Dynamical Phase Transitions and Instabilities in Open Atomic Many-Body Systems

Printer-friendly versionSend by emailPDF version
Date: 
2010-07-01
Reference: 

S. Diehl, A. Tomadin, A. Micheli, R. Fazio, P. Zoller
Phys. Rev. Lett. 105, 015702 (2010)

We discuss an open driven-dissipative many-body system, in which the competition of unitary Hamiltonian and dissipative Liouvillian dynamics leads to a nonequilibrium phase transition. It shares features of a quantum phase transition in that it is interaction driven, and of a classical phase transition, in that the ordered phase is continuously connected to a thermal state. We characterize the phase diagram and the critical behavior at the phase transition approached as a function of time. We find a novel fluctuation induced dynamical instability, which occurs at long wavelength as a consequence of a subtle dissipative renormalization effect on the speed of sound.