04.10.+s Entanglement in spin models/oscillator chains

Matrix product states with long-range localizable entanglement

Date: 
2012-12-14
Author(s): 

T. B. Wahl, D. Pérez-García, and J. I. Cirac

Reference: 

URL: http://link.aps.org/doi/10.1103/PhysRevA.86.062314
DOI: 10.1103/PhysRevA.86.062314
PACS: 03.67.Mn, 03.65.Ud, 75.10.Pq, 71.10.Hf

We derive a criterion to determine when a translationally invariant matrix product state (MPS) has long-range localizable entanglement, where that quantity remains finite in the thermodynamic limit. We give examples fulfilling this criterion and eventually use it to obtain all such MPS with bond dimension 2 and 3.

Phase transitions and Heisenberg limited metrology in an Ising chain interacting with a single-mode cavity field

Date: 
2011-05-19
Author(s): 

S Gammelmark and K. Mølmer

Reference: 

New J. Phys. 13 053035 (2011)

We investigate the thermodynamics of a combined Dicke and Ising model that exhibits a rich phenomenology arising from the second-order and quantum phase transitions from the respective models. The partition function is calculated using mean-field theory, and the free energy is analyzed in detail to determine the complete phase diagram of the system.

Entanglement Storage Units

Date: 
2011-08-16
Author(s): 

T. Caneva, T. Calarco, S. Montangero

Reference: 

New J. Phys. 14 093041 (2012)

We introduce a protocol to drive many body quantum systems into long-lived entangled states, protected from decoherence by big energy gaps. With this approach it is possible to implement scalable entanglement-storage units. We test the protocol in the Lipkin-Meshkov-Glick model, a prototype many-body quantum system that describes different experimental setups.

Syndicate content