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Temporal Leggett-Garg-Bell inequalities for sequential multi-time actions in quantum information

processing, and a re-definition of Macroscopic Realism
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The usual formulation of Macrorealism is recast to make this notion fully concurrent with the basic ideas be-

hind classical physics. The assumption of non-invasiveness of measurements is dropped. Instead, it is assumed

that the current state of the system defines full initial conditions for its subsequent evolution. An example of

a new family of temporal Bell inequalities is derived which can be applied to processes in which the state of

the system undergoes arbitrarily many transformations (which was not the case in the original approach). An

exponential (in terms of number of operations) violation of this inequality is demonstrated theoretically. Finally

it is shown that such inequalities were indirectly tested in a 2005 experiment by the Weinfurter group.

PACS numbers: 03.65.Ta, 03.65.Ud

I. INTRODUCTION

What is the principal reason for faster than-classical pro-

tocols of quantum information processing? There are many

attempts to give this answer. It was recently suggested by

Brukner et al. [1] that the reason, or one of the reasons,

might be in violation of ”temporal Bell inequalities”. Such in-

equalities were introduced by Leggett and Garg [2], and were

aimed at the question the relation between Quantum Mechan-

ics and Macroscopic Realism. They formulated the principle

of Macrorealism as:

• a macroscopic system with two or more distinct states

will at all times be in one of these states,

• it is possible, in principle, to determine the state of the

system with an arbitrarily small perturbation on its sub-

sequent dynamics (noninvasive measurability).

They considered macroscopic quantum coherence in a

SQUID, and showed that effectively there is no flux ”when

nobody looks”. To this end they derived what is often called

“temporal Bell inequalities”.

A different version of such inequalities was introduced by

Brukner et al. [1] (for an earlier derivation, without a di-

rect link with the discussion of Macrorealism, see [3]; for

an extensive study see [4] and [5]). They follow basically

the same technical assumptions as the original ones, however

the observer is allowed to choose between various observables

which he or she wants to measure at a given instant of time.

The original ones allowed the observer to freely choose the

time of observation, but not the observable, which was fixed

throughout the process. As what will be shown below is an

extension of the Brukner et al. approach, the assumptions be-

hind it will be now presented.

The observer has a choice between two apparatus settings

for each instant of time at which he or she is to make a mea-

surement. The measurement are to be made at instants of time

to and later at t1. The following traits of a macro-realistic the-

ory are assumed:

• In the theoretical description one is allowed to use all

variables Am(t), the values of which are eigenvalues of

the observable Âm, which represent the values which

could have been obtained, had the given observable

been measured at time t, regardless what was the actual

measurement. The observer has a choice m = 1, 2, or

even larger. All Am(t)’s are treated as unknown, but nev-

ertheless fixed numbers, all of them at an equal footing,

that is for example the sum A1(t) + A2(t) has a definite,

but unknown, value. (This is an assumption of realism

- it is satisfied by classical systems. Please note that,

if Â1 and Â2 are quantum observables, which do not

commute, then at a given instant of time only one ob-

servable can be measured, and thus one deals here with

counterfactual statements.)

• Non-invasiveness: The values Am(t1) are independent

of whether or not a measurement was performed ear-

lier, at t0, and which observable was at this earlier time

measured. In short values Am(t1) are independent of the

measurement settings chosen earlier. (Note that this is a

strong assumption, which does not have to hold even for

classical systems when an act of observation produces

a disturbance. This assumption will be modified in the

paper.)

• Values Am(t0) do not depend on what happens at later

times, especially at t1.

• The experimenter is free to choose the observable which

is to be measured at a given instant of time. That is the

choices are statistically independent of the set of values

Am(t).

With a similar type of algebra as in the case of CHSH in-

equalities, under the assumption that all involved eigenvalues

are ±1, Brukner et al. [1] show that
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E(A1(t0), A1(t1)) + E(A1(t0), A2(t1)) + E(A2(t0), A1(t1)) − E(A2(t0), A2(t1)) ≤ 2, (1)

where E(Ak(t0), Am(t1)) stands for a correlation function,

understood as an averaged product of the results, that is

〈Ak(t0)Am(t1)〉. One can easily check that, in an attempt to

construct multi-time temporal Bell inequalities, say a Mermin

type extension

E(A1(t0)A1(t1)A2(t2)) + E(A1(t0)A2(t1)A1(t2)) + E(A2(t0)A1(t1)A1(t2)) − E(A2(t0)A2(t1)A2(t2)) ≤ 2, (2)

one faces the fact that it cannot be violated more strongly than

the previous one. This contrasts the case of the usual Bell

multi-party inequalities, which in the GHZ case [7] are vio-

lated much more strongly than for two qubits, see [1].

Let me explain this feature, with an example. Take a qubit,

and use its spin 1
2

representation. In such a case projectors

representing eigenstates of a Pauli operator ~n · ~σ, with |~n| = 1,

are given by 1
2
(1+v~n·~σ), where v = ±1 is the eigenvalue. Thus

if one starts with qubit in an arbitrary state % = 1
2
(1 + ~s · ~σ),

where |~s| ≤ 1, and recalls that sequential quantum measure-

ments form a Markov process, then the correlation function

for measurements with the Stern-Gerlach directions ~a, ~b and

finally ~c reads

E(~a, ~b, ~c) =
∑

klm=±1

klmP(k, l,m) = (~s · ~a)(~b · ~c), (3)

where P(k, l,m) denotes the probability of a sequence of re-

sults, k, l,m is a consecutive order. Note that this correlation

function factorizes, while the one for a sequence of two mea-

surements

E(~a, ~b) =
∑

kl=±1

klP(k, l) = ~a · ~b, (4)

does not, and what is crucial here, is formally identical (up to

a sign) with the usual correlation function for two qubits in a

singlet state. Note that if the initial state is pure noise, |~s| = 0,

the three measurements correlation function vanishes.

The same problems arise when one considers the original

Leggett-Garg inequalities. In the Heisenberg picture differ-

ent moments of observation lead to different observables, as

Â(t) = U†(t, t0)Â(t0)U(t, t0), where U(t, t0) is the unitary evo-

lution operator.

One intuitively feels that there must exist some form of tem-

poral Bell inequalities that are applicable to arbitrarily long

quantum processes, which involve many instants of time, at

which the system changes its state due to an external interven-

tion. Below, such a family of inequalities will be presented.

An entirely new approach will be taken, which surprisingly

uses softer, more physically justified, assumptions concerning

Macrorealism than the one presented above. The term Macro-

realism will be still used, as the whole idea will be illustrated

with something that resembles a quantum informational pro-

tocol. In such a case one is tempted to compare qubits, on

which certain operations are performed, with a changing state

of a some sort of microprocessor element (a transistor), the set

of states of which represents the values of a bit (current - no

current).

II. NEW INEQUALITIES

Imagine a microprocessor element which can be in two

states. The states will be denoted as A. For the sake of an eas-

ier mathematical representation, we shall assume that A = ±1,

that is the bit value b represented by the state is related with

respect to A in the following one-to-one way A = (−1)b. As-

sume that at each instant of time tk, where k = 0, 1, 2, ... and

tk < tk+1, an operation is performed on the system which may

change the value of A. The operation is governed by two ex-

ternal input bits. For the given moment they are represented

by two random numbers xk, y
′
k
, and the pair will be denoted

Xk, and at certain points we shall assume that Xk has a numer-

ical value 21y′
k
+ 20xk = 0, 1, 2, 3. We assume that each y′

k
is

completely random, whereas the distribution of xk’s may be

governed by a probability distribution p(x1, x2, ...). For tech-

nical reasons we assume that xk = 0 or 1 and we replace y′
k

by

yk = (−1)y
′
k . Thus, yk = ±1. After say l operations the current

state of the system is denoted as An = A(X1, X2, ..., Xl). How-

ever, we shall assume that the system forgets the reason why

it is in the current state, that is the state after the k-th instant

of time is given by

Am(tk) = Fm(Xk, Amk−1
(tk−1)), (5)

that is defined by the state if the system before the last op-

eration, Amk−1
(tk−1) , and by the last operation, defined by Xk

(this seems quite sensible in the case of classical operations

on computer elements). Fm denotes a binary function.

We shall demand that the operations performed on the sys-

tem are aimed to give at the end of the process An which is an

answer to the question about the value of the task function

Tn =

n
∏

l=1

yl cos
(π

2

n
∑

k=1

xk
)

, (6)
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under the promise that the distribution of xk’s obeys the fol-

lowing probability p(x1, x2, ...) = 2−N+1| cos( π
2

∑n
k=1 xk)|. This

simply implies that the bits xk are promised to satisfy always

the following constraint: (
∑N

k=1 xk)mod2 = 0, that is, are dis-

tributed in such a way that their sum is always even. Note, that

under such a promise Tn = ±1. What is the average chance

to get a correct result for systems obeying the above assump-

tions? This will be given here by the average of the product of

the answer with the correct value: 〈AnTn〉avg, where the aver-

age is over all possible values for Xk’s. Obviously only if this

average equals 1 the answer is always correct. If it is zero, he

answer is random, uncorrelated with Tn

Of course, the above story does not have to be taken liter-

ally. We shall now derive an inequality which is obeyed by the

average value of An = A(X1, X2, ..., Xn), under the restrictions

given above, especially (5). From the technical point of view

the derivation is resembles the case of communication com-

plexity problems studied in [9], however the interpretation of

the process is different. Please note, that this was also the

case in the standard approach discussed in the introduction.

One has a different interpretation of the symbols involved in

the temporal inequalities, however the derivation of the actual

bounds follows the same mathematical steps as in the case of

standard Bell inequalities.

Let us write first explicitly the expression the maximum of

which we search for:

〈AnTn〉avg =
∑

x1,x2,...,xn=0,1

∑

y1,y2,...,yn=±1

1

2n
p(x1, ..., xn)A(X1, X2, ..., Xn)

n
∏

l=1

yl f (x1, ..., xn), (7)

where f (x1, ..., xn) = cos( π
2

∑n
k=1 xk). Note that An =

Fn(xn, yn, An−1), and that it is a binary function of its three ar-

guments. It must depend on An−1 because only An−1 might

contain information about yn−1, yn−2, ..., y1, which is abso-

lutely necessary for an attempt to get the correct value of Tn.

Please, look at equation (6): all yl’s must be known in order to

get the correct value. There are very few binary functions of a

binary variable, just four. Let us use this fact. Treat xn and yn
as fixed, thus we have An = Bxn,yn(An−1). Because it is binary,

it can only have the following form:

Bxn,yn(An−1) = Dxn,yn +Cxn,ynAn−1,

where both C and D are equal ±1 or 0, and Cxn,ynDxn,yn=0.

If C , 0 then it must be of the form Cxn,yn = cn(xn)yn, the

same holds for D, that is one must have Dxn,yn = dn(xn)yn.

This because a term is not proportional to yk gives a vanishing

input into (7), as for an arbitrary g(xn) one has

∑

yn=±1

yng(xn) = 0. (8)

Thus Bxn,yn(An−1) = d(xn)yn+ c(xn)ynAn−1. However upon one

more summation over yn−1 one has

∑

yn,yn−1=±1

ynyn−1(d(xn)yn+c(xn)ynAn−1) =
∑

yn−1=±1

yn−1c(xn)An−1.

(9)

As we see the optimal form of An = FN(Xn, An−1) is

ync(xn)An−1. With a similar step one shows that the optimal

form of An−1 is yn−1c(xn−1)An−2, and so on. Continuing like

that we arrive at the final formula which is

〈AnTn〉avg =
∑

x1,x2,...,xn=0,1

K(x1, ..., xn)

n
∏

k=1

ck(xk), (10)

where all ck(xk) take values ±1, and the coefficients K are

given by K(x1, ..., xn) = p(x1, ..., xn) f (x1, ..., xn). This is math-

ematically isomorphic with a multi-party Bell inequality, and

its bound is given by

∑

x1,x2,...,xn=0,1

K(x1, ..., xn)

n
∏

k=1

ck(xk) ≤ 2−N+1,

where N=n/2 for n even and N = n+1
2

for n odd. As a matter

of fact for n = 3 one has a structure which is equivalent to

the Mermin inequality, and the whole set is equivalent to the

series of inequalities derived by Mermin in 1990 [8]. Similar

series of Bell-like inequalities were derived for the communi-

cation complexity problems in [9] (see also [10]).

Note that we have just established that for n odd one has

∑

x1,x2,...,xn=0,1

∑

y1,y2,...,yn

n
∏

l=1

yl cos
(π

2

n
∑

k=1

xk
)

n
∏

k=1

ck(xk)A(X1, X2, ..., Xn) ≤ 2
n−1

2 2n, (11)

where we have factored out the trivial part of the bound, 2n, which is due to the yk’s.
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III. MACROREALISM: NEW FORMULATION

Please note that this a temporal Bell inequality, which is

applicable to a system which undergoes a series of transfor-

mations governed by external parameters Xk. The following

modified Macrorealism is behind it:

• Realism: In the theoretical description one is allowed to

use all variables Am(t), the values of which are eigenval-

ues of observables Âm, which represent the value which

could be obtained if the given observable were mea-

sured at time tk. The observer has a choice m = Xk (in

our example Xk can take four values). All Am(tk)’s are

treated as unknown, but nevertheless fixed numbers, all

of them at an equal footing, that is for example, for two

different input values, Xk and X′
k
, the expressions like

AXk
(t) ± AX′

k
(t) have a definite, but perhaps unknown,

value. (This the old assumption, slightly rewritten to fit

the studied case.)

• Classical causality: The values Am(tk+1) are not directly

dependent on operations which were performed earlier,

at tk. However, values Am(tk+1) might depend on the

earlier ones, that is on Amk
(tk), which are defined by the

state of the system after the previous operation mk at

tk. I stress once more, there is no direct dependence

on the operation done earlier. (Note that this is a an

assumption which holds for the states of transistors in

microchips. In classical mechanics it is equivalent to a

statement that we do not care what was the reason for

the current state of an object, we care only about the

state. We do not need to know why a classical parti-

cle has this or that momentum and this or that position

at the given moment. Still these values are full initial

conditions for further dynamics. All systems, which fol-

low Hamilton dynamics, including classical fields, sat-

isfy this condition.)

• Causality: Values Am(tk−1) do not depend on what hap-

pens at later times, especially at tk. (Unchanged.)

• Freedom: The experimenter is free to choose the opera-

tion which is to be to be performed at a given instant of

time. That is the choices are statistically independent of

the set of values Am(t). (Unchanged.)

Note that these assumptions are quite general, and apply to

observables endowed with any eigenvalues. When applied to

our example, they are isomorphic with the set stated at the

beginning of the derivation of the inequality, and the tacit as-

sumptions used during the derivation (esp., freedom). Infor-

mation theoretic inequalities involving many measurements,

were introduced earlier by Morikoshi [11]. However they fol-

low a completely different approach and were based on the

old definition of Marcrorealism. As it is suggested in [10] one

can derive inequalities involving different task functions and

promises, related to e.g. the Bell inequalities discovered in

[12] and [13].

IV. THE QUANTUM PROTOCOL

This inequality is violated by a process which was experi-

mentally realized by the group of Weinfurter [9]. In the ideal

quantum version of the protocol one starts with a qubit in the

state |ψi〉 = 2−1/2(|0〉 + |1〉). Then one acts sequentially on the

qubit with the unitary phase-shift transformation of the form

|0〉〈0|+ eiπ/2Xk |1〉〈1|, in accordance with the local inputs xk, yk.
After all N phase shifts the state is

|ψ f 〉 =
1
√

2
(|0〉 + eiπ/2(

∑n
k=1 Xk)|1〉). (12)

Due to the constraint that the sum over all Xk must be

even (see the derivation of the inequality), the phase factor

eiπ/2(
∑n

k=1 Xk) is equal to the dichotomic function Tn to be com-

puted. Therefore, a measurement of the qubit in the basis

given by 2−1/2(|0〉+ |1〉) and 2−1/2(|0〉−|1〉) reveals the value of

Tn, with fidelity 〈AnTn〉avg = 1. Note, that this implies that in-

equality (11) is violated exponentially (in terms of the number

of operations n).

V. CONCLUSIONS

These findings can be generalized in many obvious ways.

Note that the prime moral of the story is that we cannot steer

the state of a transistor, by sequential operations, each gov-

erned by pairs of bits xk, yk, following a certain promise, so

that at the end of the process it would give the proper value

of Tn, given by (6). In contrast, this can be easily done with

a qubit. With perfect accuracy. Of course, the presented in-

equality is just a first example of the infinitely many that can

be derived using the principles presented in this work. These

do not have to be constrained to two-state systems, and the

inputs can be even continuous (for a ready example, compare

the communication complexity problems in [9] and [10]). The

basic requirement is that the Macrorealistic system under con-

sideration has a finite information capacity [14].
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