Tuning a Spin Bath through the Quantum-Classical Transition

Printer-friendly versionSend by emailPDF version
Date: 
2012-05-15
Author(s): 

F. Reinhard, F. Shi, N. Zhao, F. Rempp, B. Naydenov, J. Meijer, L. T. Hall, L. Hollenberg, J. Du, R.-B. Liu, and J. Wrachtrup

Reference: 

Phys. Rev. Lett. 108, 200402 (2012)

We study decoherence of a single nitrogen-vacancy (NV) center induced by the 13C nuclear spin bath of diamond. By comparing Hahn-Echo experiments on single and double-quantum transitions of the NV triplet ground state we demonstrate that this bath can be tuned into two different regimes. At low magnetic fields, the nuclei behave as a quantum bath which causes decoherence by entangling with the NV central spin. At high magnetic fields, the bath behaves as a source of classical magnetic field noise, which creates decoherence by imprinting a random phase on the NV central spin.