Fully device independent quantum key distribution

U. Vazirani, T. Vidick
Phys. Rev. Lett. 113, 140501 (2014)

Exponential improvement in precision for simulating sparse Hamiltonians

D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, R. D. Somma
Proceedings of the 46th ACM Symposium on Theory of Computing (STOC 2014), 283-292 (2014)

Simulation of quantum mechanical systems is a major potential application of quantum computers. Indeed, the problem of simulating Hamiltonian dynamics was the original motivation for the idea of quantum computation.

Local tests of global entanglement and a counterexample to the generalized area law

D. Aharonov, A. W. Harrow, Z. Landau, D. Nagaj, M. Szegedy, U. Vazirani
Proceedings of FOCS 2014, 246 (2014)

Ultimate classical communication rates of quantum optical channels

V. Giovannetti, R. Garcia-Patrón, N. J. Cerf, A. S. Holevo
Nature Photonics 8, 796-800 (2014)

Measurement-Device-Independent Quantum Key Distribution over 200 km

Y-L. Tang, H-L. Yin, S-J.Chen, Y. Liu, W-J. Zhang, X. Jiang, L. Zhang, J. Wang, L-X. You, J-Y. Guan, D- X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T-Y. Chen, Q. Zhang, and J-W. Pan
Phys. Rev. Lett. 113, 190501 (2014)

Measurement-device–independent quantum key distribution (MDIQKD) represents a valid alternative for quantum cryptography. It requires fewer assumptions for security than standard prepare-and-measure schemes, while its implementation is less demanding than fully device-independent protocols.

Bidirectional and efficient conversion between microwave and optical light

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert Nature Physics 10, 321-326 (2014)

Experimental results demonstrating optical gates, or switches, based on atomic systems that respond at the single photon level, or photon-photon interactions

A quantum gate between a flying optical photon and a single trapped atom
A. Reiserer, N. Kalb, G. Rempe, S. Ritter
Nature 508, 237-240 (2014);
Nanophotonic quantum phase switch with a single atom
T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletic, M. D. Lukin Nature 508, 241-244 (2014);
Nonlinear π phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom
J. Volz, M. Scheucher, C. Junge, A. Rauschenbeutel
Nature Photonics 8, 965-970 (2014);

Two significant experimental demonstrations of quantum teleportation

Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory
F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B Verma, S.W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, N. Gisin
Nature Photonics 8, 775-778 (2014);
Unconditional quantum teleportation between distant solid-state quantum bits
W. Pfaff, B.J. Hensen, H. Bernien, S.B. van Dam, M.S. Blok, T.H. Taminiau, M.J. Tiggelman, R.N. Schouten, M. Markham, D.J. Twitchen, R. Hanson

An Aharonov-Bohm interferometer for determining Bloch band topology

L. Duca, T. Li, M. Reitter, I. Bloch, M. Schleier-Smith, U. Schneider Science 347, 288 (2015), published online Science Express (Dec. 2014)

The geometric structure of a single-particle energy band in a solid is fundamental for a wide range of many- body phenomena and is uniquely characterized by the distribution of Berry curvature over the Brillouin zone.

Syndicate content