Characterizing the local vectorial electric field near an atom chip using Rydberg state spectroscopy

Printer-friendly versionSend by emailPDF version

N. Cisternas, Julius de Hond, G. Lochead, R.J.C. Spreeuw, H.B. van Linden van den Heuvell, N.J. van Druten



We use the sensitive response to electric fields of Rydberg atoms to characterize all three vector components of the local electric field close to an atom-chip surface. We measured Stark-Zeeman maps of S and D Rydberg states using an elongated cloud of ultracold Rubidium atoms (T ~2.5 µK) trapped magnetically 100 µm from the chip surface. The spectroscopy of S states yields a calibration for the generated local electric field at the position of the atoms. The values for different components of the field are extracted from the more complex response of D states to the combined electric and magnetic fields. From the analysis we find residual fields in the two uncompensated directions of 0.0 +/- 0.2 V/cm and 1.98 +/- 0.09 V/cm respectively. This method also allows us to extract a value for the relevant field gradient along the long axis of the cloud. The manipulation of electric fields and the magnetic trapping are both done using on-chip wires, making this setup a promising candidate to observe Rydberg-mediated interactions on a chip.