SNS-Pisa - Condensed Matter and Quantum Information Theory Group

Printer-friendly versionSend by emailPDF version
Research Type: 
Theory

Quantum Information

Quantum information is known to be more efficient that its classical counterpart and probably will play a leading role in future technologies. The impact and advantages of quantum information protocols emerge in numerous situations. In cryptography quantum dynamics guarantees secure protocols, in quantum computation factorization of large numbers, intractable with classical algorithms, can be solved much faster with a quantum computer. The CMI group is interested in many areas of quantum information ranging from quantum communication to solid state implementations. The current interests of the CMI members include

Solid state quantum information

  • Quantum information processing with superconducting nanocircuits
  • Quantum dynamics of circuit-QED systems
  • Interferometry and edge states
  • Entanglement detection

Quantum information and Many-Body systems

  • Entanglement in complex systems
  • Tensor network representations
  • Quantum networks
  • Non-equilibrium many-body systems

Quantum communication

  • Efficiency trade-off: the channel capacity problem
  • Constrained channels
  • Additivity problem
  • Exploiting quantum communication as a resource for computation

Quantum Transport & Many-Body Systems

The constant progress in nano-fabrication techniques allows for a controlled realization of low-dimensional mesoscopic structures in the range from of a few nanometers to micrometers, which exhibit, at low temperatures, a fully quantum behaviour. This area of research focuses on coherent transport and collective effects in mesoscopic systems and low-dimensional electron liquids, such as those that can be found in semiconductor and metallic heretostructures and graphene. The current interests of the CMI members include

Graphene

  • Many-body effects (collective modes, phase diagrams, exchange and correlation effects) in single-layer and few-layer graphene systems
  • Intra- and inter-layer transport in pseudospin magnets and exciton condensates in graphene bilayers
  • Charge and heat transport in hybrid graphene/superconductor junctions

Correlated systems

  • Equilibrium and non-equilibrium properties of cold atomic gases in optical lattices
  • Transport properties in Luttinger liquids

Hybrid systems

  • Non-equilibrium and heat transport in hybrid normal metal/superconductor systems
  • SNS Josephson junctions

Light-matter interaction

The theoretical study of electronic states and optical transitions enable us to understand, and possibly to stretch, the rules that govern light-matter interaction in atomic as well as condensed matter, potentially seeding new paradigms in photonics, optoelectronics and optomechanics. The current lines of research in this area include

Exciton physics

  • Hybrid organic-inorganic semiconductor heterostructures
  • Strongly coupled organic microcavities

Spintronics

  • Spin-splittings in III-V and IV-VI semiconductor quantum confined structures

Coherent non-linear optics

  • Quantum coherence and interference effects in multi-level systems

Dynamic photonic metamaterials and cold atom optomechanics

 

Researchers:

R. Fazio

D. Rossini

F. Tadde

 

 

Leader: 
Rosario Fazio

Location

Scuola Normale Superiore
Piazza dei Cavalieri 7
Pisa 56126
Italy
43° 43' 10.6032" N, 10° 23' 59.6976" E
Javascript is required to view this map.