Feedback Cooling of a Single Neutral Atom

Printer-friendly versionSend by emailPDF version
Date: 
2010-10-15
Reference: 

M. Koch, C. Sames, A. Kubanek, M. Apel, M. Balbach, a. ourjoumtsev, Pepijn W.H. Pinkse and G. Rempe
Phys. Rev. Letter (2010), in press
http://arxiv.org/abs/1007.1884v2

We demonstrate feedback cooling of the motion of a single rubidium atom trapped in a high-finesse optical resonator to a temperature of about 160 \mu K. Time-dependent transmission and intensity-correlation measurements prove the reduction of the atomic position uncertainty. The feedback increases the 1/e storage time into the one second regime, 30 times longer than without feedback. Feedback cooling therefore rivals state-of-the-art laser cooling, but with the advantages that it requires less optical access and exhibits less optical pumping.