Plasmonic antennas, positioning, and coupling of individual quantum systems

Printer-friendly versionSend by emailPDF version
Date: 
2012-02-21
Author(s): 

D. Dregely, K. Lindfors, J. Dorfmüller, M. Hentschel, M. Becker, J. Wrachtrup, M. Lippitz, R. Vogelgesang, H. Giessen

Reference: 

Phys. Status Solidi B 249, 666 (2012)

Plasmonic nanoantennas can enhance the radiative decay rate of quantum emitters via the Purcell-effect. Similar to their radiofrequency equivalents, they can also direct the emitted light into preferential directions. In this paper we first investigate plasmonic Yagi-Uda antennas that are able to confine light to and direct light from subwavelength size volumes. Hence, enhanced transition rates and directed emission are expected when near-field coupling between quantum emitters and the antennas is achieved. Second, we present suitable techniques to couple different quantum systems to plasmonic antennas. We use top-down fabrication techniques to achieve positioning of individual quantum emitters relative to plasmonic nanostructures with an accuracy better than 10 nm. We assure a sufficiently small distance for an efficient near-field coupling of the transition dipole to the plasmonic nanoantenna, which is, however, large enough not to quench the transition. The hybrid system using quantum dots, molecules, or nitrogen-vacancy (NV)-centers in diamond can serve as an efficient single photon source. It is suitable for high-speed information transfer at optical frequencies on the nanoscale for future applications.