15.20.Ca Cavity QED

Electromagnetically-induced-transparency control of single-atom motion in an optical cavity

Date: 
2014-03-04
Author(s): 

Tobias Kampschulte, Wolfgang Alt, Sebastian Manz, Miguel Martinez-Dorantes, René Reimann,
Seokchan Yoon, Dieter Meschede, Marc Bienert, Giovanna Morigi

Reference: 

Phys. Rev. A 89, 033404 (2014)

We demonstrate cooling of the motion of a single neutral atom confined by a dipole trap inside a high-finesse
optical resonator. Cooling of the vibrational motion results from electromagnetically induced transparency
(EIT)-like interference in an atomic \Lambda-type configuration, where one transition is strongly coupled to the cavity
mode and the other is driven by an external control laser. Good qualitative agreement with the theoretical
predictions is found for the explored parameter ranges. Further, we demonstrate EIT cooling of atoms in the

Nondestructive Detection of an Optical Photon

Date: 
2013-12-13
Author(s): 

Andreas Reiserer, Stephan Ritter, Gerhard Rempe

Reference: 

Science 342, 1349 (2013)

All optical detectors to date annihilate photons upon detection, thus excluding repeated measurements. Here, we demonstrate a robust photon detection scheme that does not rely on absorption. Instead, an incoming photon is reflected from an optical resonator containing a single atom prepared in a superposition of two states. The reflection toggles the superposition phase, which is then measured to trace the photon. Characterizing the device with faint laser pulses, a single-photon detection efficiency of 74% and a survival probability of 66% are achieved.

Generation of single photons from an atom-cavity system

Date: 
2013-06-04
Author(s): 

Martin Mücke, Joerg Bochmann, Carolin Hahn, Andreas Neuzner, Christian Nölleke, Andreas Reiserer, Gerhard Rempe, Stephan Ritter

Reference: 

Phys. Rev. A 87, 063805 (2013)

A single rubidium atom trapped within a high-finesse optical cavity is an efficient source of single photons. We theoretically and experimentally study single-photon generation using a vacuum stimulated Raman adiabatic passage. We experimentally achieve photon generation efficiencies of up to 34% and 56% on the D1 and D2 line, respectively. Output coupling with 89% results in record-high efficiencies for single photons in one spatiotemporally well-defined propagating mode.

Ground-State Cooling of a Single Atom at the Center of an Optical Cavity

Date: 
2013-05-30
Author(s): 

A. Reiserer, C. Nölleke, S. Ritter, G. Rempe

Reference: 

Phys. Rev. Lett. 110, 223003 (2013)

A single neutral atom is trapped in a three-dimensional optical lattice at the center of a high-finesse optical resonator. Using fluorescence imaging and a shiftable standing-wave trap, the atom is deterministically loaded into the maximum of the intracavity field where the atom-cavity coupling is strong. After 5 ms of Raman sideband cooling, the three-dimensional motional ground state is populated with a probability of (89+/-2)%.

Optomechanics assisted by a qubit: From dissipative state preparation to many-partite systems

Date: 
2014-01-07
Author(s): 

Anika C. Pflanzer, Oriol Romero-Isart, and J. Ignacio Cirac

Reference: 

Physical Review A 88, 033804 (2013)

We propose and analyze nonlinear optomechanical protocols that can be implemented by adding a single atom to an optomechanical cavity. In particular, we show how to engineer the environment in order to dissipatively prepare the mechanical oscillator in a superposition of Fock states with fidelity close to 1. Furthermore, we demonstrate that a single atom in a cavity with several mechanical oscillators can be exploited to realize nonlinear many-partite systems by stroboscopically driving the mechanical oscillators.

Resonances in dissipative optomechanics with nanoparticles: Sorting, speed rectification and transverse cooling

Date: 
2013-03-11
Author(s): 

S.J.M. Habraken, W. Lechner, P. Zoller

Reference: 

arXiv:1303.2522v1 [cond-mat.mes-hall]

The interaction between dielectric particles and a laser-driven optical cavity gives rise to both conservative and dissipative dynamics, which can be used to levitate, trap and cool nanoparticles. We analytically and numerically study a two-mode setup in which the optical potentials along the cavity axis cancel, so that the resulting dynamics is almost purely dissipative. For appropriate detunings of the laser-drives, this dissipative optomechanical dynamics can be used to sort particles according to their size, to rectify their velocities and to enhance transverse cooling.

Cavity Optomechanics of Levitated Nanodumbbells: Nonequilibrium Phases and Self-Assembly

Date: 
2013-04-05
Author(s): 

W. Lechner, S. Habraken, N. Kiesel, M. Aspelmeyer, P. Zoller

Reference: 

URL: http://link.aps.org/doi/10.1103/PhysRevLett.110.143604
DOI: 10.1103/PhysRevLett.110.143604
PACS: 42.50.Wk, 07.10.Cm, 73.22.-f

Levitated nanospheres in optical cavities open a novel route to study many-body systems out of solution and highly isolated from the environment. We show that properly tuned optical parameters allow for the study of the nonequilibrium dynamics of composite nanoparticles with nonisotropic optical friction.

Stabilization of nonclassical states of one and two-mode radiation fields by reservoir engineering

Date: 
2012-03-06
Author(s): 

A. Sarlette, Z. Leghtas, M. Brune, J.M. Raimond, P. Rouchon

Reference: 

Phys. Rev. A 86, 012114 (2012)

We analyze a quantum reservoir engineering method, originally introduced by [Sarlette et al. in Phys. Rev. Lett. 107, 010402 (2011) -- arXiv 1011.5057], for the stabilization of non-classical field states in high quality cavities. We generalize the method to the protection of mesoscopic entangled field states shared by two non-degenerate field modes. The reservoir is made up of a stream of atoms undergoing successive composite interactions with the cavity, each combining resonant with non-resonant parts.

Probing Biological Light-Harvesting Phenomena by Optical Cavities

Date: 
2012-03-07
Author(s): 

F. Caruso, S. K. Saikin, E. Solano, S. F. Huelga, A. Aspuru-Guzik, and M. B. Plenio

Reference: 

To be published in Physical Review B (2012)

We propose a driven optical cavity quantum electrodynamics (QED) set up aimed at directly probing energy transport dynamics in photosynthetic biomolecules. We show that detailed information concerning energy transfer paths and delocalization of exciton states can be inferred (and exciton energies estimated) from the statistical properties of the emitted photons. This approach provides us with a novel spectroscopic tool for the interrogation of biological systems in terms of quantum optical phenomena which have been usually studied for atomic or solid-state systems, e.g.

Cavity QED with Magnetically Coupled Collecitve Spin States

Date: 
2011-08-03
Author(s): 

R. Amsüss, C. Koller, T. Nöbauer, S. Putz, S. Rotter, K. Sandner, S. Schneider, M. Schramböck, G. Steinhauser, H. Ritsch, H.-J. Schmiedmayer, J. Majer

Reference: 

Physical Review Letters, 107 (2011)
doi: 10.1103/PhysRevLett.107.060502

We report strong coupling between an ensemble of nitrogen-vacancy center electron spins in diamond and a superconducting microwave coplanar waveguide resonator. The characteristic scaling of the collective coupling strength with the square root of the number of emitters is observed directly. Additionally, we measure hyperfine coupling to 13C nuclear spins, which is a first step towards a nuclear ensemble quantum memory.

Syndicate content