Nature 477, 547-578
Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms1, 2. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation1. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits3, 4, 5, 6.
Phys. Rev. Lett. 108, 046808 (2012)
We investigate the lifetime of two-electron spin states in a few-electron Si/SiGe double dot. At the transition between the (1,1) and (0,2) charge occupations, Pauli spin blockade provides a readout mechanism for the spin state. We use the statistics of repeated single-shot measurements to extract the lifetimes of multiple states simultaneously. When the magnetic field is zero, we find that all three triplet states have equal lifetimes, as expected, and this time is ∼10 ms.
NATURE PHYSICS Volume: 7 Issue: 6 Pages: 459-463 DOI: 10.1038/NPHYS1969
The ability to sensitively detect individual charges under ambient conditions would benefit a wide range of applications across disciplines. However, most current techniques are limited to low-temperature methods such as single-electron transistors, single-electron electrostatic force microscopy and scanning tunnelling microscopy. Here we introduce a quantum-metrology technique demonstrating precision three-dimensional electric-field measurement using a single nitrogen-vacancy defect centre spin in diamond. An a.c.
Phys. Rev. B 81, 035205 (2010)
Nature Physics 6, 249-253 (2010)
Devices that harness the laws of quantum physics hold the promise for information processing that outperforms their classical counterparts, and for unconditionally secure communication. However, in particular, implementations based on condensed-matter systems face the challenge of short coherence times. Carbon materials, particularly diamond, however, are suitable for hosting robust solid-state quantum registers, owing to their spin-free lattice and weak spin–orbit coupling.
Science 329 no. 5991 pp. 542-544
Projective measurement of single electron and nuclear spins has evolved from a gedanken experiment to a problem relevant for applications in atomic-scale technologies like quantum computing. Although several approaches allow for detection of a spin of single atoms and molecules, multiple repetitions of the experiment that are usually required for achieving a detectable signal obscure the intrinsic quantum nature of the spin’s behavior.