

MAX-PLANCK-INSTITUT FÜR QUANTENOPTIK LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Towards Quantum Communication Networks

Quantum Communication

- applications
- today's networks
- future quantum networks

QUANTUM applications

- Quantum Key Distribution for secure communication
- cryptographic primitives: coin-tossing, secret-sharing, etc.
- communication complexity tasks, quantum games, quantum metrology
- quantum teleportation, entanglement swapping
 - → distribute entanglement
- quantum internet → quantum-data links between quantum computation nodes

Quantum Key Distribution

QKD enables quantifiable security

BB84: errors in key are measure for the information of a potential eavesdropper

commercial systems

- Id Quantique www.idquantique.com
- MagiQ

smart-quantum

→ Toshiba

QKD in networks

- trusted repeater schemes
- DARPA network
 - Boston area; BBN, Harvard, Boston University; 2005

SECOQC network

seamless integration into multi-layer communication structure

QUANTUM SECOQC network

- highly integrated systems (19")
- operated in standard telecom infrastructure + daylight free-space link; continuously for 1 month

QUANTUM SECOQC network

seamless integration into multi-layer communication structure

Increase distance and secret rate capacity

–Less initial secret has to be distributed: full covering joint tree is sufficient [O(n)] instead of $O(n^2)$] OR Links running out of authentication key can recover

–Key is a network-wide asset and can be optimally redistributed

 Combining disjoint paths can ensure information-theoretic security for a bounded adversary (secret sharing)

swiss quantum

- secure links for Geneva election system (since 2007)
- 3 node network, continuous operation since 07/2009

Univ. Geneva
 Univ. of Appl. Science
 CERN, id Quantique

http://www.swissquantum.com/

current projects

in Durban, during World-Cup 2010 University of KwaZulu Natal, id Quantique

Tokyo QKD Network
 Oct. 2010
 JGN2plus, NICT, NEC,
 Mitsubishi Electric, NTT,
 Toshiba, id Quantique

Fig. 1 Network Topology of the Tokyo QKD Network

future networks

 long distance communication enabled by quantum repeater

 sources of entangled qubits are conected via repeater nodes performing error correction and storage.

components

- sources of entanglement
 photon pairs, cv-states of light,
 atom-photon states,
 quantum logic elements
- quantum memory
 atoms, atomic clouds,
 rare earth doped glass fiber,
 solid state e⁻ and nuclear spin states
- quantum interfaces
 light-matter interface,
 hybrid systems....
- small scale quantum logics

Control (write

where to go

- high rate, long distance QKD
- components for quantum repeater
- analysis of device security (in real world scenarios)
- networking structures

basis for:
 world wide secure communication
 quantum internet, quantum simulators...