10. QUANTUM COMPUTATION

Printer-friendly versionSend by emailPDF version

11. ALGORITHMS

11.10.+c Quantum complexity theory
11.20.+a Role of entanglement in quantum algorithms
11.30.+h Factoring, hidden subgroup
11.40.+s Quantum search
11.50.+m Quantum maps, quantum chaos
11.60.+g Quantum games, strategies
11.70.+w Quantum random walks
11.80.+e Spectral evaluation
11.90.+m Quantum template matching
11.95.+o Other algorithms

12. SIMULATIONS

12.10.+i Simulations of many-body interactions
12.20.+h Optimal simulation of few-qubit Hamiltonians
12.30.+u Universal quantum simulators with specific systems (e.g. trapped ions, optical lattices, etc.)
12.40.+e Efficient classical simulation of quantum computation

13. DEFEATING ERRORS

13.10.+n Effects of noise and imperfections
13.20.+e Quantum error correction
13.30.+t Fault-tolerant quantum computation
13.40.+d Decoherence-free subspaces /noiseless subsystems
13.50.+d Dynamical/algebraic decoupling/recoupling
13.60.+p Geometric/topological protection
13.70.+f Quantum feedback/filtering and control
13.80.+a Errors and chaos

14. MODELS AND ARCHITECTURES

14.10.+c Quantum circuit model
14.20.+a Quantum cellular automata
14.30.+t Quantum Turing machine
14.35.+i Initialization of quantum registers
14.40.+m Measurement-based quantum computation
14.50.+a Adiabatic quantum computation
14.60.+g Geometric/topological and holonomic quantum computation
14.70.+p Post-selected quantum computation
14.80.+f Quantum computation with fixed couplings
14.90.+l Quantum computation with local control
14.95.+p Probabilistic quantum computation

15. IMPLEMENTATIONS: QUANTUM OPTICS

15.10.–p Quantum Optics: Physical qubits
15.10.El Electrons
15.10.Ie Ions: electronic states
15.10.Iv Ions: vibrational states
15.10.Ne Neutral atoms: electronic states
15.10.Nv Neutral atoms: vibrational states
15.10.Ry Rydberg atoms
15.10.Ph Photons
15.10.Qd Quantum dots
15.10.En Atomic ensembles
15.10.Mo Molecules
15.20.–e Quantum Optics: Experimental system
15.20.Pt Penning traps (planar and circular)
15.20.Lp Linear Paul traps
15.20.Ml Micro-fabricated lithographic traps
15.20.Ol Optical lattices
15.20.Mc Magnetic atom chips
15.20.Oc Optical atom chips
15.20.Lo Linear optics
15.20.Ca Cavity QED
15.20.Ro Readout techniques in quantum optics

16. IMPLEMENTATIONS: CONDENSED MATTER

16.10.–p Condensed Matter: Physical qubits
16.10.Ec Electrons in solids: charge
16.10.Es Electrons in solids: spin
16.10.Sc Spin chains
16.10.Is Ions in solids
16.10.Ns Nuclear spins
16.10.Jn Josephson nanodevices
16.20.–e Condensed Matter: Experimental system
16.20.De Electrically realized quantum dots
16.20.Db Band-gap modulation quantum dots
16.20.Sr Electron spin resonance
16.20.Re Rare-earth-ion-doped crystals
16.20.Ln Liquid NMR
16.20.Pd Atomic donors in semiconductor substrates
16.20.Ec Endohedral C60 on surfaces
16.20.Ih Isotopically engineered heterostructures
16.20.Ns QD nuclear spin ensembles
16.20.Cq Charge qubits
16.20.Pq Phase qubits
16.20.Fq Flux qubits
16.20.Sq Superconducting qubits coupled to resonators
16.20.Dc Defect centers in diamonds
16.20.Rc Readout techniques in condensed matter

17. OTHER IMPLEMENTATIONS

17.10.+n Nanotubes and nanowires
17.20.+m Single-domain magnetic particles
17.30.+e Electrons on helium films
17.40.+d Molecular spin/dipole arrays
17.50.+h Quantum Hall systems
17.60.+r Nanomechanical resonators
17.70.+s Spectral hole burning
17.80.+h Hybrid systems
17.90.+s Surface-acoustic-wave-based quantum computer

18. DECOHERENCE STUDIES

18.10.+b System-bath interaction (harmonic bath, spin bath)
18.20.+s Electron spins in semiconductors (phonons, nuclear spins)
18.30.+a Atoms close to surfaces/in laser fields or cavities
18.40.+n Electromagnetic noise on trapped ions
18.50.+p Electric and phonon noise in semiconductors
18.60.+d Disentanglement via dissipation/dephasing
18.70.+s Decoherence in solid state systems
18.80.+d Quantum dissipative systems