06.15.+e Measurement-induced transformations

Undoing a quantum measurement


P. Schindler, T. Monz, D. Nigg, J. T. Barreiro, E. A. Martinez, M. F. Brandl, M. Chwalla, M. Hennrichm R. Blatt


URL: http://link.aps.org/doi/10.1103/PhysRevLett.110.070403
DOI: 10.1103/PhysRevLett.110.070403
PACS: 03.65.Ta, 03.67.Pp, 37.10.Ty

In general, a quantum measurement yields an undetermined answer and alters the system to be consistent with the measurement result. This process maps multiple initial states into a single state and thus cannot be reversed. This has important implications in quantum information processing, where errors can be interpreted as measurements.

Matrix product states with long-range localizable entanglement


T. B. Wahl, D. Pérez-García, and J. I. Cirac


URL: http://link.aps.org/doi/10.1103/PhysRevA.86.062314
DOI: 10.1103/PhysRevA.86.062314
PACS: 03.67.Mn, 03.65.Ud, 75.10.Pq, 71.10.Hf

We derive a criterion to determine when a translationally invariant matrix product state (MPS) has long-range localizable entanglement, where that quantity remains finite in the thermodynamic limit. We give examples fulfilling this criterion and eventually use it to obtain all such MPS with bond dimension 2 and 3.

Syndicate content