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2Fakultät für Physik, Ludwig-Maximilians Universität München, D-80799 München, Germany

3Max-Planck Institut für Quantenoptik, D-85748 Garching, Germany
4Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, A-1090 Vienna, Austria

5Centre for Quantum Technologies and Department of Physics, National University of Singapore, 117542 Singapore
6Faculty of Physics, University of Vienna, A-1090 Vienna, Austria

(Received 19 January 2010; published 2 April 2010)

We consider properties of states of many qubits, which arise after sending certain entangled states via

various noisy channels (white noise, colored noise, local depolarization, dephasing, and amplitude damping).

Entanglement of these states and their ability to violate certain classes of Bell inequalities are studied. States

which violate them allow a higher than classical efficiency in solving related distributed computational tasks with

constrained communication. This is a direct property of such states—not requiring their further modification

via stochastic local operations and classical communication such as entanglement purification or distillation

procedures. We identify families of multiparticle states which are entangled but nevertheless allow the local

realistic description of specific Bell experiments. For some of them, the “gap” between the critical values for

entanglement and violation of Bell inequality remains finite even in the limit of infinitely many qubits.
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I. INTRODUCTION

Despite the considerable progress made in understanding

entanglement, the question of whether every entangled state

does not admit a local realistic simulation is as yet unanswered.

Bell has shown that certain pure entangled states violate

constraints imposed by local hidden variablemodels [1]. Bell’s

result was generalized by Gisin and Peres who demonstrated

the violation for all bipartite pure entangled states [2,3].

Popescu andRohrlich showed that no local realistic description

is possible for any pure multipartite entangled state; the proof

involved post-selection [4]. Without post-selection, it is not

clear whether there are pure entangled states which admit a

local realistic model for all possible measurements. A Bell

experiment with two settings per observer, in which only

correlation functions were measured, indeed admits a local

hidden-variable explanation even for some pure entangled

states [5,6].

For mixed states, this relation is even subtler. Werner states

are an example of bipartite entangled mixed states which allow

a local realistic model for direct measurements [7,8]. Almeida

et al. found recently that the range of entanglement admixture

for which the state of two d-level systems is entangled and

also admits a local hidden-variablemodel for allmeasurements

decreases proportionally to log(d)/d [9]. Also, some genuinely

tripartite entangled mixed states can admit a hidden-variable

description for all measurements [10]. It was shown that

entangled states upon sequential local measurements may

be transformed into ones that do not allow a local realistic

description [11–15]. Note, however, that this is not a direct

property of such states, only the final states which result out

of such transformations are endowed with it. The relation

between entanglement and local realism formultipartite mixed

states is still largely unexplored. Our work addresses this

problem.

This relation is of importance not only to fundamental

research but also in the context of quantum communication

and quantum computation. For certain tasks, such as quan-

tum communication complexity problems [16,17] or device-

independent quantumkey distribution [18,19], entangled states

are useful only to the extent that they violate Bell inequalities.

Furthermore, entangled states which violate certain Bell

inequalities but satisfy others are useful for particular quantum

communication complexity problems directly related to the

violated inequalities (for details of the link between the in-

equalities and communication complexity problems, see [17]).

In such problems, several partners have disjoint sets of data

and under a strict communication constraint, e.g., to one bit

per partner, are asked to give the value of a task function

which depends on all data. The amount of violation of a Bell

inequality for correlation functions related to the problem is

proportional to the increase of the probability to get the correct

value of the task function, which quantum protocols involving

entangled states allow in contrast to the optimal classical

protocol. Note that often additional post-processing of exper-

imental data requires additional classical communication and

therefore increases communication complexity of quantum

protocols. Therefore, stateswhich violate certainBell inequali-

ties after sequentialmeasurements or post-selection are usually

less efficient in terms of communication complexity reduction

than the states which violate the inequalities directly. It is thus

important to make both classifications of entangled states: into

admitting and not admitting local realistic models, and into

violating and not violating a given Bell inequality.

Entanglement and Bell violation of different noisy states

have already been studied by several authors [20–25]. All this

indicates that entanglement and the impossibility of a local

hidden variable model are not only different concepts, but also

truly different resources [26]. Our aim is to identify a class of

states that demonstrates this difference in a striking way.

We consider states of N two-level systems resulting from

sending different entangled states via noisy channels. Noisy

states are of special importance, because they take into account
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errors inevitable in any laboratory. More specifically, we

study white-noise admixture which is often used to model

imperfections of setups involving a single crystal in which

spontaneous parametric down-conversion takes place. We

consider also colored noise admixture which was shown

to be appropriate, e.g., in describing states generated in

multiple entanglement swapping [27]. Typical noisy channels

(depolarization, dephasing, amplitude damping) which act

independently on every qubit are also studied. They find

applications in modeling random environment and dissipative

processes [28].

The treatment of noise is static here, as the sole purpose

of the paper is to address properties of states. Especially,

we aim to find exact values of the “gaps” (originally found

by Werner [7] for simpler cases) between admixtures of a

broader class of noise than usually studied. Such a gap is the

difference between the values of the critical admixture of a

specific (toy) model noise: the value which is enough to kill

nonclassical correlations, and the value that kills entanglement

present in the original state. Thus the problems we study are

independent of the dynamics, and concern solely properties

of states. Nevertheless, it is an interesting question to study

such gaps within dynamical models of noise, because for

specific experimental configurations one can expect, due to

environment-system interactions, or dephasing, specific types

of noises to emerge. This problem is left open for a later study.

Here we find states for which even an infinitesimally small

admixture of infinitesimal weak entangled state results in a

nonseparable state, while to violate standard Bell inequalities

(with two settings per party) the admixture has to scale at least

as 1/
√

d , where d is the dimension of N qubits, i.e., d = 2N .

This shows a remarkable “gap” between the critical parameters

for entanglement and those for violation of standard Bell

inequalities. We observe that keeping the same amount of

noise but changing the type of noise drastically changes

entanglement and communication-reducing properties of the

states, i.e., whether the states allow a higher than classical

reduction of communication complexity. Furthermore, we find

mixed states for which this gap remains finite even in the limit

of infinitely many qubits.

II. TOOLBOX

Our tools consist of entanglement criteria in terms of corre-

lation functions [29], which will prove handy for comparison

with conditions for violation of Bell inequalities. We shall

take into account sets of Bell inequalities for two and more

measurement settings [30–35]. We now describe these tools in

more detail.

Arbitrary state of many qubits can be decomposed into

ρ =
1

2N

3
∑

µ1,...,µN=0

Tµ1...µN
σµ1 ⊗ · · · ⊗ σµN

, (1)

where σµn
∈ {1, σx, σy, σz} is the µnth local Pauli operator

of the nth party (σ0 = 1), and Tµ1...µN
∈ [−1, 1] are the

components of the (real) extended correlation tensor T̂ . They

are the expectation values Tµ1...µN
= Tr[ρ(σµ1 ⊗ · · · ⊗ σµN

)].

Thus, description in terms of correlation tensor is equivalent

to description in terms of density operator. Fully separable

states are endowed with fully separable extended correlation

tensor, T̂ sep =
∑

i pi T̂
prod

i , where T̂
prod

i = T̂
(1)
i ⊗ · · · ⊗ T̂

(N)
i ,

and each T̂
(n)
i describes a pure one-qubit state. A state ρ, with

correlation tensor T̂ , is entangled if there exists a G such

that [29]

max
T̂ prod

(T̂ , T̂ prod)G < (T̂ , T̂ )G = ||T̂ ||2G, (2)

where maximization is taken over all product states and

(.,.)G denotes a generalized scalar product, with a positive

semidefinite metric G. We focus on diagonal G’s, for which

the scalar product is given by

(T̂ , T̂ ′)G =
3

∑

µ1,...,µN =0

Tµ1...µN
Gµ1...µN

T ′
µ1...µN

. (3)

The criterion is valid also when the sums of (3) run through the

values jn = 1, 2, 3, which will be often referred to as x, y, z.

We compare this entanglement criterion with criteria for

violation of Bell inequalities. It was shown that a simple

sufficient condition for existence of a local realistic description

of the correlation functions obtained in any Bell experiment

with two measurement settings per observer has the following

form [32]:

C ≡ max

2
∑

j1,...,jN =1

T 2j1...jN
6 1, (4)

where maximization is taken over all possible independent

choices of local planes in which the two settings lie. This

condition is necessary and sufficient in the case of two

qubits [36].

We shall also use another necessary and sufficient condition,

this time for violation of a set of tight Bell inequalities with

many measurement settings per observer [35]. For the case

of N + 1 observers, all of which but the last one choose
between four settings, and the last one between two settings,

this condition reads

D ≡ max

2
∑

j1(k),...,jN (k)=1

2
∑

k=1

T 2j1(k)...jN (k)k
6 1, (5)

where maximization is over all possible independent choices

of local Cartesian frame basis vectors used by the observers to

fix the measurement directions determining the correlation

tensor components. That is, we allow each observer to

define its triad of orthogonal basis directions, which define

the correlation tensor components. This condition is more

demanding than (4) because the coordinate systems denoted

by the indices j1(1), . . . , jN (1) do not have to be the same as

j1(2), . . . , jN (2). It is necessary for the existence of a local

realistic model [35], or equivalently, its violation is sufficient

for the nonexistence of such models.

III. NOISES

The states to be studied here are of two general types. (i)

Mixtures of an entangled state ρ and white or colored noise

ρnoise:

ρ(ϒ) = ϒρ + (1− ϒ)ρnoise, (6)
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whereϒ is the entanglement admixture. (ii) States arising from

local noisy channels [28], i.e., of the form

(E ⊗ · · · ⊗ E)(ρ)

=
1

2N

3
∑

µ1,...,µN =0

Tµ1...µN
E(σµ1)⊗ · · · ⊗ E(σµN

), (7)

where E is a map describing depolarization, dephasing, or

amplitude damping of a single qubit. According to (7), such

noises are fully described by their action on local Pauli

operators.

Each type of noise considered is parametrized with a single

variable (it is either entanglement admixture ϒ or the strength

of local decoherence), and therefore the resulting states are

also characterized by this variable. We choose the parameters

such that value ‘1’ corresponds to no noise, whereas value

‘0’ corresponds to total noise which immediately destroys

all initial entanglement. Using the described separability

criterion, we determine the threshold value of the parameter,

above which the resulting state is entangled. Next, using

conditions (4) and (5) for the described Bell inequalities, we

find the maximal parameter below which the state does not

violate them. Finally, we contrast these two critical values. We

summarize our results in Table II.

A. White noise

White noise is represented by a totally mixed state ρnoise =
1
2N 1, where N gives the number of qubits. A channel intro-

ducing the white noise to a system is the globally depolarizing

channel

Eϒ (ρ) = ϒρ + (1− ϒ) 1
2N 1. (8)

Therefore, the correlation tensor of the state after the globally

depolarizing channel, T̂ ′, is related to the initial state by the
admixture parameter T̂ ′ = ϒT̂ . The operator-sum representa-

tion

Eϒ (ρ) = ϒρ +
1− ϒ

22N

×
3

∑

µ1,...,µN=0

σµ1 ⊗ · · · ⊗ σµN
ρσµ1 ⊗ · · · ⊗ σµN

(9)

reveals that a white-noise admixture acts in a correlated way

on all the qubits.

B. Colored noise

We will consider colored noise represented by a product

state ρnoise = |0〉〈0| ⊗ · · · ⊗ |0〉〈0|, where |0〉 is the eigenstate
of the local σz Pauli operator. Such a noise brings perfect

correlations along z directions to the system.

C. Local depolarization

In many cases, noise affects independently every qubit.

For example, local depolarization can be caused by a random

environment acting autonomously on each subsystem. The

local depolarization is defined for a single qubit in the familiar

way:

Ep(ρ) = pρ + (1− p) 1
2
1, (10)

i.e., it mixes the local state with the white noise, where p

describes the fraction of initial state still present after the

decoherence. To see the effect of local depolarization on many

qubits, we find its effect on local Pauli operators

Ep(1) = 1, Ep(σx) = pσx,
(11)

Ep(σy) = pσy, Ep(σz) = pσz,

and follow formula (7).

In general, the critical values arising from local depolar-

ization and white noise can be different. However, in our case

the critical parameters turn out to be the same because of the

structure of violation conditions for the Bell inequalities and

the form of the entanglement criterion we use. Since these

conditions involve only N -party correlations, local depolar-

ization introduces a factor of pN to the elements of correlation

tensor entering them, while white noise admixed to the system

introduces a factor ofϒ . Therefore, the critical values obtained

using pN and ϒ are equal, pN
cr = ϒcr, independently of the

state for which they are computed (the numerical value can, of

course, vary from state to state).

D. Dephasing

Local depolarization describes gradual loss of coherence in

all bases. It may happen that coherence is lost in a preferred

basis. This type of noise is described by a dephasing channel

defined by its action on local Pauli operators:

Eλ(1) = 1, Eλ(σx) =
√

λσx,
(12)

Eλ(σy) =
√

λσy, Eλ(σz) = σz,

where the σz basis is chosen to be preferred by decoherence,

and λ describes its strength. Clearly, for λ = 1, the initial state

is unchanged; and for λ = 0, the final state has only classical

correlations along local z directions.

E. Amplitude damping

An amplitude-damping channel is used to describe energy

dissipation froma quantum system.Under amplitude damping,

a systemhas a finite probability γ to lose an excitation. In terms

of local Pauli operators, this channel is descried as

Eγ (1) = 1 + (1− γ )σz, Eγ (σx) = √
γ σx,

(13)
Eγ (σy) = √

γ σy, Eγ (σz) = γ σz.

Note that the components of the correlation tensor of a state

after amplitude damping which contain the z indices are given

by the sums of the initial correlation tensor components with

both z indices and zero indices, e.g.,

T ′
z . . . z
︸ ︷︷ ︸

k

0...0 =
∑

l1,...,lk={0,3}

Tl1...lk0...0(1− γ )n0γ n3 (14)

where n0 ≡
∑k

j=1 δlj ,0 gives the number of indices l1, . . . , lk

equal to 0, and similarly n3 ≡
∑k

j=1 δlj ,3 = k − n0 denotes the

number of indices equal to 3.
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Having described the noises of interest, we move to studies

of their influence on certain classes of initially entangled states.

IV. NOISY STATES

We begin with the Bell state of two qubits and mix it with

white and colored noise. The state with white noise is the

Werner state known to admit a local hidden-variable model

for certain admixtures despite being entangled. Interestingly,

the states with colored noise, which are maximally entangled

mixed states [37,38], will be shown to be entangled and to

not violate standard Bell inequalities in an even bigger range

of mixing. We then show similar results for the GHZ states

and generalized GHZ states. For some of them, the critical

admixture of entanglement belowwhich the state admits a local

hidden-variable model scales polynomially with dimension of

the system, and the mixed state is entangled already for an

infinitesimally small admixture of infinitesimal entanglement.

Next, we discuss noisy states arising from independent local

decoherence. We start with generalized GHZ states as initial

states and show that even in the limit of infinitely many qubits

there is still a finite gap between the critical parameter for

entanglement and the one for violation of Bell inequalities.

We show similar results when the initial state is a W state.

Roughly speaking, a simple application of the entanglement

criterion detects entanglement at least quadratically better than

the Bell inequalities; i.e., the critical value for entanglement is

at most equal to the square of the critical value to satisfy the

Bell inequalities.

A. Bell state

1. White noise

We first rederive known results for a Werner state of two

qubits with our tools. It is a mixture of a maximally entangled

state ρ = |φ+〉〈φ+| andwhite noise ρnoise = 1
4
1, where |φ+〉 =

1√
2
(|00〉 + |11〉) and |0〉 (|1〉) denotes the eigenstate of σz

operator with eigenvalue+1 (−1). The family ofWerner states
is an archetypical example of a state set which contains states

that do not violate Bell inequalities despite being entangled.

Since the white-noise state exhibits no correlations, the cor-

relation tensor components T ′
j1j2
of theWerner state are related

to the componentsTj1j2 of |φ+〉 by the admixture factor,T ′
j1j2

=
ϒTj1j2 . The only nonvanishing correlation tensor elements of

maximally entangled states lie on the diagonal and are equal

to±1 (this is so when the two-particle correlation tensor is put
in a Schmidt form). If one chooses to sum over jn = 1, 2, 3

in the scalar products of criterion (2), the left-hand side is

given by the maximal Schmidt coefficient of the correlation

tensor. For the Werner state it equals ϒ . The right-hand side

reads 3ϒ2. Thus, the criterion reveals entanglement for all the

states of the family, i.e., for ϒent >
1
3
. On the other hand,

the necessary and sufficient condition for a local realistic

model, in the case of a standard two-settings-per-partner

Bell experiment (4), is satisfied for ϒlr 6
1√
2
. Thus, for a

considerable range of ϒ ∈ ( 1
3
, 1√

2
] the state is entangled,

nevertheless Bell experiments involving standard inequalities

have a local realistic explanation. One could call this range of

ϒ a “Werner gap.”

TABLE I. Critical value of entanglement admixture above which

the two-qubit state ϒ |φ+〉〈φ+| + (1− ϒ)ρnoise is entangled (middle

column) and allows reduction of communication complexity, i.e.,

violates standard Bell inequalities (right column), for different

types of noise (left column). In the left column, 1 ⊗ 1 denotes

the white noise and, e.g., |±〉kk〈±| ⊗ |∓〉l l〈∓| denotes the colored
noise which is a product state of either |+〉kk〈+| ⊗ |−〉l l〈−| or
|−〉kk〈−| ⊗ |+〉l l〈+|, where |±〉k is the eigenstate of the Pauli σk

operator with eigenvalue ±1 (either the upper or lower signs enter
the states of the noise).

Type of noise Entanglement Comm. reduction

1 ⊗ 1 ϒ > 1

3
ϒ > 1√

2
= 0.70711

|±〉zz〈±| ⊗ |±〉zz〈±| ϒ > 0 ϒ > 0

|±〉yy〈±| ⊗ |∓〉yy〈∓|
|±〉xx〈±| ⊗ |±〉xx〈±|
|±〉zz〈±| ⊗ |∓〉zz〈∓| ϒ > 0 ϒ > 1√

2
= 0.70711

|±〉yy〈±| ⊗ |±〉yy〈±|
|±〉xx〈±| ⊗ |∓〉xx〈∓|
|±〉xx〈±| ⊗ |±〉yy〈±| ϒ > 0 ϒ > 0.56731

|±〉xx〈±| ⊗ |∓〉yy〈∓|
|±〉xx〈±| ⊗ |±〉zz〈±|
|±〉xx〈±| ⊗ |∓〉zz〈∓|
|±〉yy〈±| ⊗ |±〉zz〈±|
|±〉yy〈±| ⊗ |∓〉zz〈∓|

2. Colored noise

Interestingly, changing the type of noise from white to col-

ored influences both entanglement of the state and possibility

of local realistic model. We have investigated critical admix-

tures of different types of noise above which condition (4)

is satisfied and summarize them in Table I. Changing the

type of colored noise alone, although it does not change the

entanglement threshold of the state, dramatically influences its

communication-reducing properties. The splitting of this table

into different rows is motivated by different relations between

correlations present in the noise and in the entangled state

|φ+〉. In the first row, the white noise has no correlations. In the
second row, the noises have some of the correlations of the |φ+〉
state. Therefore, for all ϒ > 0 there are perfect correlations

in the system (in the basis of states of noise) and additionally

at least some correlations in a complementary measurement

direction. This explains the violation of a two-setting Bell

inequality [39]. In the third row, the noise has exactly opposite

correlations to those present in the |φ+〉 state. In the last row,
the noises have correlations of a different character than those

of the entangled state.

The Werner states are not the ones with the largest possible

gap. For example, if one admixes, e.g., colored noise ρnoise =
|±〉zz〈±| ⊗ |∓〉zz〈∓| to the |φ+〉 Bell state, the resulting state
is entangled already for an infinitesimally small value of ϒ ,

and it satisfies condition (4) for all ϒlr 6
1√
2
. Thus, the range

of ϒ for which the state admits local realistic model for

standard correlation Bell experiments and is still entangled

is much larger than for the Werner state. Moreover, this

is the maximal possible range (there is no other state or

dichotomic measurements which would give a bigger Werner

gap), because the critical value ϒlr = 1√
2
corresponds to the
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maximal violation of local realism [40]. We note that such

mixed states are known to be maximally entangled [37,38].

B. GHZ state

1. White noise

The presented tools allow us to construct and investigate

entangled states of multiple qubits, with a nonzero Werner

gap, in a systematic way. We first consider the Werner-

like states of N qubits which are mixtures of the GHZ

state |GHZN 〉 = 1√
2
(|0 . . . 0 〉 + |1 . . . 1 〉) and the white noise.

Using criterion (2), one findsϒent = 1/(2N−1 + 1) for the crit-
ical admixture above which the state is entangled [29,41]. The

critical value for violation of a complete set of standard Bell

inequalities for correlation functions equals ϒlr = 1/
√
2N−1

(see [32]). Therefore, for ϒ ∈ ( 1
2N−1+1 ,

1√
2N−1 ] the state is en-

tangled, but all two-setting correlation Bell experiments admit

a local realistic model. Also the multiple-setting inequalities

of Ref. [35] are all satisfied in this range.

To illustrate how the range of the Werner gap can de-

pend on the Bell inequality, we consider the inequalities of

Refs. [42,43]. If one considers all possible settings, restricted to

one measurement plane on the Bloch sphere for each observer,

the critical value for violation of local realism changes to

ϒ∞
lr = 2(2/π )N , see [42], and therefore decreases the Werner

gap. This result is a limiting case for inequalities involvingM

settings per party studied in [43]. These inequalities involve

measurement settings (again in a specific plane for each

observer) evenly spaced at the Bloch sphere. One has ϒ∞
lr =

limM→∞ ϒM
lr [43], notation is obvious here. One may ask for

how many settings is the critical entanglement admixture for

violation of local realism for a finite and continuum number

of settings already very close. For bigger M , one finds using

Taylor series that ϒM
lr = ϒ∞

lr [1+ π2

24
N−3
M2 + O( N2

M4 )]. If one

neglects all the small terms of O( N2

M4 ), the relative error

ε = (ϒM
lr − ϒ∞

lr )/ϒ∞
lr is given by ε ≈ 4π2 N−3

M2 %. Thus, for

M = N the two critical admixtures are close even for a few

particles (ε smaller than 4% for all N > 4).

2. Colored noise

Similar to the case of the Bell states, the range of the

Werner gap for GHZ states also depends on the type of

admixed noise. For odd-N GHZ states, the correlations Tz...z

vanish, and it is interesting to consider the colored noise

ρnoise = |0〉〈0|⊗N which reintroduces the missing correlations.

The full correlation tensor of ρ(ϒ), i.e., the one covering

“Greek” indices from 0 to 3, has the following nonvanishing

components: Tz...z = 1− ϒ , and also 2N−1 components with
2k indices equal to y and the remaining indices equal to x

(where k = 0, 1, . . . , N−1
2
). These latter ones are given by

(−1)kϒ . Finally, one finds 2N−1 − 1 components with 2k
indices (where k = 1, . . . , N−1

2
) set at 0 and the remaining

indices set to z. All these have the value of 1. Consider a metric

Gwith only the following nonzero elements:Gzz0...0 = ϒ and

Gi1...iN = 1 for the components with 2k indices equal to y and

the rest equal to x. For such a metric, the maximum of the

scalar product on the left-hand side of condition (2) is equal to

ϒ . The right-hand side equals ||T̂ ||2G = ϒ + 2N−1ϒ2, which

is always greater than ϒ . Thus, the state is entangled already

for an infinitesimally small ϒ .

To investigate the direct communication-reducing proper-

ties of the state, we employ condition (4). Depending on the

choice of the observation plane, the left-hand side of Eq. (4)

reads 2N−1ϒ2 for the xy plane; (1− ϒ)2 + ϒ2 for the xz

plane; and (1− ϒ)2 for the yz plane. There is no other plane

in which the values would be higher, as the correlation tensor

is in its generalized Schmidt form [44,45]. The sum over the

settings in the xy plane is greater than the sum over the xz

plane for ϒ > 1/(1+
√
2N−1 − 1). Thus, for the state ρ(ϒ)

the left-hand side of (4) is given by

C =

{

2N−1ϒ2 for ϒ 6
1

1+
√
2N−1−1

,

(1− ϒ)2 + ϒ2 for ϒ > 1

1+
√
2N−1−1

.
(15)

Therefore, there exists a local realistic model for the correla-

tions obtained in any two-setting correlation Bell experiment

ifϒ 6 ϒlr = 1/
√
2N−1, which is the same critical value as for

the state with white noise (in full analogy to the case of the Bell

state). Finally, for ϒ ∈ (0, ϒlr], entangled state ρ(ϒ) admits

local realistic description for such Bell experiments. Since the

dimension of the system is d = 2N , the range of theWerner gap

scales polynomially as d− 1
2 . This is exponentially better than

in [9] where the range of theWerner gap scales logarithmically

as log(d)/d. However, the model of [9] works for an arbitrary

number of settings, whereas here we have studied only two-

setting Bell inequalities for correlation functions. Already for

the multiple-setting Bell inequalities for correlation functions

[35], the range of the corresponding Werner gap is smaller.

The left-hand side of (5) is given by D = 2N−1ϒ2 for N = 3,

andD = (1− ϒ)2 + 2N−2ϒ2 forN > 5. This is illustrated in

Fig. 1, where we show the critical entanglement admixtures

belowwhich the state satisfies the inequalities. Note that in this

case the fact that the condition is satisfied does not guarantee

the existence of the local realistic model, because this set of

inequalities is not necessary and sufficient for the existence of

such a model [35]. We also checked that for the colored noise,

the inequalities with continuous settings [42] do not improve

the critical admixture for violation of local realism over the

multisetting inequalities [35], except for N = 3.

C. Generalized GHZ states

1. Colored noise

We give an explicit example of a noisy separable state

for which even an infinitesimally small admixture of an

infinitesimal weak entangled state results in a nonseparable

state. Consider the generalized GHZ state [5,6,35]

|GHZ(α)〉 = cosα|0 . . . 0〉 + sinα|1 . . . 1〉. (16)

It has the following nonvanishing components of the correla-

tion tensor:

Ty . . . y
︸ ︷︷ ︸

2k

x...x = (−1)k sin 2α, k = 0, 1, . . . , bN−1
2

c,

(17)

Tz . . . z
︸ ︷︷ ︸

k

0...0 =
{

1 for k even,

cos 2α for k odd,

and similarly for all permutations of indices.
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FIG. 1. (Color online) Entanglement and violation of the Bell

inequalities. The stateϒ |GHZN 〉〈GHZN | + (1− ϒ)ρnoise violates the

corresponding Bell inequality for values of ϒ above the bars. If the

value of ϒ lies within the blue or orange piece of the bar, the state is

entangled but does not violate the Bell inequality and therefore does

not allow communication complexity reduction. For each number of

qubits, N , we present the results for the white-noise admixture (left

bar – blue) and the colored noise |0〉〈0|⊗N admixture (right bar –

orange). For the white noise, more settings do not lower the critical

admixture. For the colored noise, the critical admixture is lowered.

We mix this state with a colored noise ρnoise = |0〉〈0|⊗N . If

the number of qubits is even, this state is entangled and violates

Bell inequalities for both infinitesimal α and ϒ . This follows

from the fact that the state has perfect correlations Tz...z = 1

and additional correlations in complementary directions, e.g.,

Tx...x = ϒ sin 2α. Therefore, summing up the correlations in

the xz plane and using the multisetting condition (5) proves

the violation.

For an odd number of qubits, the range of the Werner gap

again scales (independently of α) polynomially with d. First,

we show that the mixed state is entangled already for infinites-

imal α andϒ , irrespective of the number of qubits. To this aim,

take two nonvanishing metric elementsGzz0...0 andGx...x to be

equal to 1. For this choice, the right-hand side of (2) equalsR =
1+ ϒ2 sin2 2α. The left-hand side of the condition now reads

L = max(ϒ sin 2αT (1)x . . . T (N)x + T (1)z T (2)z ), where we maxi-

mize over the choice of local tensors (vectors) T̂ (n). We set T (n)x

to the maximal value of 1 for all the parties n > 2, and write

the tensor elements for the remaining two parties in polar co-

ordinates, L = maxθ1,θ2(ϒ sin 2α sin θ1 sin θ2 + cos θ1 cos θ2).
Since ϒ sin 2α 6 1, we have L 6 maxθ1,θ2 cos(θ1 − θ2) 6 1.

The maximum is equal to 1 and for all allowed α > 0 and

ϒ > 0 it is smaller than the right-hand side. The state is

entangled.

For violation of Bell inequalities, consider summation over

the xy plane in the necessary and sufficient condition (5).

For the present state, it involves
∑(N−1)/2

k=0 (
N

2k
) = 2N−1 terms,

each equal to ϒ2 sin2 2α, and gives the critical value of ϒlr =√
2

sin 2α
2−N/2. Therefore the gap |ϒlr − ϒent| scales polynomially

with dimension as 1/
√

d for d = 2N .

2. Local depolarization

The nonvanishing correlation tensor elements, after local

depolarizing channels are applied to the generalized GHZ

state, read

Ty . . . y
︸ ︷︷ ︸

2k

x...x = (−1)kpN sin 2α, k = 0, 1, . . . , bN−1
2

c

(18)

Tz . . . z
︸ ︷︷ ︸

k

0...0 =
{

pk for k even,

pk cos 2α for k odd.

To show the Werner gap for N → ∞, we first prove that
the state is entangled for all p > 1

2
. Choose the following

nonzero elements of the metric: Gj1...jN
= 1 for jn = 1, 2,

Gz...z = 1 for N even, and Gz...z0 = 1 for odd N . The

right-hand side of the entanglement condition (2) is R =
p2(N−1+N2) + 2N−1p2(N−1+N2) sin2 2α, where N2 = N mod 2

encodes the cases of odd and even N . The left-hand side is

maximized if all local tensors are the same and along the z

axes and has the value of L = pN−1+N2 . Therefore, the state is

entangled if 1 < pN−1+N2 + 2N−1pN−1+N2 sin2 2α. To unify

the cases of odd and even N, we bound the right-hand side

from below using pN 6 pN−1+N2 , and obtain the sufficient

condition for entanglement. The corresponding critical value

is

pent = (1+ 2N−1 sin2 2α)−
1
N → 1

2
, (19)

where the limit is for N → ∞. Arrows in the following
formulas always denote this limit.

The multisetting Bell inequalities give better results than

standard inequalities for this state. Consider the violation

condition (5) in which the last index of the correlation tensor

takes on the values {y, z}, whereas indices of other parties are
either {x, y} if the last index is y, or z if the last index is z.

(Note that we explicitly make use here of the advantage of

the multisetting condition over the two-setting condition). The

value of parameter D is at least (it is higher for N even) equal

to p2N (cos2 2α + 2N−2 sin2 2α), where 2N−2 gives the number
of nonzero correlation tensor elements with y index at the last

position. Therefore, the critical parameter is

plr = (cos2 2α + 2N−2 sin2 2α)
− 1
2N → 1√

2
. (20)

The critical values of p decrease with the number of qubits,

showing that many party generalized GHZ states are more and

more robust against this type of noise. Finally, for N → ∞
there is a Werner gap of p ∈ ( 1

2
, 1√

2
) for which the entangled

state does not improve the related communication complexity

tasks.

3. Dephasing

Similar results hold for other local noises. After dephasing

in the local z bases, the correlation tensor of the generalized
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GHZ state reads

Ty . . . y
︸ ︷︷ ︸

2k

x...x = (−1)kλ
N
2 sin 2α, k = 0, 1, . . . , bN−1

2
c,

(21)

Tz . . . z
︸ ︷︷ ︸

k

0...0 =
{

1 for k even,

cos 2α for k odd.

All entangled generalized GHZ states are still entangled

after the local dephasing. For a proof, it is sufficient to choose

Gzz0...0 = Gx...xx = 1. For this choice, the right-hand side

of (2) reads R = 1+ λN sin2 2α, whereas for the left-hand

side we have L = max(T (1)z T (2)z + T (1)x T (2)x λN/2 sin 2α) 6

T (1)z T (2)z + T (1)x T (2)x 6 1, which follows from λN/2 sin 2α 6 1

and writing the components of the local tensors in polar

coordinates. We also assumed that the local Bloch vectors

of all the parties except first and second are along the x axis,

which is optimal. Therefore, the state is entangled for all α > 0

and λ > 0, independent of the number of qubits.

Since dephasing leaves the correlations in specific di-

rections unchanged, violation of the Bell inequality for the

generalized GHZ state is very robust against this type of noise.

We show that it actually is state independent, i.e., violation

is observed for all α > 0 and only depends on the degree of

dephasing if N is odd. Consider the multisetting condition,

in which, as before, the last index takes values {y, z} and the
remaining indices are either {x, y} if the last index is y, or z if

the last index is z. If N is even, after dephasing, the state still

contains perfect correlations in the z directions and some other

correlations in the xy plane, and violates the inequalities for

all α > 0 and λ > 0. For the case of an odd number of qubits,

the condition reads D = cos2 2α + 2N−2λN sin2 2α, and the

violation is observed as soon as

sin2 α > 0 and λ > 2
2
N

−1 → 1
2
. (22)

Therefore, violation only depends on the degree of dephasing

in the case of odd N , and again there is a finite Werner gap of

λ ∈ (0, 1
2
) in the limit N → ∞.

4. Amplitude damping

Finally, we consider independent local amplitude-damping

channels. The elements of the decohered generalized GHZ

states are the following:

Ty . . . y
︸ ︷︷ ︸

2k

x...x = (−1)kγ
N
2 sin 2α, k = 0, 1, . . . , bN−1

2
c

(23)

Tz . . . z
︸ ︷︷ ︸

k

0...0 =
{

cos2 α + γ̄ k sin2 α for k even,

cos2 α − γ̄ k sin2 α for k odd,

where γ̄ = 2γ − 1. To prove the Werner gap, consider

the metric with nonvanishing elements Gj1...jN
= 1 with

jn = 1, 2. The right-hand side of the entanglement criterion

reads R = 2N−1γ N sin2 2α. The left-hand side is L = γ N/2

sin 2αmax[T (1)x . . . T (N)x − T (1)y T (2)y T (3)x . . . T (N)x − . . .], with

the maximum taken over local tensors with components

from one plane. We write the elements of individual tensors

in polar coordinates, i.e., T (n)x = cos θn and T (n)y = sin θn,

and recognize that expression in the bracket is now given

by cos(θ1 + · · · + θN ). Therefore, L = γ N/2 sin 2α, which

translates into the critical parameter for entanglement

γent =
1

4

(
2

sin 2α

) 2
N

→
1

4
. (24)

The violation of bothmany-setting and two-setting inequal-

ities is the same for higher number of qubits. The two-setting

condition reveals the critical parameter

γlr =
1

2

(
2

sin 2α

) 1
N

→
1

2
. (25)

For large N , the states for practically all α > 0 violate the

inequalities if ϒlr > 1/2 and there is a finite Werner gap of

γ ∈ ( 1
4
, 1
2
) in the limit N → ∞.

D. W state

In this section, we study theW state, and we emphasize the

properties distinguishing it from the class of generalized GHZ

states. The W state involves a single excitation delocalized

over all the qubits:

|W 〉 =
1

√
N
(|10 . . . 0〉 + |01 . . . 0〉 + · · · + |00 . . . 1〉). (26)

It is permutationally invariant, i.e., any permutation of particles

leaves the state unchanged. Therefore, to describe its correla-

tion tensor it is sufficient to present just three elements. All

other nonvanishing elements have indices being permutations

of the indices of the following ones:

Tz . . . z
︸ ︷︷ ︸

k

0...0 = 1−
2k

N
,

(27)

Tyyz...z0...0 = Txxz...z0...0 =
2

N
.

1. White noise

Consider aW state mixed with white noise:

ρ = ϒ |W 〉〈W | + (1− ϒ)
1

2N
1. (28)

Contrary to the case of the mixed GHZ state, this mixed state

gives rise to a Werner gap in the limit of N → ∞.
To prove entanglement of this state, consider themetricwith

nonvanishing elements Gj1...jN
= 1, where jn = {x, z}. With

this choice, the right-hand side of condition (2) reads R =
ϒ2[1+ (N

2
) 4
N2 ] = ϒ2(3− 2

N
). The left-hand side is maxi-

mized if all the local tensors are along the ±z axis and equals

L = ϒ , which we have verified numerically. Therefore, the

critical parameter for entanglement reads

ϒent =
1

3− 2
N

→
1

3
. (29)

The multisetting inequalities are violated as soon as the

entanglement admixture is above the critical value [35]:

ϒlr =
√

1

3− 2
N

→
1

√
3
. (30)

Note that the same correlations enter both the Bell inequalities

and the entanglement criterion, showing that this simple
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application of the criterion is at least quadratically better in

revealing entanglement than the Bell inequalities, i.e., ϒent 6

ϒ2
lr. This is a general feature present in all our examples.

2. Colored noise

Similar conclusion for comparison with the GHZ states

follows in the case of colored-noise admixture to theW state:

ρ = ϒ |W 〉〈W | + (1− ϒ)|0 . . . 0〉〈0 . . . 0|, (31)

where the colored noise introduces correlations in the local z

directions.

This state is entangled for all ϒ > 0. A simple way to

see this is to use the fact that if a subsystem is entangled,

then the whole system is also entangled. The definition of the

W state leads to the following form of the reduced density

operator for any two qubits:

ϒ ′|ψ+〉〈ψ+| + (1− ϒ ′)|00〉〈00|, (32)

with ϒ ′ = 2
N

ϒ and |ψ+〉 = 1√
2
(|01〉 + |10〉). This state is

entangled (has negative partial transposition [46,47]) for all

ϒ ′ > 0. Therefore the global state is entangled for allϒent > 0

and any finite N .

If one chooses settings from the xz plane in the multisetting

Bell inequality, the violation conditions reveal the critical value

of the admixture parameter as given by

ϒlr =
2

3− 1
N

→
2

3
. (33)

In the limit of N → ∞ we find the Werner gap of ϒ ∈ (0, 2
3
).

This is the biggest gap among all the states studied here.

3. Local depolarization

We shall show that the W state is very fragile with respect

to this type of decoherence, in contrast to the GHZ state. After

local depolarization, the elements of the correlation tensor of

the decoheredW state read

Tz . . . z
︸ ︷︷ ︸

k

0...0 = pk

(

1−
2k

N

)

,

(34)

Tyy z . . . z
︸ ︷︷ ︸

k

0...0 = Txx z . . . z
︸ ︷︷ ︸

k

0...0 = pk+2 2

N
.

Toprove entanglement of this state, consider nonzerometric

elementsGj1...jN
= 1/pN with jn = {x, z}. For this choice, the

right-hand side of the criterion equals R = pN [1+ (N
2
) 4
N2 ],

whereas the maximum of the left-hand side is 1, which we

have verified numerically. Therefore, the state is entangled

above the critical value of

pent =

(

1

3− 2
N

) 1
N

→ 1. (35)

The multisetting Bell inequalities are violated as soon as

D = T 2z...z + (N
2
)T 2xxz...z > 1. This gives the critical parameter

plr =

(

1

3− 2
N

) 1
2N

→ 1, (36)

which rapidly increases with N and already for five qubits

requires p > 0.9. Since pent = p2lr, there is a Werner gap for

all finite N , and in the limit both parameters tend to the

same value. Of course, a smarter choice of the metric in

the entanglement condition could prove that even in the limit

there is a finite Werner gap.

4. Dephasing

The W state is extremely robust against dephasing, as it

leaves the perfect correlations unchanged. After dephasing,

theW state is transformed to

Tz . . . z
︸ ︷︷ ︸

k

0...0 = 1−
2k

N
,

(37)

Tyy z . . . z
︸ ︷︷ ︸

k

0...0 = Txx z . . . z
︸ ︷︷ ︸

k

0...0 = λ
2

N
.

The dephased state violates Bell inequality (and therefore

is entangled) for all N and all nontrivial dephasing channels.

Consider correlations in the xz plane and multisetting con-

dition. The value of parameter D = 1+ 2λ2(1− 1
N
) exceeds

unity for all λ > 0. Note that this is true also in the limit

N → ∞.

5. Amplitude damping

TheW state after this type of decoherence reads

Tz . . . z
︸ ︷︷ ︸

k

0...0 = 1−
2k

N
γ,

(38)

Tyy z . . . z
︸ ︷︷ ︸

k

0...0 = Txx z . . . z
︸ ︷︷ ︸

k

0...0 =
2

N
γ.

To prove the Werner gap, consider nonvanishing metric

elements Gj1...jN
= 1 for jn = {x, z}. The right-hand side of

the criterion is R = (1− 2γ )2 + (N
2
) 4
N2 , and the maximum of

the left-hand side L 6 1− 2γ is attained for all local vectors
along z directions. Therefore, the state is entangled above the

critical value

γent =
1

3− 1
N

→
1

3
. (39)

We check violation of Bell inequalities using the condition

with many settings in the xz plane. The expression reads D =
R and exceeds unity for all values above

γlr =
2

3− 1
N

→
2

3
. (40)

The Werner gap is present also in the limit N → ∞, just as
for the GHZ state.

V. SUMMARY

Using the entanglement criterion [29], we have found fam-

ilies of entangled states which satisfy specific classes of Bell

inequalities. We summarize our findings in Table II. Generally

speaking, a simple application of the entanglement criterion

gives at least quadratically better critical parameters than the
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TABLE II. Summary of the results. The results for different initial states are presented in rows. Noisy channels applied to them are

presented in columns. The strength of the noises is characterized by a single parameter ζ (ζ = 1 corresponds to no noise, ζ = 0 describes

the strongest noise which immediately destroys entanglement). To unify presentation in this table, we represent all the parameters with ζ . In

the main text, the parameter characterizing local depolarization is denoted by p, dephasing by λ, amplitude damping by γ , and admixture of

white or colored noise byϒ . We present the critical parameter ζent, above which the resulting state is entangled, and ζlr, below which the state

satisfies classes of Bell inequalities, in the limit of large number of qubits N → ∞. Additionally, to compare on an equal footing the critical
parameters for different types of noises, they are all calculated here per particle in a sense that the values related to white and colored noise

are N th roots of the values of the main text. In all cases, ζent is at most a square of ζlr.

White noise Colored noise Local depolarization Dephasing Amplitude damping

Gen. GHZ ζent → 1/2 ζent → 0 ζent → 1/2 ζent → 0 ζent → 1/4

ζlr → 1/
√
2 ζlr → 1/

√
2 ζlr → 1/

√
2 ζlr → 1/2 ζlr → 1/2

W ζent → 1 ζent → 0 ζent → 1 ζent → 0 ζent → 1/3

ζlr → 1 ζlr → 1 ζlr → 1 ζlr → 0 ζlr → 2/3

ones obtained using the Bell inequalities. Therefore, we found

entangled states satisfying the Bell inequalities in all studied

cases. Moreover, we gave examples in which even in the limit

of a large number of qubits, there is a finite gap between the

critical parameter for entanglement and the critical parameter

for Bell violation. We found that maximally entangled mixed

states of two qubits give rise to the highest discrepancy

between the critical parameters. It would be interesting to

investigate if this also holds for a higher number of qubits. Our

results are a further step toward full classification of entangled

states into those which do and do not admit local realistic

explanation.
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