribution function for the Rabi frequency. The model is experimentally verified for driving the quadrupole transition with resonant square pulses.

Quantum register based on coupled electron spins in a room-temperature solid

Date: 
2010-02-28
Author(s): 

P. Neumann, R. Kolesov, B. Naydenov, J. Beck1, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M. L. Markham, D. J. Twitchen, S. Pezzagna, J. Meijer, J. Twamley, F. Jelezko & J. Wrachtrup

Reference: 

Nature Physics 6, 249-253 (2010)

Devices that harness the laws of quantum physics hold the promise for information processing that outperforms their classical counterparts, and for unconditionally secure communication. However, in particular, implementations based on condensed-matter systems face the challenge of short coherence times. Carbon materials, particularly diamond, however, are suitable for hosting robust solid-state quantum registers, owing to their spin-free lattice and weak spin–orbit coupling.

Single-atom-resolved fluorescence imaging of an atomic Mott insulator

Date: 
2010-08-18
Author(s): 

J.F. Sherson, C. Weitemberg, M. Endres, M. Cheneau, I. Bloch and S. Kuhr

Reference: 

Nature 467, 68 (2010)

The reliable detection of single quantum particles has revolutionized the field of quantum optics and quantum information processing. For several years, researchers have aspired to extend such detection possibilities to larger scale strongly correlated quantum systems, in order to record in-situ images of a quantum fluid in which each underlying quantum particle is detected. Here we report on fluorescence imaging of strongly interacting bosonic Mott insulators in an optical lattice with single-atom and single-site resolution.

Imaging of microwave fields using ultracold atoms

Date: 
2010-09-23
Reference: 

P. Böhi, M. F. Riedel, T. W. Hänsch, and P. Treutlein
Applied Physics Letters 97, 051101 (2010)
http://arxiv.org/abs/1009.4651

We report a technique that uses clouds of ultracold atoms as sensitive, tunable, and non-invasive probes for microwave field imaging with micrometer spatial resolution. The microwave magnetic field components drive Rabi oscillations on atomic hyperfine transitions whose frequency can be tuned with a static magnetic field. Readout is accomplished using state-selective absorption imaging. Quantitative data extraction is simple and it is possible to reconstruct the distribution of microwave magnetic field amplitudes and phases.

Lossless state detection of single neutral atoms

Date: 
2010-05-20
Author(s): 

Joerg Bochmann, Martin Mücke, Christoph Guhl, Stephan Ritter, Gerhard Rempe, David L. Moehring

Reference: 

Phys. Rev. Lett. 104, 203601 (2010)

We introduce lossless state detection of trapped neutral atoms based on cavity-enhanced fluorescence. In an experiment with a single 87-Rb atom, a hyperfine-state detection fidelity of 99.4% is achieved in 85 microseconds. The quantum bit is interrogated many hundred times without loss of the atom while a result is obtained in every read-out attempt. The fidelity proves robust against atomic frequency shifts induced by the trapping potential.

Syndicate content