Breakdown of the Cross-Kerr Scheme for Photon Counting

Printer-friendly versionSend by emailPDF version
Date: 
2013-01-30
Author(s): 

B. Fan, A.F. Kockum, J. Combes, G. Johansson, I.C. Hoi, C.M. Wilson, P. Delsing, G.J. Milburn, and T.M. Stace

Reference: 

Phys. Rev. Lett. 110, 053601 (2013)

We show, in the context of single-photon detection, that an atomic three-level model for a transmon in a transmission line does not support the predictions of the nonlinear polarizability model known as the cross-Kerr effect. We show that the induced displacement of a probe in the presence or absence of a single photon in the signal field, cannot be resolved above the quantum noise in the probe. This strongly suggests that cross-Kerr media are not suitable for photon counting or related single-photon applications. Our results are presented in the context of a transmon in a one-dimensional microwave waveguide, but the conclusions also apply to optical systems.