Generalized Kronig-Penney model for ultracold atomic quantum systems

Printer-friendly versionSend by emailPDF version

A. Negretti, R. Gerritsma, Z. Idziaszek, F. Schmidt-Kaler, and T. Calarco


Phys. Rev. B 90, 155426 (2014)

We study the properties of a quantum particle interacting with a one-dimensional structure of equidistant scattering centers. We derive an analytical expression for the dispersion relation and for the Bloch functions in the presence of both even and odd scattering waves within the pseudopotential approximation. This generalizes the well-known solid-state physics textbook result known as the Kronig-Penney model. Our generalized model can be used to describe systems such as degenerate Fermi gases interacting with ions or with another neutral atomic species confined in an optical lattice, thus enabling the investigation of polaron or Kondo physics within a simple formalism. We focus our attention on the specific atom-ion system and compare our findings with quantum defect theory. Excellent agreement is obtained within the regime of validity of the pseudopotential approximation. This enables us to derive a Bose-Hubbard Hamiltonian for a degenerate quantum Bose gas in a linear chain of ions.