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Abstract. We propose a link between logical independence and quantum

physics. We demonstrate that quantum systems in the eigenstates of Pauli

group operators are capable of encoding mathematical axioms and show that

Pauli group quantum measurements are capable of revealing whether or not a

given proposition is logically dependent on the axiomatic system. Whenever

a mathematical proposition is logically independent of the axioms encoded

in the measured state, the measurement associated with the proposition gives

random outcomes. This allows for an experimental test of logical independence.

Conversely, it also allows for an explanation of the probabilities of random

outcomes observed in Pauli group measurements from logical independence

without invoking quantum theory. The axiomatic systems we study can be

completed and are therefore not subject to Gödel’s incompleteness theorem.

As opposed to the case of classical statistical physics, the theorems by Kochen and Specker [1]

and Bell [2] opened up the possibility of viewing probabilities in quantum physics as irreducible

and not as stemming from our ignorance about some (non-contextual or local) predeterminated

properties. Adopting this view, one can ask if there is any reason why such irreducible

probabilities should have different values at all. Here we show that—at least in a certain
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Figure 1. The four Boolean functions y = f (x) of a binary argument, i.e. f (x) =
0, 1 with x = 0, 1. The different functions are labeled by yk with k = 0, 1, 2, 3.

subset of measurements (Pauli group measurements)—quantum probabilities can be seen as

following from logical independence of mathematical propositions that are associated with the

measurements without invoking quantum theory itself.

Any formal system is based on axioms, which are propositions that are defined to be true.

Whenever a proposition and a given set of axioms together contain more information than the

axioms themselves, the proposition can be neither proved nor disproved from the axioms—it is

logically independent (or mathematically undecidable [3, 4]). If a proposition is independent of

the axioms, neither the proposition itself nor its negation creates an inconsistency together with

the axiomatic system.

We demonstrate that the states of quantum systems are capable of encoding mathematical

axioms. Quantum mechanics imposes an upper limit on how much information can be encoded

in a quantum state [5, 6], thus limiting the information content of the set of axioms. We show

that quantum measurements are capable of revealing whether a given proposition is independent

or not of the set of axioms. Whenever a mathematical proposition is independent of the axioms

encoded in the state, the measurement associated with the proposition gives random outcomes.

This allows for an experimental test of logical independence by realizing in the laboratory

both the actual quantum states and the required quantum measurements. Our axiomatic

systems can be completed and are therefore not subject to Gödel’s incompleteness theorem

[7, 8].

Intuitively, independent propositions contain entirely new information that cannot be

reduced to the information in the axioms. This point of view is related to Chaitin’s information-

theoretical formulation of logical independence [3, 4]. Given a set of axioms that contains a

certain amount of information, it is impossible to deduce the truth value of a proposition, which,

together with the axioms, contains more information than the set of axioms itself.

To give an example, consider Boolean functions of a single binary argument:

x ∈ {0, 1} → y = f (x) ∈ {0, 1}. (1)

There are four such functions, yk (k = 0, 1, 2, 3), shown in figure 1. We shall discuss the

following (binary) propositions about their properties:

(A) ‘The value of f (0) is “0”, i.e. f (0) = 0.’

(B) ‘The value of f (1) is “0”, i.e. f (1) = 0.’

These two propositions are logically independent. Knowing the truth value of one of them does

not allow one to infer the truth value of the other. Ascribing truth values to both propositions

requires two bits of information. If one postulates only proposition (A) to be true, i.e. if one

chooses (A) as an ‘axiom’, then it is impossible to prove proposition (B) from (A). Having only
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axiom (A), i.e. only this one bit of information, there is not enough information to also know the

truth value of (B). Hence, proposition (B) is logically independent from the system containing

the single axiom (A). Another example of an independent proposition within the same axiomatic

system is:

(C) ‘The function is constant, i.e. f (0) = f (1).’

Again, this statement can be neither proved nor disproved from axiom (A) alone because (C) is

independent of (A) as it involves f (1).

We refer to such independent propositions to which one cannot simultaneously

ascribe definite truth values—given a limited amount of information resources—as logically

complementary propositions. Knowing the truth value of one of them precludes any knowledge

about the others. Given the limitation of one bit of information encoded in the axiom, all three

propositions (A)–(C) are logically complementary to each other.

When the information content of the axioms and the number of independent propositions

increase, more possibilities arise. Already the case of two bits as the information content is

instructive. Consider two independent Boolean functions f1(x) and f2(x) of a binary argument.

The two bits may be used to define properties of the individual functions or they may define

joint features of the functions. An example of the first type is the following two-bit proposition:

(D) ‘The value of f1(0) is “0”, i.e. f1(0) = 0.’

‘The value of f2(1) is “0”, i.e. f2(1) = 0.’

An example of the second type is:

(E) ‘The functions have the same value for argument “0”, i.e. f1(0) = f2(0).’

‘The functions have the same value for argument “1”, i.e. f1(1) = f2(1).’

Both (D) and (E) consist of two elementary (binary) propositions. Their truth values are of the

form of vectors with two components being the truth values of their elementary propositions.

Propositions (D) and (E) are logically complementary. Given (E) as a two-bit axiom, all the

individual function values remain undefined and thus one can determine neither of the two truth

values of elementary propositions in (D).

A qualitatively new aspect of multi-bit axioms is the existence of ‘partially’ independent

propositions, i.e. propositions that contain more than one elementary proposition, of which only

some are independent. An example of such a partially independent proposition within the system

consisting of the two-bit axiom (D) is:

(F) ‘The value of f1(0) is “0”, i.e. f1(0) = 0.’

‘The value of f2(0) is “0”, i.e. f2(0) = 0.’

The first elementary proposition is the same as in (D) and thus it is definitely true. The

impossibility of deciding the second elementary proposition leads to partial independence of

proposition (F). In a similar way, proposition (F) is partially independent of the axiomatic

system of (E).
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The discussion so far was purely mathematical. We have described finite axiomatic systems

(of limited information content) using properties of Boolean functions. Now we show that the

independence of mathematical propositions can be tested in quantum experiments. To this end

we introduce a physical ‘black box’ whose internal configuration encodes Boolean functions.

The black box hence forms a bridge between mathematics and physics. Quantum systems enter

it and the properties of the functions, i.e. the truth values of propositions, are written onto

the quantum states of the systems. Finally, measurements performed on the systems extract

information about the properties of the configuration of the black box and thus about the

properties of the functions.

We begin with the simplest case of a qubit (e.g. a spin- 1

2
particle or the polarization of

a photon) entering the black box in a well-defined state and a single bit-to-bit function f (x)

encoded in the black box. Inside the black box two subsequent operations alter the state of the

input qubit. The first operation encodes the value of f (1) via application of σ̂ f (1)
z , i.e. the Pauli

z-operator taken to the power of f (1). The second operation encodes f (0) with σ̂ f (0)
x , i.e. the

Pauli x-operator taken to the power of f (0). The total action of the black box is

Û = σ̂ f (0)
x σ̂ f (1)

z . (2)

Consider the input qubit to be in one of the eigenstates of the Pauli operator imn σ̂ m
x σ̂ n

z (with

i the imaginary unit). The three particular choices (m, n) = (0, 1), (1, 0) or (1, 1) correspond to

the three Pauli operators along orthogonal directions (in the Bloch sphere) σ̂z, σ̂x or σ̂y = i σ̂x σ̂z,

respectively. The measurements of these operators are quantum complementary. Given a system

in an eigenstate of one of them, the results of the other measurements are totally random. The

input density matrix reads

ρ̂ = 1

2
[1 + λmn imn σ̂ m

x σ̂ n
z ], (3)

with λmn = ±1 and 1 the identity operator. It evolves under the action of the black box to

Û ρ̂ Û † = 1

2
[1 + λmn (−1)n f (0)+m f (1) imn σ̂ m

x σ̂ n
z ] . (4)

Depending on the value of n f (0) + m f (1) (throughout the paper all sums are taken

modulo 2), the state after the black box is either the same or orthogonal to the initial one. If one

now performs a measurement in the basis of the initial state (i.e. the eigenbasis of the operator

imn σ̂ m
x σ̂ n

z ), the outcome reveals the value of n f (0) + m f (1) and hence the measurement can

be considered as checking the truth value of the proposition

(G) ‘n f (0) + m f (1) = 0.’

It is crucial to note that each of the three quantum complementary measurements σ̂z,

σ̂x or σ̂y—given the suitable initial state—reveals the truth value of one of the independent

propositions (A), (B) or (C), respectively.

Independent of the initial state, we now identify the quantum measurement (m, n) with the

question about the truth value of the corresponding mathematical proposition (G). Those states

that give a definite (i.e. not random) outcome in the quantum measurement encode (G) or its

negation as an axiom. For example, the two eigenstates of σ̂z after the black box encode (A)

or its negation as an axiom, and the σ̂z measurement reveals the truth value of proposition (A).

This one bit is the maximal amount of information that can be encoded in a qubit [5, 6].

New Journal of Physics 12 (2010) 013019 (http://www.njp.org/)
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Mathematics/logic Quantum physics

Axioms of limited information content ↔ Quantum states

Boolean functions ↔ Unitary transformations

Question about proposition ↔ Quantum measurement

Logical dependence/independence ↔ Definiteness/randomness of outcomes

Figure 2. Link between logical independence and quantum randomness.

When a physical system prepared in an eigenstate of a Pauli operator is measured

along complementary directions, the measurement outcomes are random. Correspondingly, the

proposition identified with a complementary observable is independent from the one-bit axiom

encoded in the measured state. For example, the measurement of σ̂x on an eigenstate of σ̂z gives

random outcomes, and accordingly proposition (B) is independent of the one-bit axiom (A).

This links logical independence and quantum randomness in complementary measurements. We

propose that it is therefore possible to experimentally find out whether a proposition is logically

independent or not, as summarized in figure 2.

In a single experimental run it is impossible to infer whether the outcome is definite or

random and thus whether it stemmed from a dependent or independent proposition. Therefore,

any quantum experiment revealing logical independence requires many repetitions. (It can

be shown that—given a certain level of noise—the probability to infer wrongly whether the

proposition is dependent or not decays exponentially with the length of the outcome string.)

Generalizing the above reasoning to multiple qubits, we show in the following that

whenever the proposition identified with a Pauli group measurement is dependent (on the

axioms encoded into the qubits), the measurement outcome is definite, and whenever it is

independent, the measurement outcome is random. Consider N black boxes, one for each qubit.

They encode N Boolean functions f j(x) numbered by j = 1, . . . , N by applying the operation

Û N = σ̂ f1(0)
x σ̂ f1(1)

z ⊗ · · · ⊗ σ̂ fN (0)
x σ̂ fN (1)

z . (5)

The initial N -qubit state is chosen to be a particular one of the 2N eigenstates of certain

N independent and mutually commuting tensor products of Pauli operators, numbered by

p = 1, . . . , N :

�̂p ≡ im1(p)n1(p) σ̂ m1(p)
x σ̂ n1(p)

z ⊗ · · · ⊗ im N (p)nN (p) σ̂ m N (p)
x σ̂ nN (p)

z , (6)

with m j(p), n j(p) ∈ {0, 1}. A broad family of such states is the family of stabilizer [10, 11] and

graph states [12]. (Note that not all states can be described within this framework.) As before,

each qubit propagates through its black box. After leaving them, the qubits’ state encodes the

truth values of the following N independent binary propositions (negating the false propositions,

one has N true ones, which serve as axioms):

(Hp) ‘

N∑

j=1

[n j(p) f j(0) + m j(p) f j(1)] = 0.’
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In suitable measurements quantum mechanics provides a way of testing whether certain

propositions are dependent or not. If one measures the operator of the Pauli group [11]

2̂ ≡ iα1β1 σ̂ α1

x σ̂ β1

z ⊗ · · · ⊗ iαN βN σ̂ αN

x σ̂ βN

z , (7)

with α j , β j ∈ {0, 1}, one tests whether the proposition

(J) ‘

N∑

j=1

[β j f j(0) + α j f j(1)] = 0’

is dependent or not. The proposition (J) can be represented as the 2N -dimensional proposition

vector EJ = (α1, . . . , αN , β1, . . . , βN ) with binary entries. Therefore, there are 4N different (J)s.

For all dependent propositions, the vectors EJ are linear combinations of the vectors EH p =
(m1(p), . . . , m N (p), n1(p), . . . , nN (p)) representing the axioms, i.e. EJ = ∑N

p=1kp
EH p. Since

α j , β j are binary, the coefficients must also be binary: kp ∈ {0, 1}. This gives 2N dependent

propositions (J). The corresponding operators 2̂ can be written as the products �̂
k1

1 · · · �̂kN

N .

In this case 2̂ commutes with all the �̂ps, and the quantum mechanical formalism

implies that the measurement of 2̂ has a definite outcome. The measurements of all the

remaining 4N − 2N = 2N (2N − 1) operators 2̂ give random outcomes, and the corresponding

propositions (J) are independent. Note that there are many more independent propositions of

the form (J) than dependent ones. The ratio between their numbers increases exponentially with

the number of qubits, i.e. 2N (2N −1)

2N = O(2N ).

In logic, one can always complete the axiomatic system by adding new axioms to the set of

(Hp) such that any proposition (J) becomes dependent. However, this would require the axioms

to be encoded in more than N qubits. Having only N qubits, projecting these qubits into new

quantum states, and propagating them through their black boxes, new propositions can become

axioms but only if some or all previous axioms become independent propositions. This is a

consequence of the limited information content of the quantum system.

We have proved that a proposition of type (J) is dependent on the axiomatic system (Hp) if

and only if the corresponding measurement 2̂ from the Pauli group is commuting with all �̂p.

Note that one does not need to first prove the (in)dependence of a proposition by logic before

one is able to identify the experiment to test it. For a given set of (Hp), defining an N -bit axiom,

one must prepare a joint eigenstate of N commuting operators �̂p. In order to test the logical

(in)dependence of a new proposition (J), one needs to measure the operator 2̂ that corresponds

to (J) in this state. The procedures of preparation and measurement can be performed without

knowing whether (J) is logically independent of the set of (Hp).

The measurement 2̂ is highly degenerate because it tests the logical (in)dependence

of the binary proposition (J) of the axioms. Less degenerate measurements are possible,

which simultaneously test the logical (in)dependence of several elementary propositions of

the form (J). Such multi-bit propositions contain many elementary propositions. If not all of

them are independent of the axioms, this gives rise to partial independence. This provides

an explanation for different values of outcome probabilities in Pauli group measurements,

which is based on logic without invoking quantum theory. A measurement corresponding to

any single independent elementary proposition (with two possible measurement outcomes)

gives uniformly random results. In a measurement whose outcomes reveal the independence

New Journal of Physics 12 (2010) 013019 (http://www.njp.org/)
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of m independent elementary propositions (with 2m possible measurement outcomes), these

outcomes occur with probabilities 1

2m . (The results revealing dependence of elementary

propositions are always definite.)

To illustrate the idea of multi-bit propositions and partial independence, consider

proposition (E) described above. Its elementary propositions correspond to the set of

independent commuting operators �̂1 = σ̂z ⊗ σ̂z and �̂2 = σ̂x ⊗ σ̂x . The common eigenbasis

of these operators is spanned by the maximally entangled Bell states (basis bE): |8±〉 =
1√
2
(|z+〉1|z+〉2 ± |z−〉1|z−〉2), |9±〉 = 1√

2
(|z+〉1|z−〉2 ± |z−〉1|z+〉2), where, e.g. |z±〉1 denotes

the eigenstate with the eigenvalue ±1 of σ̂z for the first qubit. Thus, after the black boxes the

four Bell states encode the four possible truth values of the elementary propositions in (E), and

a so-called Bell State Analyzer [13] (i.e. an apparatus that measures in the Bell basis) reveals

these values. In the same way, the truth values of the elementary propositions in (F) are encoded

in the eigenstates of local σ̂z bases, i.e. by the four states |z±〉1|z±〉2 (basis bF). Finally, the

elementary propositions in (D) are linked with the four product states |z±〉1|x±〉2 (basis bD).

In general, if all the axioms involve joint properties of Boolean functions the multi-partite state

encoding these axioms must be entangled.

Measurements in the Bell basis, bE, prove that the entangled state indeed encodes joint

properties of the two functions, i.e. information about (E). Measurements in other bases can then

be interpreted in terms of ‘partial’ and ‘full’ independence. Proposition (D) is fully independent

given (E) as an axiom, and the four possible measurement results are completely random with

probabilities of 1

4
. On the other hand, proposition (F) is partially independent, which is disclosed

by the fact that two (out of four) outcomes never occur, while the two remaining occur randomly,

i.e. each with probability 1

2
.

When the outcome of a quantum measurement is definite, it need not possess an a priori

relation to the actual truth value of a dependent proposition as imposed by classical logic.

This can be demonstrated for three qubits initially in the Greenberger–Horne–Zeilinger (GHZ)

state [14]:

|GHZ〉 = 1√
2
(|z+〉1|z+〉2|z+〉3 + |z−〉1|z−〉2|z−〉3). (8)

We choose as axioms the propositions

(K1) ‘ f1(0) + f1(1) + f2(0) + f2(1) + f3(1) = 1.’

(K2) ‘ f1(0) + f1(1) + f2(1) + f3(0) + f3(1) = 1.’

(K3) ‘ f1(1) + f2(0) + f2(1) + f3(0) + f3(1) = 1.’

linked with the operators σ̂y ⊗ σ̂y ⊗ σ̂x , σ̂y ⊗ σ̂x ⊗ σ̂y and σ̂x ⊗ σ̂y ⊗ σ̂y , respectively. One can

logically derive from (K1) to (K3) the true proposition

(L) ‘ f1(1) + f2(1) + f3(1) = 1.’

On the other hand, proposition (L) is identified with the measurement of σ̂x ⊗ σ̂x ⊗ σ̂x ,

but the result imposed by quantum mechanics corresponds to the negation of (L), namely

‘ f1(1) + f2(1) + f3(1) = 0.’ This is the heart of the GHZ argument [14]–[16]. In the (standard

logical) derivation of (L), the individual function values are well defined and are the same,

New Journal of Physics 12 (2010) 013019 (http://www.njp.org/)
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independently of the axiom (Ki ) in which they appear. Since this is equivalent to the assumption

of non-contextuality [1, 17], the truth values of dependent propositions found in quantum

experiments do not necessarily have to be the same as the ones derived by classical logic.

Nonetheless, there is a one-to-one correspondence between definiteness (or randomness) of

the measurement outcomes and the associated propositions being dependent (or independent)

within the axiomatic set. As shown above, this correspondence is independent of the rules

used to infer the specific truth values of the propositions (e.g. classical logic or quantum

theory).

One might raise the question as to whether a classical device can be constructed to reveal

the independence of propositions. All operations in the experimental test belong to the Clifford

group subset of quantum gates and therefore can be efficiently simulated classically [11, 18,

19]. A classical device is possible, given sufficient resources: N classical bits are required to

propagate through the black box in order to specify the N -bit axiomatic set and additional bits

are required to model randomness in measurements corresponding to independent propositions.

(Specifically, 2N classical bits propagating through the black box are known to be sufficient

to specify definite outcomes in the measurements corresponding to the axioms and random

outcomes in the measurements of fully independent propositions [20, 21].) Such a device can

give the truth values of dependent propositions according to classical logic. On the level of

elementary physical systems, however, the world is known to be quantum. It is intriguing that

nature supplies us with physical systems that can reveal logical dependence but cannot be used

to learn the classical truth values.

Finally, a historic point deserves comment. The inference that classical logic cannot

capture the structure of quantum mechanics was made by Birkhoff and von Neumann [22] and

started the field of quantum logic. Our link between mathematics/logic and certain elements of

quantum physics is related to, but yet distinct from, their approach. Quantum logic was invented

to provide an understanding of quantum physics in terms of a set of non-classical logical

rules for propositions that are identified with projective quantum measurements. However,

‘one requires the entire theoretical machinery of quantum mechanics to justify quantum

logic’ [23]. Our approach aims at providing a justification for quantum randomness starting from

an operational representation of purely mathematical propositions and systems with limited

information content.

The no-go theorems of Bell [2] and Kochen and Specker [1] prove that quantum

randomness cannot be understood as stemming from the ignorance of a hidden variable

substructure without coming into conflict with local realism and non-contextuality. This

suggests that quantum randomness might be of irreducible (objective) nature [24, 25] and

a consequence of fundamentally limited information content of physical systems, namely N

bits in N qubits [6]. If one adopts this view, the present work explains which experiments

will have irreducibly random outcomes, namely those that correspond to logically independent

propositions.

After leaving the black boxes, the N qubits’ quantum states encode exactly N bits

of information about Boolean functions, i.e. the systems encode an N -bit axiom, and the

other logically complementary propositions are independent of this axiom. If there exists no

underlying (hidden variable) structure, no information is left for specifying their truth values.

However, the qubits can be measured in the bases corresponding to independent propositions,

and—as in any measurement—will inevitably give outcomes, e.g. ‘clicks’ in detectors. These

clicks must not contain any information whatsoever about the truth value of the independent

New Journal of Physics 12 (2010) 013019 (http://www.njp.org/)
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proposition. Therefore, the individual quantum outcomes must be random, reconciling logical

independence with the fact that a quantum system always gives an ‘answer’ when ‘asked’ in an

experiment. This provides an intuitive understanding of quantum randomness, a key quantum

feature, using mathematical reasoning. Moreover, the same argument implies that randomness

necessarily occurs in any physical theory of systems with limited information content in

which measurements are operationally identified with asking questions about independent

propositions [26].

In conclusion, we have demonstrated that the dependence or independence of certain

mathematical propositions in a finite axiomatic set can be tested by performing corresponding

Pauli group measurements. (It would be interesting to investigate the possiblity of extending

our results beyond this class of measurements.) This is achieved via an isomorphism

between axioms and quantum states as well as between propositions and quantum

measurements. Dependence (independence) is revealed by definite (random) outcomes. Having

this isomorphism, logical independence need not be proved by logic but can be inferred

from experimental results. From the foundational point of view, this sheds new light

on the (mathematical) origin of quantum randomness in these measurements. Under the

assumption that the information content of N elementary physical systems (i.e. qubits) is

fundamentally restricted to N bits such that no underlying (hidden variable) structure exists,

measurement outcomes corresponding to logically independent propositions must be irreducibly

random.

The results of a recent experimental demonstration of the concepts introduced in this paper

can be found in the e-print [27].
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