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Abstract

We provide a class of bound entangled states that have a positive distillable

secure key rate. The smallest state of this kind is 4 ⊗ 4. Our class is a

generalization of the class presented in Horodecki et al (2008 IEEE Trans. Inf.

Theory 54 2621–5). It is much wider, containing, in particular, states from

the boundary of PPT entangled states (all of the states in the previous class

were of this kind) and also states inside the set of PPT entangled states, even

approaching the separable states. This generalization comes at a price: for

the wider class, a positive key rate requires, in general, apart from the one-

way Devetak–Winter protocol (used in the previous case) also the recurrence

preprocessing and thus is effectively a two-way protocol. We also analyze

the amount of noise that can be admixtured to the states of our class without

losing the key distillability property which may be crucial for experimental

realization. The wider class contains key-distillable states with higher entropy

(up to 3.524, as opposed to 2.564 for the previous class).

PACS numbers: 03.67.Hk, 03.67.Ac

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum cryptography, pioneered by Wiesner [2], allows one to obtain a cryptographic key

based on physical impossibility of eavesdropping. Namely, if the transmitted signal is encoded

into quantum states, then by reading it, the eavesdropper always introduces noise into the signal.

Thus, Alice and Bob—the parties who want to communicate privately—can measure the level

of noise and detect whether their transmission is secure (even if the noise was solely due

to eavesdropping). There are two types of quantum key distribution protocols: prepare and

measure (as the original BB84 protocol [3]) and protocols based on a shared entangled state

(originated from Ekert’s protocol [4]). For some time, security proofs of prepare and measure
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protocols had been based on showing equivalence to the distillation (by local operations and

classical communication) of maximally entangled states (the first such proof is due to Shor

and Preskill [5]). It has led to a belief that the security of the quantum cryptography is always

connected to the distillation of maximally entangled states (this issue was perhaps first touched

upon by Gisin and Wolf [6]).

This belief suggested that one could not obtain a secure key from bound entangled states

[7], i.e. states from which maximally entangled states cannot be distilled. In contrast, the

key-distillable bound entangled states have been found [8] and examples of low-dimensional

states have been provided [1]. The multipartite case was also considered [9]. There are two

approaches to obtaining the cryptographic key from bound entangled partial positive transpose

(PPT) states: one is based on approximating the private bit with a PPT state [8, 10] and the

other on mixing orthogonal private bits [1].

This paper continues the second approach. The low-dimensional key-distillable states

with a PPT3 (hence, bound entangled) presented in [1] were lying on the boundary of PPT

states and the existence of the key-distillable states inside of PPT states was argued by the

continuity argument, without giving the explicit form of those inner states. In this paper we

present a wider class of PPT entangled key-distillable states including states inside the set of

PPT states even approaching the set of separable states. We analyze the properties of this

class, and provide some more general criteria of key distillability, by exploiting the criterion

provided in [11]. This criterion was earlier applied to analyze some PPT states in [12] (see

also [13] in this context).

The motivation behind the search for new bound entangled states with a distillable key is

two-fold. First of all, there is a fundamental open question, whether from all entangled states

one can draw a secure key. To approach this question, one needs, in particular, to gather more

phenomenology on the issue of drawing a key from bound entangled states. In this paper, we

have pushed this question a bit by showing explicitly that PPT key-distillable states can be

in the interior of PPT states, even, approaching the set of separable states. Also our general

criterion of key distillability can serve for finding to what extent entanglement can provide for

a secure key.

Another motivation comes from recent experiments, where bound entanglement was

implemented in labs [14–18]. In the experiments, usually, a four-partite bound entangled

Smolin state was used, which allows for a number of non-classical effects beingmanifestations

of true entanglement content of such a state. We believe that low-dimensional bound entangled

key-distillable states are also good candidates for experimental implementation, providing a

non-classical effect—the possibility of distilling a secure key. This requires states which are

robust against noise, to facilitate the process of preparing them in a lab. In this paper, we

analyze the robustness of key-distillable states as well as providing very noisy states, having, in

particular, a relatively large entropy (about 3.5 bits versus 4 bits of maximal possible entropy).

Last but not least, the key-distillable bound entangled states are strictly related to the effect of

superactivation of quantum capacity [19], and our class may be further analyzed in this respect

(in this paper, we have provided some exemplary calculations).

The paper is organized as follows. In section 2 we review basic facts about the general

theory of distillation of a secure key from quantum states of [10]. In particular, we describe

a technique called privacy squeezing. In section 3 we introduce our class of states which are

PPT and key distillable. We verify that they lie inside the set of PPT states, touching the set

of separable states. Moreover, we check the robustness of the property of key distillability.

3 If a state has PPT then one cannot distill the maximally entangled state from it. It is a long-standing open

question whether PPT is also a necessary condition for the non-distillability of maximal entanglement [27] (for recent

developments, see [28]).
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We also give the explicit form of an important subset of our states as mixtures of pure

states in section 4. In sections 5 and 6 we examine entropic properties of our states and their

relation with the Smith–Yard superactivation of the quantum capacity phenomenon. Finally, in

section 7, we provide a general sufficient condition for distilling a private key from quantum

states of local dimensions not less than 4.

2. Preliminaries

Let us first recall some important concepts of classical key distillation from quantum states,

covered in detail in [10].

A general state containing at least one bit of a perfectly secure key is called the private

bit or pbit [10]. A private bit in its so-called X-form is given by

γ (X) =
1

2











√
XX† 0 0 X

0 0 0 0

0 0 0 0

X† 0 0
√

X†X











(1)

where X is an arbitrary operator satisfying ‖X‖ = 1 (here and throughout the paper, we use

the trace norm, that is, the sum of the singular values of an operator). The private bit has four

subsystems: ABA′B ′ where the block matrix (1) represents the AB subsystem and the blocks

are operators acting on an A′B ′ subsystem. Subsystems A and B are single-qubit subsystems

while dimensions of A′ and B ′ must be greater or equal to 2; we assume dimensions A′ and

B ′ are equal and denote them by d. Subsystem AA′ belongs to Alice while subsystem BB ′

belongs to Bob. Every state presented in the block matrix form throughout the paper has this

structure. The bit of key contained in a private bit is obtained by measuring subsystemsA and

B are in the standard basis; therefore, subsystem AB is called the key part of the state, while

subsystem A′B ′ is called the shield of the state, as it protects correlations contained in the key

part from an eavesdropper. Note that it may happen that Eve possesses a copy of the shield

subsystem (when, e.g., the shield consists of two flag states—states with disjoint support) yet

it does not hurt because the very presence of the shield subsystem in Alice and Bob’s hands

protects the bit of key.

For a general state with ABA′B ′ subsystems (i.e. not necessarily a private bit) one can

infer the possibility of distillation of a private key using the method called privacy squeezing

[10]. Namely, we consider the following types of protocols: one measures the key part in the

standard basis and classically process the outcomes (cf [11] for two-qubit states). Given a

protocol of this type we would like to know whether it can distill the key from the state. To

this end, we construct a two-qubit state in the following way: one applies to the original state

the so-called twisting operation, i.e. a unitary transformation of the following form:

U =
∑

ij

|ij 〉AB〈ij | ⊗ UA′B ′

ij , (2)

and perform partial trace over A′B ′. Now, it turns out that if we apply the protocol to the

original state we obtain no less key than we would obtain from the above two-qubit state using

the same protocol.

Therefore, if we apply a cleverly chosen twisting, we may infer key distillability of the

original state, by examining a two-qubit state (i.e. a much simpler object). This technique is

called privacy squeezing. The role of twisting is to ‘squeeze’ the privacy present in the original

state into its key part, where it is then more easily detectable, e.g., by protocols designed for

two-qubit states (see, e.g., [11, 20, 21]).

3
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To explain why the two-qubit state cannot give more key than the original state (within

the considered class of protocols) we invoke the following result of [10]. One considers a

state of three systems: a quantum one, Eve’s system, and two classical ones, the registers

holding the outcomes of measurement of the key part (the state is therefore called a ccq state).

Now it turns out that twisting does not change this state. However, in the considered class of

protocols, Alice and Bob use only classical registers, so the output of such protocols depends

solely on the ccq state. Thus the key obtained with and without twisting is exactly the same.

This holds, even though twisting is a non-local operation and the resulting state can be more

powerful in all other respects (such as drawing the key by some other type of protocol). Next,

if we additionally trace out the shield, i.e. the subsystem A′B ′, this means that the resulting

ccq state differs from the original ccq state only by Eve having, in addition, the shield. Thus,

if any key can be obtained from it, it can only be less secure than the key obtained from the

original ccq state.

It turns out that for any ‘spider’ state, i.e. state of the form

% =









C D

E F

F † E′

D† C ′









(3)

(where we have omitted zero blocks for clarity), there exists such a twisting operation that

the matrix elements of the two-qubit state, obtained by tracing out the A′B ′ subsystem after

applying the twisting, are equal to the trace norms of the corresponding blocks in the original

state:

σ =









‖C‖ ‖D‖
‖E‖ ‖F‖
‖F‖ ‖E′‖

‖D‖ ‖C ′‖









(4)

(we use here that ‖A‖ = ‖A†‖ for the trace norm). This twisting is in a sense optimal for the
spider states. We call the two-qubit state (4) the privacy-squeezed state of the original state.

If a spider state satisfies ‖C‖ = ‖C ′‖ and ‖E‖ = ‖E′‖, then its privacy-squeezed state is a
Bell diagonal state.

For a deeper discussion of the privacy squeezing see [10], although the name spider state

is not used there.

3. Distilling key from PPT mixtures of private states

Here, we construct a class of bound entangled states which are key distillable. They are

mixtures of four orthogonal private bits of some special form. We provide a sufficient

condition to distill the cryptographic key from our class. The condition given in this section

is generalized to an arbitrary state in section 7.

3.1. Definition of the class

Let us consider a class of states

% = λ1γ
+
1 + λ2γ

−
1 + λ3γ

+
2 + λ4γ

−
2 (5)

which is a mixture of four orthogonal private bits which could be considered analogs to the

Bell states. The construction is possible in dimension 2d ⊗ 2d, with d > 2.

4
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The four private bits are given by

γ ±
1 = γ (±X), γ ±

2 = σA
x γ (±Y )σA

x (6)

where σA
x is a Pauli matrix σx applied on subsystem A, and by γ (X) we mean a private bit

written in its X-form (1).

States given by (5) and (6) have the block matrix form (of the mixture of four private bits)

% =
1

2











(λ1 + λ2)
√

XX† (λ1 − λ2)X

(λ3 + λ4)
√

YY † (λ3 − λ4)Y

(λ3 − λ4)Y
† (λ3 + λ4)

√
Y †Y

(λ1 − λ2)X
† (λ1 + λ2)

√
X†X











. (7)

Definition 1. We define the class C as the class of states given by (5) and (6) with operators

X and Y related by

Y =
X0

‖X0‖
(8)

where the superscript0 denotes the partial transposition in Alice versus Bob cut, and satisfying

the following conditions: the diagonal blocks of (7), i.e. operators
√

XX†,
√

X†X,
√

YY †,√
Y †Y are all PPT-invariant, i.e., must satisfy A = A0 . (Relation (8) and PPT-invariance of

the diagonal blocks are necessary to obtain simple conditions for the state to be PPT, given in

section 3.2.)

In particular, the PPT-invariance of the diagonal blocks holds for

X =
1

u

d−1
∑

i,j=0

uij |ij 〉〈ji| (9)

where uij are elements of some unitary matrix on C
d and

u =
d−1
∑

i,j=0

|uij |. (10)

For the operator X given by (9) we have

‖X0‖ =
d

u
,

1
√

d
6 ‖X0‖ 6 1 (11)

where the minimum is achieved for the unimodular unitary [1] and the maximum for the

identity matrix.

We will sometimes write %U to denote the subclass of class C with the operator X given

by (9) or to stress using a concrete unitary in the definition of X; in particular, we will consider

the subclass %H where uij are elements of the Hadamard unitary matrix.

In the case of d = 2 we will also consider the subclass of class C with operators X and Y

given by

Y = qYU1 + (1− q)σA′

x YU2σ
A′

x , X =
Y 0

‖Y 0‖
(12)

where

YU =
1

d

d−1
∑

i,j=0

uij |ii〉〈jj |. (13)

5



J. Phys. A: Math. Theor. 44 (2011) 035301 Ł Pankowski and M Horodecki

Unitaries U1 and U2 must have the same global phase, i.e. α1 = α2 in the parametrization of a

single-qubit unitary given by (A.1) in the appendix. In particular, one may take U1 = U2.

We also use an alternative parametrization in terms of p, α and β given by

p ≡ λ1 + λ2 ∈ [0, 1] (14)

α ≡
λ1 − λ2

λ1 + λ2
∈ [−1, 1] (15)

β ≡
λ3 − λ4

λ3 + λ4
∈ [−1, 1]. (16)

On the other hand, the original parameters λi can be expressed using p, α and β as follows:

λ1,2 =
1± α

2
p (17)

λ3,4 =
1± β

2
(1− p). (18)

Both parametrizations are directly related to the privacy-squeezed version of the states

given by (5) and (6), and constructed according to formula (4):

σ =
∑

i

λi |ψi〉〈ψi | =
1

2









p αp

(1− p) β(1− p)

β(1− p) (1− p)

αp p









(19)

where the Bell states ψi are given by

|ψ1,2〉 = 1√
2
(|00〉 ± |11〉)

|ψ3,4〉 = 1√
2
(|01〉 ± |10〉).

(20)

Thus, λi are the eigenvalues of the privacy-squeezed state, p reports the balance between

correlations and anti-correlations, while α and β report how coherences are damped.

A subclass of class C with X defined by (9) has been considered in [1]:

%̃ = λ1γ
+
1 + λ3γ

+
2 . (21)

Class C is much wider than (21); in particular, it contains key-distillable PPT states

arbitrary close to the separable states, but this comes with a price: we have to, in general,

use the recurrence preprocessing to obtain a positive key rate for (5) while for (21) the sole

Devetak–Winter protocol is enough [1].

3.2. Sufficient PPT conditions

For the states of class C to be PPT (so that maximal entanglement cannot be distilled from

them) it is sufficient to satisfy the following conditions:

|λ1 − λ2| 6 (1− λ1 − λ2)‖X0‖−1 (22)

|λ3 − λ4| 6 (λ1 + λ2)‖X0‖ (23)

or equivalently

|α| 6 min(1, α1) (24)

|β| 6 min
(

1, α−1
1

)

(25)

6
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where

α1 =
1− p

p
‖X0‖−1. (26)

In particular, if p = λ̃1 where λ̃1 is given by (27), we have α1 = 1. Moreover, if α = α1β

then % is a PPT-invariant state.

For the subclass (21), the above PPT conditions collapse to a single PPT-invariant state,

on the boundary of PPT states, which satisfies

λ1 = λ̃1 ≡
1

1 + ‖X0‖
. (27)

3.3. Key distillability

We shall derive here a general sufficient condition for key distillability of the spider states

with a Bell diagonal privacy-squeezed state, which easily follows from combining the privacy

squeezing technique with the result of [11] on key distillation from two-qubit states. It is

enough for our purposes, as states of our class are of that form. (In section 7 we extend the

key-distillability condition to arbitrary states by exploiting twirling.)

Proposition 1. Let % be a state of the form

% =









C D

E F

F † E′

D† C ′









(28)

satisfying ‖C‖ = ‖C ′‖ and ‖E‖ = ‖E′‖, i.e. % is a state having a Bell diagonal privacy-

squeezed state. If

max(‖D‖, ‖F‖) >
√

‖C‖‖E‖, (29)

then Alice and Bob can distill the cryptographic key by first measuring the key part of many

copies of the state % and then using the recurrence [22, 23] and Devetak–Winter protocol

[24].

Remark 1. Note that, interestingly, condition (29) is equivalent to requiring that one of the

matrices
[

‖C‖ ‖D‖
‖D†‖ ‖E‖

]

,

[

‖C‖ ‖F‖
‖F †‖ ‖E‖

]

(30)

is not a positive one.

Remark 2. Note that the right-hand side of equation (29) can also bewritten as 1
2

√
pe(1− pe)

where pe is the probability of error (i.e. anticorrelation) when the key part is measured in the

standard basis.

Proof of proposition 1. We apply the privacy squeezing technique described in section 2,

i.e. we show that the privacy-squeezed state of % is key distillable by a protocol based on

measuring the state locally in the standard basis and classical postprocessing. This implies

that % is also key distillable.

7
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The privacy-squeezed state is precisely of the form (4)with ‖C‖ = ‖C ′‖ and ‖E‖ = ‖E′‖,
i.e. it is a Bell diagonal state which can be written as

σ =
1

2









a d

e f

f e

d a









. (31)

For such a state it was shown in [11] that if max(|d|, |f |) >
√

ae then one can distill the key

by measuring the state locally in the standard basis, and processing the resulting classical data

(actually, by using the recurrence followed by the Devetak–Winter protocol). This is precisely

the type of protocol allowed by the privacy-squeezing technique described in section 2. In our

case, the above conditions are simply the ones given in (29). ¤

Due to the form (19) of the privacy-squeezed state of the states from our class, we

immediately obtain suitable conditions:

Corollary 1. Let % be a state defined by formulas (5) and (6) with arbitrary X and Y satisfying

‖X‖ = ‖Y‖ = 1. If

|λ1 − λ2| >
√

(λ1 + λ2)(1− λ1 − λ2) (32)

or equivalently if

|α| >

√

1− p

p
, (33)

then Alice and Bob can distill the cryptographic key by first measuring the key part of many

copies of the state % and then using the recurrence and the Devetak–Winter protocol.

Corollary 1 also holds if one uses |λ3 − λ4| as the left-hand side of (32) or equivalently
|β| as the left-hand side of (33); however, in our paper, we do not use these conditions.

Observation 1. For a state of class C to be both PPT and key distillable using corollary 1 it

must satisfy both (24) and (33). For a given value of the parameter p there exists α satisfying

both conditions iff p ∈ ( 1
2
, pmax) where

pmax =
1

1 + ‖X0‖2
. (34)

3.4. Tolerable white noise

We consider that δ is the tolerable noise of a key distillation protocol for a state % if for any

ε < δ the state %ε with ε of the white noise admixtured

%ε = (1− ε)% + ε
I

d2
(35)

remains key distillable with that protocol.

Having p > 1
2
, the tolerable noise of the Devetak–Winter protocol with the recurrence

preprocessing for class C is given by

δ = 1−
1

√

8
(

λ21 + λ22
)

− 4(λ1 + λ2) + 1
(36)

8
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0.5 0.6

λ1

0

0.25

δ

Recurrence and Devetak-Winter tolerable noise
Devetak-Winter tolerable noise
White noise needed to make states PPT

region of

PPT key

Figure 1. Comparison of %̃H tolerable noise in the case of using the Devetak–Winter protocol with

and without the recurrence preprocessing.

= 1−
1

√

4
(

1 + α2
)

p2 − 4p + 1
. (37)

In particular for a key-distillable PPT state %̃H with λ1 = λ̃1 where λ̃1 is given by (27)

the tolerable noise for the Devetak–Winter protocol with the recurrence preprocessing (36) is

approximately equal to 0.155 while for the sole Devetak–Winter protocol it is approximately

equal to 0.005, i.e. it is 31 times smaller. See figure 1.

3.5. Separability

Given a state %U of class C with X given by (9) and d = 2, i.e. % is a state of 4⊗ 4 system, we
may try to decompose % into a mixture of four two-qubit states. The particular decomposition,

which we propose below, is possible if

|λ3 − λ4| 6 (1− λ1 − λ2)‖X0‖ (38)

or equivalently if

|β| 6 ‖X0‖. (39)

All of the four two-qubit states in our decomposition are Bell diagonal states with the

same set of eigenvalues. Thus, the two qubit states are separable (and, hence, % is separable)

if all their eigenvalues are less than or equal to 1
2
.4 For our decomposition this occurs if,

additionally to (38), the following conditions are satisfied:

λ1 6 1
2

(40)

λ2 6 1
2

(41)

|λ3 − λ4| 6 (λ1 + λ2)‖X0‖ (42)

4 This can be directly verified by the positivity of the partial transpose [29, 30].

9
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or equivalently, additionally to (39), the following conditions are satisfied:

|α| 6
1− p

p
(43)

|β| 6
p

1− p
‖X0‖. (44)

Note that conditions (42) and (44) are identical to the PPT conditions for % given by (23) and

(25), respectively.

The decomposition into the four two-qubit states has the form

%U =
|u00|
u

%00(|00〉AA′ , |10〉AA′; |00〉BB ′ , |10〉BB ′)

+
|u01|
u

%01(|00〉AA′ , |11〉AA′; |01〉BB ′ , |10〉BB ′)

+
|u10|
u

%10(|01〉AA′ , |10〉AA′; |00〉BB ′ , |11〉BB ′)

+
|u11|
u

%11(|01〉AA′ , |11〉AA′; |01〉BB ′ , |11〉BB ′)

(45)

where uij are the elements of the unitary matrix on C
2 used to define the operator X in (9), u is

given by (10) and %ij denote the two-qubit states given by

%ij =
1

2









λ1 + λ2 (λ1 − λ2)e
iφij

λ3 + λ4 (λ3 − λ4)‖X0‖−1eiφij

(λ3 − λ4)‖X0‖−1e−iφij λ3 + λ4

(λ1 − λ2)e
−iφij λ1 + λ2









(46)

where φij comes from the polar decomposition of uij

uij = |uij |eiφij . (47)

The local basis of Alice and Bob for each of the two-qubit states are given in (45) in

parentheses.

3.6. PPT key arbitrary close to separability

One can obtain key from some 4 ⊗ 4 PPT states lying arbitrary close to the set of separable

states. That is, one can easily select a single-parameter subclass of class C satisfying PPT

conditions and approaching some separable state with p = 1
2
such that for any other state in

this class, no matter how close to the separable state, the key condition (33) is satisfied. Note

that if we chose a separable state with p 6= 1
2
as the final state the key condition would be

violated before reaching that final state; thus, we would not approach with the key-distillable

states arbitrary close to the set of separable states.

Such a class of states, a subclass of %H , is illustrated in figure 2. The dashed line

represents the subclass %̃H , given by (21), a mixture of two pbits (γ
+
1 and γ +2 ) which in

alternate parametrization is equivalent to p ∈ [0, 1] and α = β = 1. As shown in [1], this

class contains exactly one (boundary) PPT entangled state obtained by setting p = λ̃1 where

λ̃1 is given by (27), otherwise the states are NPT.

The solid line represents a class of PPT key-distillable states obtained by setting

p ∈ ( 1
2
, pmax), α = min(1, α1) and β = min

(

1, α−1
1

)

, where pmax = (1 + ‖X0‖2)−1 = 2
3
, see

observation 1, while α1 is given by (26), i.e. α1 = 1−p

p

√
2 in the considered case. In the range

10
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PPT

separable

˜H

sep

γ+
1

γ+
2

max

p =
1

2

α = 1

β = X
Γ

=
1
√

2

p = λ̃1 =
1

1 + XΓ
≈ 0.586

α = β = 1

p = pmax =
2

3

α = X
Γ

=
1
√

2

β = 1

Figure 2. A class of key-distillable PPT entangled states: (a) the solid line from %̃ on the boundary

of the PPT entangled states (inclusive) to the boundary of the set of separable states, arbitrary close

to %sep; (b) the arc of PPT-invariant states starting in %̃ and approaching arbitrary close to %̃max.

p ∈ ( 1
2
, λ̃1] the class is represented as a straight line from the PPT state of the previous class

%̃H on one end (p = λ̃1) and approaches arbitrary close to the separable state %sep (p = 1
2
) on

the other end. In the range p ∈ [λ̃1, pmax) the states are PPT-invariant and lie on the boundary
of PPT entangled states; they are represented as an arc from the PPT state of the previous class

%̃H on one end (p = λ̃1) and approach arbitrary close to the state %max (p = pmax) on the other

end. In the range p ∈ (λ̃1, pmax) one could take α < α1, such that the key condition (33) is

still satisfied, to enter inside the class of PPT states.

4. States %H as mixtures of Bell states with ‘flags’

States of the class %H are separable in the AB : A′B ′ cut, i.e. subsystems AB and A′B ′ of

%H are only classically correlated. A state from %H can be decomposed into a mixture of four

states. Each of the four states has a Bell stateψi on the subsystemAB and some corresponding

state on A′B ′.

One can select parameters p ∈ [0, 1], α ∈ [−1, 1], and β ∈ [−1, 1] satisfying both the
PPT conditions (24) and (25) and the key condition (33), and prepare a corresponding PPT

key-distillable state from the class %H which has the form

%H =
4

∑

i=1

qi |ψi〉〈ψi |AB ⊗ %
(i)
A′B ′ (48)

where the Bell states ψi are given by (20) and the correlated states are as follows:

%(1) = α
1

2
(P00 + Pψ3) + (1− α)

I

4
(49)

11
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%(2) = α
1

2
(P11 + Pψ4) + (1− α)

I

4
(50)

%(3,4) = βPχ± + (1− β) 1
2
(P00 + P11) (51)

where Pψ denotes the projector onto a pure state ψ and

χ± =
1

√

2±
√
2
(|00〉 ± |ψ1〉) (52)

q1 = q2 =
p

2
(53)

q3 = q4 =
1− p

2
. (54)

5. Maximizing von Neumann entropy

In this section, we find 4⊗4 key-distillable PPT states with a quite high von Neumann entropy
for two subclasses of class C and summarize the results in the table in section 5.3.

5.1. For states of the class %U

Here, we find the supremum of the von Neumann entropy of the subclass %U of class C with

X given by (9) consisting of states that are both PPT and key distillable by corollary 1. Let us

denote this set of states as PKd , subscripted with the dimension of the unitary used to define

the operator X.

As % is a mixture of four orthogonal private bits its von Neumann entropy is given by

S(%U ) = H(p) + p

(

H

(

1− α

2

)

+ S(
√

X†X)

)

+ (1− p)

(

H

(

1− β

2

)

+ S(
√

Y †Y )

)

(55)

where

S(
√

X†X) 6 2 log2 d (56)

S(
√

Y †Y ) = log2 d (57)

and the maximal value in (56) is achieved if the unitary used to define X in (9) is unimodular.

A unimodular unitary also maximizes the allowed range of p given by observation 1, as it

achieves a minimum of ‖X0‖. Hence, to maximize the entropy, it is enough to consider
a unimodular unitary. The supremum is achieved for a state with p = pmax, β = 0 and

α =
√

1−p

p
(which no longer satisfies our key-distillability condition); thus,

sup
%U ∈PKd

S(%U ) = sup
p∈( 1

2
,pmax)

(

(1 + p) log2 d + (1− p) +H(p) + pH

(

1−
√

1−p

p

2

) )

(58)

where pmax = (1 + ‖X0‖2)−1 comes from observation 1.
In particular, for d = 2, i.e. % being 4⊗ 4 states, the supremum is achieved for the state

having p = pmax = 2/3 which gives

sup
%U ∈PK2

S(%U ) ≈ 3.319. (59)

The supremum corresponds to a state %max in figure 2 but with β = 0.

12
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5.2. For states of a class larger than %U

For the subclass % of class C with d = 2 and X and Y given by (12), we are able to obtain

S(%) ≈ 3.524 (60)

for U1 = U2 = H , q ≈ 0.683, β = 0 and α, p taken as in the previous subsection. It seems

to be the supremum of the von Neumann entropy for this selection of operators X and Y.

5.3. Summary

Here, we summarize the results of maximizing von Neumann entropy of 4⊗ 4 key-distillable
PPT states in the following table:

S(%) % satisfying PPT and key conditions

2.564 Class %̃ from [1] with p = λ̃1, the maximum is achieved for U = H

3.319 Class %U , the supremum is described in section 5.1

3.524 Class C with Y given by (12), a supposed supremum is described in section 5.2

6. Distillability channel via erasure

In [19], it was shown that two zero-capacity channels, if combined together, can have nonzero

capacity. One of the channels was related (through the so-called Choi–Jamiołkowski (CJ)

isomorphism) to a bound entangled but key-distillable state, while the other was a so-called

symmetrically extendable channel. In particular, they considered an example, where the first

channel had the 4 ⊗ 4 CJ state from class (21) while the second one was the 50% erasure

channel. In [25] a simpler scheme was proposed, which also allows us to observe this curious

phenomenon.

The second approach amounts to sending a subsystem A′ of a state defined in systems

ABA′B ′ through the 50% erasure channel and checking the coherent information of the

resulting state. If it is positive one concludes that the capacity of a combined channel is also

positive. Here, we shall use this approach to see how the presence of coherence β influences

the phenomenon.

Coherent information after sending the A′ subsystem through the 50% erasure channel is

given by

Icoh = 1
2
(SA′BB ′ − S) + 1

2
(SBB ′ − SABB ′) (61)

where S, SA′BB ′ and SBB ′ are given by (55), (62) and (63), respectively.

For a PPT state %̃ given by (21) with X given by (9) and based on unimodular unitary and

λ1 = λ̃1, where λ̃1 is given by (27), the coherent information is positive starting from d = 11.

For a similar state of our class with p = λ̃1, α = 1 and β = 0 the coherent information is

positive starting from d = 22.

Formulas for SA′BB ′ and SBB ′ are as follows:

S(%A′BB ′) = 1 + 1
2
S

(

p
√

XX† + (1− p)
√

Y †Y
)

+ 1
2
S

(

p
√

X†X + (1− p)
√

YY †

)

(62)

S(%BB ′) = 1 + 1
2
SB

(

p
√

XX† + (1− p)
√

Y †Y
)

+ 1
2
SB

(

p
√

X†X + (1− p)
√

YY †

)

. (63)

13
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7. Condition for drawing a secure key from general states

From section 3.3, we have a sufficient condition for drawing the key in terms of norms of the

nonzero blocks from states having a Bell diagonal privacy-squeezed state. In this section, we

generalize that condition to the case of an arbitrary state.

Let us define two twirling operations (cf [23])

3XX = 1
2

(

Î ⊗ Î + X̂ ⊗ X̂
)

(64)

3ZZ = 1
2

(

Î ⊗ Î + Ẑ ⊗ Ẑ
)

(65)

and one twirling with flags

3′
XX(%) = 1

2

(

% ⊗ |0〉〈0| + X̂ ⊗ X̂(%) ⊗ |1〉〈1|
)

(66)

where Û% = U%U † and X and Z are Pauli matrices.

Now, we give a sufficient condition to obtain the key from a general state.

Proposition 2. For an arbitrary state

% =









A B C D

B† E F G

C† F † H I

D† G† I † J









(67)

if

max(‖D‖, ‖F‖) > 1
2

√

(‖A‖ + ‖J‖)(‖E‖ + ‖H‖) (68)

then Alice and Bob can distill the cryptographic key by first applying twirling 3′
XX ◦ 3ZZ to

the key part, measuring the key part of many copies of the state % and then using the recurrence

and the Devetak–Winter protocol.

Remark 3. Note that the right-hand side of equation (68) can also bewritten as 1
2

√
pe(1− pe)

where pe is the probability of error (i.e. anticorrelation) when the key part is measured in

standard basis.

Proof of proposition 2. Alice and Bob first apply twirling3′
XX ◦ 3ZZ (an LOCC operation)

and obtain the following state:

3′
XX ◦ 3ZZ(%) =









A ⊕ J D ⊕ D†

E ⊕ H F ⊕ F †

F ⊕ F † E ⊕ H

D ⊕ D† A ⊕ J









. (69)

This state is now of the spider form and, thanks to flags, we have direct sums within the blocks.

Now, the privacy-squeezed state has the following Bell diagonal form:

σ =









‖A‖ + ‖J‖ ‖D‖ + ‖D†‖
‖E‖ + ‖H‖ ‖F‖ + ‖F †‖
‖F‖ + ‖F †‖ ‖E‖ + ‖H‖

‖D‖ + ‖D†‖ ‖A‖ + ‖J‖









. (70)

Then the proof follows from proposition 1. ¤

Note that in the proof above we use3′
XX, a twirling with flags. If3XX, a twirling without

flags, was used instead, we would have to replace ‖D‖ with ‖D + D†‖ in (68) (analogously

14
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for ‖F‖) which can be much smaller than ‖D‖, and even equal to zero in the extreme case of
anti-Hermitian D, i.e. D† = −D, so in this case no key can be distilled from 3XX(%) even if

% is a private state, i.e. % = γ (D).

Note also that in the proof, we have first applied twirling with flags to the original state,

and then the privacy-squeezing operation. Actually, the same state would be obtained if we

first apply the privacy squeezing and then apply (standard) twirling. This is illustrated by the

following diagram:

(71)

where Psq stands for privacy squeezing. As explained above, this diagram would not commute

if we used solely twirling without flags. Thus, to seek key-distillable states, one can go the

alternative route, i.e. first compute the privacy-squeezed state, and then, by twirling, obtain

a Bell diagonal state. Now, if 3XX ◦ 3ZZ(σ ) satisfies the necessary security condition for

realistic QKD on a Pauli channel from [11], i.e. its eigenvalues λi satisfy (32), then % is key

distillable using proposition 2.
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Appendix

The parametrization of a single-qubit unitary [26]

U = eiα

[

ei(−
β

2
− δ
2 ) cos

(

γ

2

)

−ei(−
β

2
+ δ
2 ) sin

(

γ

2

)

ei(
β

2
− δ
2 ) sin

(

γ

2

)

ei(
β

2
+ δ
2 ) cos

(

γ

2

)

]

. (A.1)
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