15.20.Ol Optical lattices

Ion-assisted ground-state cooling of a trapped polar molecule

Date: 
2011-05-13
Author(s): 

Z. Idziaszek, T. Calarco, P. Zoller

Reference: 

Phys. Rev. A 83, 053413 (2011)

We propose and analyze a scheme for sympathetic cooling of the translational motion of polar molecules in an optical lattice, interacting one by one with laser-cooled ions in a radio-frequency trap. The energy gap between the excitation spectra of the particles in their respective trapping potentials is bridged by means of a parametric resonance, provided by the additional modulation of the RF field. We analyze two scenarios: simultaneous laser cooling and energy exchange between the ion and the molecule, and a scheme when these two processes take place separately.

Single-atom-resolved fluorescence imaging of an atomic Mott insulator

Date: 
2010-08-18
Author(s): 

J.F. Sherson, C. Weitemberg, M. Endres, M. Cheneau, I. Bloch and S. Kuhr

Reference: 

Nature 467, 68 (2010)

The reliable detection of single quantum particles has revolutionized the field of quantum optics and quantum information processing. For several years, researchers have aspired to extend such detection possibilities to larger scale strongly correlated quantum systems, in order to record in-situ images of a quantum fluid in which each underlying quantum particle is detected. Here we report on fluorescence imaging of strongly interacting bosonic Mott insulators in an optical lattice with single-atom and single-site resolution.

Optical Lattices with Micromechanical Mirrors

Date: 
2010-08-25
Author(s): 

K. Hammerer, K. Stannigel, C. Genes, and P. Zoller, P. Treutlein, S. Camerer, D. Hunger, and T. W. Hänsch

Reference: 

Phys. Rev. A 82, 021803 (2010)

We investigate a setup where a cloud of atoms is trapped in an optical lattice potential of a standing-wave laser field which is created by retroreflection on a micromembrane. The membrane vibrations itself realize a quantum mechanical degree of freedom. We show that the center-of-mass mode of atoms can be coupled to the vibrational mode of the membrane in free space. Via laser cooling of atoms a significant sympathetic cooling effect on the membrane vibrations can be achieved. Switching off laser cooling brings the system close to a regime of strong coherent coupling.

Wilson Fermions and Axion Electrodynamics in Optical Lattices

Date: 
2010-11-04
Reference: 

A. Bermudez, L. Mazza, M. Rizzi, N. Goldman, M. Lewenstein, M.A. Martin-Delgado
Phys. Rev. Lett. 105, 190404 (2010) http://link.aps.org/doi/10.1103/PhysRevLett.105.190404

The formulation of massless relativistic fermions in lattice gauge theories is hampered by the fundamental problem of species doubling, namely, the rise of spurious fermions modifying the underlying physics. A suitable tailoring of the fermion masses prevents such abundance of species, and leads to the so-called Wilson fermions. Here we show that ultracold atoms provide us with the first controllable realization of these paradigmatic fermions, thus generating a quantum simulator of fermionic lattice gauge theories. We describe a novel scheme that exploits laser-assisted tunneling in a cubic optical superlattice to design the Wilson fermion masses. The high versatility of this proposal allows us to explore a variety of interesting phases in three-dimensional topological insulators, and to test the remarkable predictions of axion electrodynamics.

Quantum magnetism and counterflow supersolidity of up-down bosonic dipoles

Date: 
2010-09-06
Reference: 

C. Trefzger, M. Alloing, C. Menotti, F. Dubin, M. Lewenstein
New Journal of Physics 12, 093008 (2010)

We study a gas of dipolar Bosons confined in a two-dimensional optical lattice. Dipoles are considered to point freely in both up and down directions perpendicular to the lattice plane. This results in a nearest neighbor repulsive (attractive) interaction for aligned (anti-aligned) dipoles. We find regions of parameters where the ground state of the system exhibits insulating phases with either ferromagnetic or anti-ferromagnetic ordering. Evidences for the existence of a novel counterflow supersolid quantum phase are also presented.

Syndicate content