24.60.+s Generation of specific states of radiation

Generation of tunable wavelength coherent states and heralded single photons for quantum optics applications

Date: 
2014-09-15
Author(s): 

N. Bruno, A. Martin, R. T. Thew

Reference: 

Optics Communications 327 17 (2014)

Quantum optics experiments frequently involve interfering single photons and coherent states. In the case of multi-photon experiments this requires that all photons are frequency degenerate. We report a simple and practical approach to generate coherent states that can be readily tuned to any wavelength required, for example by non-degenerate photon pair creation.

Real-time quantum feedback prepares and stabilizes photon number states

Date: 
2011-09-01
Author(s): 

C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rouchon, M. mirrahimi, H. Amini, M. Brune, J.M. Raimond, S. Haroche

Reference: 

Nature (London) 477, 73 (2011)
doi: 10.1038/nature10376

Feedback loops are central to most classical control procedures. A controller compares the signal measured by a sensor (system output) with the target value or set-point. It then adjusts an actuator (system input) to stabilize the signal around the target value. Generalizing this scheme to stabilize a micro-system’s quantum state relies on quantum feedback, which must overcome a fundamental difficulty: the sensor measurements cause a random back-action on the system. An optimal compromise uses weak measurements, providing partial information with minimal perturbation.

Syndicate content