SIQS

Thermalization in a periodically driven fully-connected quantum Ising ferromagnet

Date: 
2015-05-13
Author(s): 

Angelo Russomanno, Rosario Fazio, and Giuseppe E. Santoro

Reference: 

Europhys. Lett. 110, 37005 (2015)

By means of a Floquet analysis, we study the quantum dynamics of a fully connected Lipkin-Ising ferromagnet in a periodically driven transverse field showing that thermalization in the steady state is intimately connected to properties of the N -> \infty classical Hamiltonian dynamics.

All-optical non-Markovian stroboscopic quantum simulator

Date: 
2015-01-30
Author(s): 

Jiasen Jin, Vittorio Giovannetti, Rosario Fazio, Fabio Sciarrino, Paolo Mataloni, Andrea Crespi, and Roberto Osellame

Reference: 

Phys. Rev. A 91, 012122 (2015)

An all-optical scheme for simulating non-Markovian evolution of a quantum system is proposed. It uses only linear optics elements and by controlling the system parameters allows one to control the presence or absence of information backflow from the environment. A sufficient and necessary condition for the non-Markovianity of our channel based on Gaussian inputs is proved. Various criteria for detecting non-Markovianity are also investigated by checking the dynamical evolution of the channel.

Shortcut to Adiabaticity in the Lipkin-Meshkov-Glick Model

Date: 
2015-05-01
Author(s): 

Steve Campbell, Gabriele De Chiara, Mauro Paternostro, G. Massimo Palma, and Rosario Fazio

Reference: 

Phys. Rev. Lett. 114, 177206 (2015)

We study transitionless quantum driving in an infinite-range many-body system described by the Lipkin-Meshkov-Glick model. Despite the correlation length being always infinite the closing of the gap at the critical point makes the driving Hamiltonian of increasing complexity also in this case. To this aim we develop a hybrid strategy combining a shortcut to adiabaticity and optimal control that allows us to achieve remarkably good performance in suppressing the defect production across the phase transition.

Hologram of a Single Photon

Date: 
2016-01-11
Author(s): 

Radosław Chrapkiewicz, Michał Jachura, Konrad Banaszek, Wojciech Wasilewski

The spatial structure of single photons is becoming an extensively explored resource used for facilitating the free-space quantum key distribution and quantum computation as well as for benchmarking the limits of quantum entanglement generation with orbital angular momentum modes or reduction of the photon free-space propagation speed.

Super-additivity in communication of classical information through quantum channels from a quantum parameter estimation perspective

Date: 
2016-03-01
Author(s): 

Jan Czajkowski, Marcin Jarzyna, Rafał Demkowicz-Dobrzański

We point out a contrasting role the entanglement plays in communication and estimation scenarios.
In the first case it brings noticeable benefits at the measurement stage (output super-additvity),
whereas in the latter it is the entanglement of the input probes that enables significant performance
enhancement (input super-additvity). We identify a weak estimation regime where a strong connection
between concepts crucial to the two fields is demonstrated; the accessible information and the
Holevo quantity on one side and the quantum Fisher information related quantities on the other.

The Quantum Allan Variance

Date: 
2016-01-07
Author(s): 

Krzysztof Chabuda, Ian Leroux, Rafal Demkowicz-Dobrzanski

In atomic clocks, the frequency of a local oscillator is stabilized based on the feedback signal obtained by periodically interrogating an atomic reference system. The instability of the clock is characterized by the Allan variance, a measure widely used to describe the noise of frequency standards.

Quantum memory receiver for superadditive communication using binary coherent states

Date: 
2016-04-12
Author(s): 

Aleksandra Klimek, Michał Jachura, Wojciech Wasilewski, Konrad Banaszek

Reference: 

Journal of Modern Optics, DOI: 10.1080/09500340.2016.1173731 http://arxiv.org/pdf/1512.06561.pdf

We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses.

Scheme for on-chip verification of transverse mode entanglement using the electro-optic effect

Date: 
2015-12-28
Author(s): 

Divya Bharadwaj, K. Thyagarajan, Michał Jachura, Michał Karpiński, Konrad Banaszek

Reference: 

Optics Express 23, 33087-33098 (2015) http://arxiv.org/pdf/1510.04204v2.pdf

A key ingredient in emerging quantum-enhanced technologies is the ability to coherently manipulate and detect superpositions of basis states. In integrated optics implementations, transverse spatial modes supported by multimode structures offer an attractive carrier of quantum superpositions. Here we propose an integrated dynamic mode converter based on the electro-optic effect in nonlinear channel waveguides for deterministic transformations between mutually non-orthogonal bases of spatial modes.

Phase noise in collective binary phase shift keying with Hadamard words

Date: 
2016-05-10
Author(s): 

Marcin Jarzyna, Victoria Lipińska, Aleksandra Klimek, Konrad Banaszek, Matteo G. A. Paris

Reference: 

Optics Express 24, 1693-1698 (2016) https://arxiv.org/abs/1509.00009

We analyze the effect of phase fluctuations in an optical communication scheme based on collective detection of sequences of binary coherent state symbols using linear optics and photon counting. When the phase noise is absent, the scheme offers qualitatively improved nonlinear scaling of the spectral efficiency with the mean photon number in the low-power regime compared to individual detection.

Mode engineering for realistic quantum-enhanced interferometry

Date: 
2016-04-29
Author(s): 

Michał Jachura, Radosław Chrapkiewicz, Rafał Demkowicz-Dobrzański, Wojciech Wasilewski, Konrad Banaszek

Reference: 

Nature Communications 7, 11411 (2016) http://arxiv.org/pdf/1504.05435.pdf

Quantum metrology overcomes standard precision limits by exploiting collective quantum superpositions of physical systems used for sensing, with the prominent example of non-classical multiphoton states improving interferometric techniques. Practical quantum-enhanced interferometry is, however, vulnerable to imperfections such as partial distinguishability of interfering photons. Here we introduce a method where appropriate design of the modal structure of input photons can alleviate deleterious effects caused by another, experimentally inaccessible degree of freedom.

Syndicate content