Local density of states in metal-topological superconductor hybrid systems

Printer-friendly versionSend by emailPDF version
Date: 
2012-04-30
Author(s): 

Marco Gibertini, Fabio Taddei, Marco Polini, Rosario Fazio

Reference: 

Phys. Rev. B 85, 144525 (2012)

We study by means of the recursive Green's function technique the local density of states of (finite and semi-infinite) multiband spin-orbit-coupled semiconducting nanowires in proximity to an s-wave superconductor and attached to normal-metal electrodes. When the nanowire is coupled to a normal electrode, the zero-energy peak, corresponding to the Majorana state in the topological phase, broadens with increasing transmission between the wire and the leads, eventually disappearing for ideal interfaces. Interestingly, for a finite transmission a peak is present also in the normal electrode, even though it has a smaller amplitude and broadens more rapidly with the strength of the coupling. Unpaired Majorana states can survive close to a topological phase transition even when the number of open channels (defined in the absence of superconductivity) is even. We finally study the Andreev-bound-state spectrum in superconductor-normal metal-superconductor junctions and find that in multiband nanowires the distinction between topologically trivial and nontrivial systems based on the number of zero-energy crossings is preserved.