New J. Phys. 14, 055002, (2012)
doi:10.1088/1367-2630/14/5/055002
We discuss the preparation of many-body states of cold fermionic atoms in an optical lattice via controlled dissipative processes induced by coupling the system to a reservoir. Based on a mechanism combining Pauli blocking and phase locking between adjacent sites, we construct complete sets of jump operators describing coupling to a reservoir that leads to dissipative preparation of pairing states for fermions with various symmetries in the absence of direct inter-particle interactions. We discuss the uniqueness of these states, and demonstrate it with small-scale numerical simulations.
Phys. Rev. A 85, 063608 (2012)
doi:10.1103/PhysRevA.85.063608
We present a systematic investigation of attractive binary mixtures in presence of both spin- and mass-imbalance in one dimensional setups described by the Hubbard model. After discussing typical cold atomic experimental realizations and the relation between microscopic and effective parameters, we study several many-body features of trapped Fermi-Fermi and Bose-Bose mixtures such as density profiles, momentum distributions and correlation functions by means of numerical density-matrix-renormalization-group and Quantum Monte Carlo simulations.
arXiv:1208.4299
We suggest a method to simulate lattice compact Quantum Electrodynamics (cQED) using ultracold atoms in optical lattices, which includes dynamical Dirac fermions in 2+1 dimensions. This allows to test dynamical effects of confinement as well as 2d flux loops deformations and breaking, and to observe Wilson-loop area-law.
Nature Phys. 8, 147-152 (2012)
Accurately controlling a quantum system is a fundamental requirement in quantum information processing and the coherent manipulation of molecular systems. The ultimate goal in quantum control is to prepare a desired state with the highest fidelity allowed by the available resources and the experimental constraints. Here we experimentally implement two optimal high-fidelity control protocols using a two-level quantum system comprising Bose–Einstein condensates in optical lattices.
arXiv:1103.1868
We study the counting statistics of ultracold bosonic atoms that are released from an optical lattice. We show that the counting probability distribution of the atoms collected at a detector located far away from the optical lattice can be used as a method to infer the properties of the initially trapped states. We consider initial superfluid and insulating states with different occupation patterns. We analyze how the correlations between the initially trapped modes that develop during the expansion in the gravitational field are reflected in the counting distribution.
Science 333, 996-999 (2011)
Magnetism plays a key role in modern technology and stimulates research in several branches of condensed matter physics. Although the theory of classical magnetism is well developed, the demonstration of a widely tunable experimental system has remained an elusive goal. Here, we present the realization of a large-scale simulator for classical magnetism on a triangular lattice by exploiting the particular properties of a quantum system.
arXiv:1105.6308
We propose a method to probe dynamical spin correlations of strongly interacting systems in optical lattices. The scheme uses a light-matter quantum non-demolition interface to map consecutively a given non trivial magnetic observable of the strongly correlated system to the light. The quantum memory is essential to coherently store the previously mapped observable during a time scale comparable to the many-body dynamics. A final readout of the memory yields direct access to dynamical correlations.
arXiv:1109.4782
We study the extended Bose--Hubbard model describing an ultra-cold gas of dipolar molecules in an optical lattice, taking into account all on-site and nearest-neighbor interactions, including occupation-dependent tunneling and pair tunneling terms. Using exact diagonalization and the multi-scale entanglement renormalization ansatz (MERA), we show that these terms can destroy insulating phases and lead to novel quantum phases. These considerable changes of the phase diagram have to be taken into account in upcoming experiments with dipolar molecules.
arXiv:1105.0932v1
We present a proposal for a versatile cold-atom-based quantum simulator of relativistic fermionic theories and topological insulators in arbitrary dimensions. The setup consists of a spin-independent optical lattice that traps a collection of hyperfine states of the same alkaline atom, to which the different degrees of freedom of the field theory to be simulated are then mapped. We show that the combination of bi-chromatic optical lattices with Raman transitions can allow the engineering of a spin-dependent tunneling of the atoms between neighboring lattice sites.
arXiv:1106.1628 TO APPEAR ON Phys.Rev.Lett. ON 07.OCT.2011
We analyze the possibility to prepare a Heisenberg antiferromagnet with cold fermions in optical lattices, starting from a band insulator and adiabatically changing the lattice potential. The numerical simulation of the dynamics in 1D allows us to identify the conditions for success, and to study the influence that the presence of holes in the initial state may have on the protocol. We also extend our results to two-dimensional systems.