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We investigate one-way communication scenarios where Bob operating on his component can transfer some

subsystem to the environment. We define reduced versions of quantum-communication rates and, further, prove

upper bounds on a one-way quantum secret key, distillable entanglement, and quantum-channel capacity by

means of their reduced versions. It is shown that in some cases they drastically improve their estimation.
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I. INTRODUCTION

Recent years have seen enormous advances in quantum-

information theory proving it has been well established as a

basis for a concept of quantum computation and communica-

tion. Much work [1–7] has been performed to understand how

to operate on quantum states and distill entanglement enabling

quantum data processing or to establish quantum secure com-

munication between two or more parties. One of the central

problems of the quantum-communication field is to estimate

the efficiency of communication protocols establishing secure

communication between involved parties or distilling quantum

entanglement [5–11]. Most simple communication scenarios

are those that do not use a classical side channel or use it only

in a one-way setup. The challenge for the present theory is to

determine good bounds on such quantities as the secret key rate

or quantum channel capacity and distillable entanglement of a

quantum state, which allow the estimation of communication

capabilities. In this paper, we provide efficient upper bounds,

avoiding a massive overestimation of communication rates.

We are inspired by classical information and entanglement

measures theory where so-called reduced quantities have been

used [8,10,12]. Herewith we consider two pairs of quantities:

private capacity P and quantum one-way secret key K→, and
one-way quantum channel capacity Q→ and one-way dis-

tillable entanglement D→, providing efficient upper bounds.
We prove that in some cases the bounds explicitly show that

the corresponding quantity is relatively small if compared to

sender and receiver systems. Themain method is again the fact

that all of the aforementioned quantities vanish on some classes

of systems. Moreover, we introduce “defect” parameters 1

for the reduced quantities resulting from possible transfer of

subsystems on the receivers’ side, which are (sub)additive and,

hence, can be exploited in the case of composite systems and

regularization.

II. REDUCED ONE-WAY SECRET KEY

A secret key is a quantum resource allowing two parties,

Alice and Bob, a private communication over a public channel.

In an ideal scenario, they generate a pair of maximally

correlated classical secure bit strings such that Eve, repre-

senting the adversary in the communication, is not able to
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receive any sensible information from further communication

between Alice and Bob. In this section, we elaborate on

the generation of a one-way secret key from a tripartite

quantum state shared by the parties with Eve that means

Alice and Bob can use only protocols consisting of local

operations and one-way public communication. We propose a

new reduced measure of the one-way secret key that simplifies

in many cases an analysis of the one-way security of quantum

states.

To derive new observations about the one-way quantum

secret key, in this section we use fundamental information

notions engaging entropy1 and quantum mutual information,2

which play a vital role in quantum-information theory. We

state a new result about the upper bound on the Holevo

function,3 χ (·):
Observation 1. For any ensemble of density matrices A =

{λi,ρ
i
BB ′} with the average density matrix ρBB ′ =

∑
i λiρ

i
BB ′ ,

the following holds:

χ (ρBB ′) 6 χ (ρB)+ 2S(ρB ′ ). (1)

Proof. On the basis of subadditivity and concavity of

quantum entropy, we can easily show that
∣∣∣∣S(ρBB ′ )−

∑

i

piS
(
ρi

BB ′

)
− S(ρB)+

∑

i

piS
(
ρi

B

)∣∣∣∣

6 |S(ρBB ′ )− S(ρB)| +
∣∣∣∣
∑

i

piS
(
ρi

BB ′

)
−

∑

i

piS
(
ρi

B

)∣∣∣∣

6 S(ρB ′ )+
∑

i

piS
(
ρi

B ′

)
6 2S(ρB ′ ),

1For any quantum state ρ one can define a concave function S(ρ) ≡
−Tr(ρ log2 ρ), called the von Neumann entropy, and its classical

counterpart, the Shannon entropy, for a probability distribution P :

H (P ) ≡ −
∑

x P (x) log2 P (x).
2For any bipartite state ρAB , one defines the quantum mutual

information I (A : B) = S(A)+ S(B)− S(AB), and further, for a

tripartite system ρABC , the conditional quantum mutual information

I (A : B|C) = S(AC)+ S(BC)− S(ABC)− S(C), where we use

the notation for the entropy of X system S(ρX) = S(X).
3The Holevo function χ (·) is defined for any ensemble of density
matrices A = {pi,ρi} with average density matrix ρ =

∑
i piρi as

follows: χ (ρ) = S(
∑

i piρi)−
∑

i piS(ρi), which is a good upper

bound [13,14] on the accessible information.
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where we applied the triangle inequality. This completes the

proof. j

One can use [5,6] a general tripartite pure state ρABE

to generate a secret key between Alice and Bob. Alice

engages in a particular strategy to perform a quantummeasure-

ment [positive operator-valued measure (POVM)] described

by Q = (Qx)x∈X , which leads to ρ̃ABE =
∑

x |x〉〈x|A ⊗
TrA[ρABE(Qx)⊗ IBE]. Therefore, starting from many copies

of ρABE , we obtain many copies of cqq states ρ̃ABE and we

restate the theorem, defining a one-way secret key K→.
Theorem 1 [5]. For every state ρABE, K→(ρ) =

limn→∞
K (1)

→ (ρ
⊗n)

n
, with K (1)

→ (ρ) = maxQ,T |X I (X : B|T )−
I (X : E|T ), where the maximization is over all POVMs
Q = (Qx)x∈X and channels R such that T = R(X) and

the information quantities refer to the state ωTABE =∑
t,x R(t |x)P (x)|t〉〈t |T ⊗ |x〉〈x|A ⊗ TrA(ρABE(Qx)⊗ IBE).

The range of the measurement Q and the random variable T

may be assumed to be bounded as |T | 6 d2A and |X | 6 d2A,

where T can be taken as a (deterministic) function of X .
In the following, we define a modified version of the

one-way secret key rate K→ based on the results of [8,10]

for reduced intrinsic information and reduced entanglement

measure.

Definition 1. For the one-way secret key rateK (1)
→ (ρABB′ ) of

a bipartite state ρABB′ ∈ B(HA ⊗ HBB′ ) shared between Alice

and Bob, the reduced one-way secret key rate K (1)
→ ↓ (ρABB′ )

is defined as

K (1)
→ ↓ (ρABB′ ) = inf

U
[K (1)

→ (U(ρAB)) + 1K→ ], (2)

where U denotes unitary operations on Bob’s system with

a possible transfer of subsystems from Bob to Eve; that

is, U(ρAB) = TrB ′(I ⊗ U)ρABB ′ . 1K→ = 4S(ρB ′ ) denotes the

defect parameter related to the increase of entropy produced

by the transfer of the B ′-subsystem from Bob’s side to Eve
after the action of U .
The reduced one-way secret key rate is an upper bound on

K→, which we prove now for every cqq state ρ.

Theorem 2. For every cqq state ρABE , the following

holds:

K→(ρ) = lim
n→∞

K (1)
→ (ρ

⊗n)

n
6 K→ ↓ (ρ), (3)

where K→ ↓ (ρ) = limn→∞
K (1)

→ ↓(ρ⊗n)

N
. In particular, for the

identity operation U = id on Bob’s side, one obtains

K→(ρABB ′) 6 K→(ρAB)+ 4S(ρB ′ ).

To prove this theorem, one can start showing how the

formula behaves for a one-copy secret key.

Lemma 1. For every cqq state ρABE , the following

holds:

K (1)
→ (ρ) 6 K (1)

→ ↓ (ρ). (4)

Proof. Since
{

I (A : B|C) = S(AC)+ S(BC)− S(ABC)− S(C),

I (A : E|C) = S(AC)+ S(EC)− S(AEC)− S(C),

then

K (1)
→ (ρ) = max

Q,C|A
[S(BC)− S(ABC)− S(EC)+ S(AEC)].

To prove Lemma 1, it suffices to show that

K (1)
→ (ρA(BB ′)E) 6 K (1)

→ (ρAB(B ′E))+ 4S(B ′) (5)

because, in the case of an application of U without discarding
subsystem B ′, one obtains an equality. We denote by ρAB(B ′E)

a transition of the B ′ subsystem to the environment. Both

parts (Alice and Bob) use the maximizing local operations

and classical communication (1-LOCC) protocol to find the

secret key rate; thus, we omit further themaximization symbol,

which reflects a choice of the maximizing protocol by Alice

and Bob:

S(BB ′C)− S(ABB ′C)− S(EC)+ S(AEC)

6S(BC)− S(ABC)− S(B ′EC)+ S(AB ′EC)+ 4S(B ′).

It is easy to note that the application of unitary operations on

Bob’s side does not change the inequality, mainly due to the

property of unitary invariancy of the von Neumann entropy.

To simplify the proof, one can decompose this inequality into

the following two inequalities:

S(BB ′C)− S(ABB ′C) 6 S(BC)− S(ABC)+ 2S(B ′),

S(B ′EC)− S(AB ′EC) 6 S(EC)− S(AEC)+ 2S(B ′),

(6)

or, equivalently considering the assumption that the initial state

is of cqq type and A represents the classical distribution, we

can rewrite the first inequality in the form

S

( ∑

i

piρ
BB ′

i

)
− H (pi)−

∑

i

piS
(
ρBB ′

i

)
− S

( ∑

i

piρ
B
i

)

+ H (pi)+
∑

i

piS
(
ρB

i

)
6 2S(B ′)

and, similarly for the second inequality, which gives as a result

a more compact structure, we can write

χ
(∑

i piρ
BB ′C
i

)
− χ

(∑
i piρ

BC
i

)
6 2S(B ′),

χ
(∑

i piρ
B ′EC
i

)
− χ

(∑
i piρ

EC
i

)
6 2S(B ′).

However, the above was proved in Observation 1, which

completes the proof. j

Finally, we extend this result in the asymptotic regime,

proving Theorem 2.

Proof.ToproveTheorem2, it suffices to notice that (4) holds

under 1-LOCC and an arbitrarily chosen U for any ρn = ρ⊗n.

Moreover, the existence of the defect parameter 1K→ enables

regularization of the reduced one-way secret rate since, in the

asymptotic regime after application of unitary operations on

Bob’s side (one can view his operation on the B ′ system as
an action of 3 channel resulting from the unitary operations

acting on the whole Bob side), one can apply subadditivity

of entropy to estimate entropy of the transferred B ′ part. In
particular, for the identity operation, one achieves S(ρ⊗n

B ′ ) =
nS(ρB ′ ). This implies K→(ρABB ′) 6 K→(ρAB)+ 4S(ρB ′ ). j

It is interesting that our results reflect E nonlockability of

the secret key rate [15], which means that the rate cannot be

locked with information on Eve’s side. Measures of classical

or quantum correlations are lockable if they can decrease

arbitrarily aftermeasuring one qubit in amultipartite scheme—

in this case by operations on Eve’s side.
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Monogamy of entanglement has been used to prove that

for some region the quantum depolarizing channel has zero

capacity even if does not destroy the entanglement [16], which

is a particular application of the symmetric extendibility of

states to evaluation of the quantum channel capacity. The

following examples show application of the concept.

Example 1. As an example of application of Theorem 2,

we present a state which, after discarding a small B ′ part on
Bob’s side, becomes a symmetric extendible state [17]. This

example is especially important since the presented state does

not possess [18] any symmetric extendible component in its

decomposition for symmetric and nonsymmetric parts; thus,

one cannot use the method [19] to find an upper bound onK→
by means of linear optimization. Let us consider a bipartite

quantum state shared between Alice and Bob on the Hilbert

spaceHA ⊗ HB
∼= Cd+2 ⊗ Cd+2:

ρAB =
1

2




ϒAB 0 0 A
0 0 0 0

0 0 0 0

A† 0 0 ϒAB


 , (7)

whereA is an arbitrarily chosen operator so thatρAB represents

a correct quantum state. This matrix is represented in the

computational basis |00〉,|01〉,|10〉,|11〉 held by Alice and Bob
and possesses a canonical maximally entangled state structure.

Whenever one party (Alice or Bob)measures the state, the state

decoheres and off-diagonal elements vanish, which leads to a

symmetric extendible state [17],

ϒAB =
d

2d − 1
P+ +

1

2d − 1

d−1∑

i=1

|i 0〉〈i 0|, (8)

from which no entanglement or secret key can be distilled

by means of 1-LOCC [17,19–21]. Therefore, by applying

Theorem 2, one derives K→(ϒAB) = 0 and K→(ρAB) 6

K→ ↓ (ρAB) = 4.

Example 2. Let us consider a graph state [22] |G〉 of a
(3n + 1)-qubit system associated with a mathematical graph
G = {V,E}, composed of a set V of 3n + 1 vertices and a set
E of edges {i,j} connecting each vertex i with some other j ,

|G〉 =
⊗

i,j∈E

CZij |G0〉, (9)

where 3n + 1 qubits are initialized in the product state
|G0〉 =

⊗
i∈V |ψi〉 with |ψi〉 = |0i〉 + |1i〉. Afterward, one

applies a maximally entangling control-Z (CZ) gate to all

pairs {i,j} of qubits joined by an edge: czij = |0i0j 〉〈0i0j | +
|0i1j 〉〈0i1j | + |1i0j 〉〈1i0j | − |1i1j 〉〈1i1j |. If Alice takes no
more than n qubits from the graph system that is used to

establish communication with Bob, who uses another n qubits

in this graph state, then they will be not able to set secure

one-way communication by any means. This results from the

fact that the state ρAB
2n (with n qubits on Alice’s side and n

qubits on Bob’s side) is symmetric extendible to a state ρAB
3n ,

which means that K→(ρ
AB
2n ) = 0. A natural symmetric exten-

sion of ρAB
2n is a state ρAB

3n = TrB ′ |G〉〈G| resulting from tracing
out an arbitrarily chosen qubit B ′ from graph G. However,
if Alice takes n qubits and Bob takes n + 1 qubits from the
graph system, the resulting state ρAB

2n+1 is no longer symmetric

extendible. For example, for n = 2, this state has the spectral

representation

ρAB
2n+1 = 1

2
(|φ0〉〈φ0| + |φ1〉〈φ1|), (10)

where |φ0〉 = |0A〉|0B〉 + |1A〉|1B〉, |φ1〉 = |0A〉|1B〉 −
|1A〉|0B〉, and {|0〉A = |00− 01− 10− 11〉A,|1〉A = |00+
01+ 10− 11〉A, |0〉B = |001 + 010 + 100− 111〉B , |1〉B =
|000− 011− 101− 110〉B}. This state is isomorphic to a
qubit bipartite state and meets the condition [23,24] for

C2 ⊗ C2 Bell-diagonal states to be symmetric extendible:
4
√
det(ρAB) > Tr(ρ2AB)−

1
2
. One can easily show the

isomorphism of ρAB
2n+1 for any n with a qubit bipartite

state structure (10). Thus, for a one-way secret key of the

state, K→(ρ
AB
2n+1) 6 K→ ↓ (ρAB

2n+1) = 4 holds, since after

discarding one qubit B ′ on Bob’s side his system would

become symmetric extendible.

III. UPPER BOUND ON QUANTUM CHANNEL CAPACITY

The best known definition of the one-way quantum

channel capacity Q→(3) [3,25] is expressed as an asymp-
totic regularization of coherent information: Q→(3) =
limn→∞

1
n
supρn

Ic(ρn,3
⊗n) with parallel use of N copies of

the 3 channel, where the one-copy formula is Q(1)
→(3) =

supρ Ic(ρ,3). Coherent information for a channel 3 and a

source state σ transferred through the channel is defined

as Ic(σ,3) = IB(I ⊗ 3)(|9〉〈9|), where 9 is a pure state

with reduction σ , and coherent information of a bipartite

state ρAB shared between Alice and Bob is defined as

IB(ρAB) = S(B)− S(AB). We use further the following

notation: Ic(A〉B) = IB(ρAB).

Observation 2. For a bipartite state ρABB ′ ∈ B(HA ⊗ HB ⊗
HB ′ ) shared between Alice and Bob (B and B ′ system), the
following holds:

Ic(A〉BB ′) 6 Ic(A〉B)+ 2S(B ′). (11)

Proof. One can easily observe that, for subadditivity of en-

tropy S(BB ′) 6 S(B)+ S(B ′) and for the Araki-Lieb inequal-
ity |S(AB)− S(B ′)| 6 S(ABB ′), the left-hand side can be
bounded as follows: S(BB ′)− S(ABB ′) 6 S(B)+ S(B ′)−
S(AB)+ S(B ′) = Ic(A〉B)+ 2S(B ′), which completes the
proof. j

Motivated by the reduced quantity of the secret key rate

and the preceding observation, we further derive the reduced

version of the quantum channel capacity and show that it is a

good bound on quantum channel capacity.

Definition 2. For a one-way quantum channel 3BB ′ :

B(HBB ′ ) → B(HB̃B̃ ′ ), the reduced one-way quantum channel

capacity is defined as

Q(1)
→ ↓ (3BB ′ ) = inf

U
[Q(1)

→(U(3B)) + 1Q→ ], (12)

where U denotes unitary operations on Bob’s system with a
possible transfer of subsystems from Bob to Eve after action

of the 3BB ′ channel, that is, U(3B(ρB)) = TrB ′U3BB ′(ρBB ′).

1Q→ = 2 supρBB′ S(TrBU3BB ′(ρBB ′)) denotes the defect pa-

rameter related to the increase of entropy produced by the

transfer of the B ′-subsystem from Bob’s side to Eve after the
action of U .
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Theorem 3. For any one-way quantum channel 3BB ′ :

B(HBB ′) → B(HB̃B̃ ′),

Q→(3BB ′) 6 Q→ ↓ (3BB ′ ) (13)

holds, where Q→ ↓ (3BB ′ ) = limn Q
(1)
→ ↓ (3⊗n

BB ′)/n denotes

the reduced quantum capacity. In particular, for the identity

operation U = id on Bob’s side, one obtains Q→(3BB ′) 6

Q→(3B)+ 2 supρBB′ S(TrB3BB ′ (ρBB ′)).

To prove this inequality for regularized quantum capacity

and its reduced version, it is sufficient to derive the following

lemma for the single-copy case in analogy to Lemma 1 for the

one-way secret key rate.

Lemma 2. For any one-way quantum channel 3BB ′ :

B(HBB ′) → B(HB̃B̃ ′), the following holds:

Q(1)
→(3BB ′) 6 Q(1)

→ ↓ (3BB ′). (14)

Proof. The proof of this lemma is straightforward with the

application of Observation 2 that, for a state ρBB ′ maximizing

coherent information on the left-hand side of the observation,

the above formula also holds for a possible transfer ofB ′ to the
environment. It is worth recalling that an action of the unitary

operator on a state does not change its entropy and, as a result,

does not change the coherent information for any partition of

the system. j

Furthermore, one can complete the proof of the theorem in

the asymptotic regime:

Proof. To prove the inequality of Theorem 3 asymptotically

it suffices to notice that statements of Lemma 2 hold

also for the arbitrarily chosen state ρn = ρ⊗n. Now

we can prove that Q→(3BB ′) 6 Q→(3B)+ 1Q→ . Let

ρBB ′

n be a state maximizing Q→(3BB ′) as an asymptotic

regularization of coherent information; that is, Q→(3BB ′) =
limn→∞

1
n
Ic(ρ

BB ′

n ,3⊗n
BB ′ ), which one can represent as

Ic(A〉BB ′) for the aforementioned Choi-Jamiolkowski

isomorphism between states and channels. Based on

Observation 1, one can immediately derive for the maximizing

state ρBB ′

n : 1
n
Ic(A〉BB ′) 6

1
n
[Ic(A〉B)+ 2S(ρB ′

n )], where

Ic(A〉B) = Ic(TrB ′ρBB ′

n ,3⊗n
B ) and ρB ′

n = TrB3⊗n
BB ′ (ρBB ′

n ).

However, if there exists a state σB
n for which

Ic(σ
B
n ,3⊗n

B ) > Ic(TrB ′ρBB ′

n ,3⊗n
B ), then it proves that

the right-hand side of the inequality in the lemma can

only be larger than in case of the chosen state ρBB ′

n ,

which completes the proof. Finally, the aforementioned

proof for key subadditivity of entropy can be applied to

verify that, in the case of the regularized reduced secret

key, its defect parameter cannot be larger than 1Q→ =
2 supρBB′ S(TrBU3BB ′(ρBB ′)), since for any state ρX1...Xn

and

channel 3̃ there holds: S(3̃⊗n(ρX1...Xn
)) 6

∑
i S(3̃(ρXi

)),

which implies supρBB′
n

S(TrB(U3BB ′)⊗n(ρBB ′

n )) 6

n supρBB′ S(TrBU3BB ′(ρBB ′)). j

Example 3. We use the aforementioned graph state from

Example 2 and we search for the one-way channel capacity of

a channel 3BB ′ , isomorphic due to the Choi-Jamiolkowski

isomorphism, with a state ρABB ′

2n+1 = (I ⊗ 3BB ′)|9〉〈9|. As
above, after discarding the B ′ 1-qubit system, the state would
become symmetric extendible, which implies Q→(3B) = 0.

Therefore, we obtainQ→(3BB ′) 6 2.

The power of the above results is especially visible in

application of Theorem 3 to any channel reducible to an

antidegradable channel for which the Choi-Jamiolkowski rep-

resentation is symmetric extendible [23] or channels reducible

to degradable channels which have known capacity [26].

IV. DUAL PICTURE FOR ONE-WAY DISTILLABLE

ENTANGLEMENT AND PRIVATE INFORMATION

Our results for the one-way secret key and quantum channel

capacity lead immediately to a similar reduced formula

for private information and one-way distillation quantities.

The private capacity [7] P(3) of a quantum channel is

equal to the regularization of private information, P (1)(3) =
maxX,ρA

x
[I (X,B)− I (X,E)], with maximization over classi-

cal randomvariablesX and input quantum statesρA
x depending

on the value of X. Absorbing T into the variable X in

Theorem 1 leads to definitions for private information and

private capacity [7]; thus, following Lemma 2, we can derive

an upper bound on private information and private capacity

via their reduced counterparts.

Definition 3. For a one-way quantum channel 3BB ′ :

B(HBB ′) → B(HB̃B̃ ′ ), the reduced private information is

defined as

P (1) ↓ (3BB ′) = inf
U
[P (1)(U(3B)) + 1P ], (15)

where U denotes unitary operations on Bob’s system with

a possible transfer of subsystems from Bob to Eve; that is,

U(3B(ρB)) = TrB ′U3BB ′(ρBB ′). 1P = 4S(ρB ′ ) denotes the

defect parameter related to an increase of entropy produced by

the transfer of the B ′-subsystem from Bob’s side to Eve after
the action of U .

Theorem 4. For a one-way quantum channel 3BB ′ :

B(HBB ′) → B(HB̃B̃ ′ ),

P(3BB ′) 6 P ↓ (3BB ′) (16)

holds, where P ↓ (3BB ′) = limn P
(1) ↓ (3⊗n

BB ′)/n denotes the

reduced private capacity. In particular, for the identity opera-

tion U = id on Bob’s side, one obtains P(3BB ′) 6 P(3B)+
4S(ρB ′ ).

The proof can be conducted in analogy to Theorem 2 and

Lemma 2, however, because the regularization of reduced

private information it is crucial to derive the following lemma

for a one-copy case.

Lemma 3. For every one-way quantum channel 3BB ′ :

B(HBB ′) → B(HB̃B̃ ′ ), the following holds:

P (1)(3BB ′) 6 P (1) ↓ (3BB ′). (17)

Proof. To prove this lemma, it suffices to absorb variable T

into X in Theorem 1 for the definition of private information

and to conduct the proof in analogy to the proof of Lemma 1

for a channel 3BB ′ and a chosen state ρ sent through it. j

We can now propose a new bound on distillation of entan-

glement by means of a one-way LOCC. This result is based

on the observation [7] that one-way distillable entanglement

D→ of a state ρAB can be represented as the regularization

of a one-copy formula, D(1)
→ (ρAB) = maxT

∑L
l=1 λlIc(A〉B)ρl

,

where the maximization is over quantum instruments T =
(T1, . . . ,TL) on Alice’s system, λl = TrTl(ρA), Tl is assumed

to have one Kraus operator Tl(ρ) = AlρA
†
l , and ρl = 1

λl
(Tl ⊗

id)ρAB . Based on the results of Observation 2 and Lemma
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2, we derive a general formula for the bound on one-way

distillable entanglement applying the reduced quantity.

Definition 4. For a bipartite state ρABB ′ ∈ B(HA ⊗ HB ⊗
HB ′) shared between Alice and Bob (B and B ′ system), the
reduced one-way distillable entanglement is defined as

D(1)
→ ↓ (ρABB ′ ) = inf

U

[
D(1)

→ (U(ρAB)) + 1D→

]
, (18)

where U denotes unitary operations on Bob’s system with

a possible transfer of subsystems from Bob to Eve; that

is, U(ρAB) = TrB ′ (I ⊗ U)ρABB ′ . 1D→ = 2S(ρB ′ ) denotes the

defect parameter related to the increase of entropy produced

by the transfer of the B ′-subsystem from Bob’s side to Eve
after the action of U .

Theorem 5. For a bipartite state ρABB ′ ∈ B(HA ⊗ HB ⊗
HB ′) shared between Alice and Bob (B and B ′ system),

D→(ρABB ′) 6 D→ ↓ (ρABB ′)

holds, where 1D→ = 2S(ρB ′ ) and D→ ↓ (ρABB ′) =
limn D(1)

→ ↓ (ρ⊗n
ABB ′)/n denotes the regularized version

of reduced one-way distillable entanglement for one copy. In

particular, for the identity operation U = id on Bob’s side,

one obtains D→(ρABB ′) 6 D→(ρAB)+ 2S(ρB ′ ).

The proof of this theorem can be conducted in analogy to

the previous proofs for bounds on one-way secret keys and

quantum channel capacity. The left inequality is an immediate

implication of the following lemma for the one-copy formula.

Lemma 4. For every bipartite state ρABB ′ , the following

holds:

D(1)
→ (ρABB ′) 6 D(1)

→ ↓ (ρABB ′). (19)

Proof. It suffices to use the results of Observation 2 to

notice that, for a chosen set of instruments T onAlice’s side for

calculation ofD(1)
→ (ρABB ′), the inequality holds as an extension

of the inequality from Observation 2 by multiplicands λl on

the left and right sides. However, if in case of calculating

D(1)
→ (ρAB) there exists a set T

′ that maximizesD→(ρAB) better

than T, then the right-hand side of the inequality can be only

greater. j

It is crucial to notice that the “defect” parameters1 for the

reduced quantities are subadditive and, hence, can be exploited

in the case of composite systems and regularization.

Corollary. For the reduced quantities of {K→,P,Q→,D→},
for composite systems, 1X(ρ ⊗ σ ) 6 1X(ρ)+ 1X(σ ) and

1Y (3 ⊗ 0) 6 1Y (3)+ 1Y (0) hold, where X = {K→,D→}
and Y = {Q→,P} stand for states for channels, respectively.
To prove the above corollary, it suffices to use the

subadditivity of entropy for composite systems since Bob

can act with a unitary operation before he discards some

part of his subsystem. This property of the parameters

enables regularization in the asymptotic regime of the reduced

quantities for large systems ρ⊗n.

Example 4: Activable multiqubit bound entangled states.

As an example illustrating this bound, we consider an

activated bound entangled state ρII [27], which is distillable

if the parties (Alice and Bob) form two groups containing

between 40% and 60% of all parties of the system in the

state ρII . If Alice or Bob possess less than 40% of the

system or if the system is shared between more than two

parties, then the state becomes undistillable. This state for a

large amount of particles can manifest features characteristic

of “macroscopic entanglement” with no “microscopic

entanglement.” For a definition of the state, let us consider the

family ρN of N -qubit states: ρ =
∑

σ=± λσ
0 |9σ

0 〉〈9σ
0 | +∑

k 6=0 λk(|9+
k 〉〈9+

k | + |9−
k 〉〈9−

k |), where |9±
k 〉 =

1√
2
(|k1k2 · · · kN−10〉 ± |k1k2 · · · kN−11〉) are Greenberger-

Horne-Zeilinger-like states with k = k1k2 · · · kN−1 being a
chain of N − 1 bits and ki = 0,1 if ki = 1,0; thus, the state

is parametrized by 2N−1 coefficients. Let us consider now
a bipartite splitting P where Alice takes 0.6N qubits and

Bob takes the other 0.4N qubits. We can immediately show

that D→(ρII ) 6 −2(λ±
0 + 2

∑
k λk) log2(λ

±
0 + 2

∑
k λk)

since, for Bob transferring one qubit to the environment, we

obtain the undistillable state D↔(ρN−1) = 0. It is noticeable

that, even for a large macroscopic system with N → ∞,
D→(ρII ) 6 −2(λ±

0 + 2
∑

k λk) log2(λ
±
0 + 2

∑
k λk). It can

be easily shown that with the same method it is possible to

achieve an upper bound on the one-way quantum channel

capacityQ→.

V. CONCLUSIONS

In this paper we proposed reduced versions of quantum

quantities: a reduced one-way quantum key, distillable entan-

glement, and reduced corresponding capacities. We showed

that in some cases these quantities may provide bounds on the

nonreduced versions, drastically simplifying their estimations.

It is evident especially for states of large systems, as supported

by examples. The open problem is whether they can be applied

to a nonadditivity problem of quantum channel capacities and

quantum secure keys [11,26]. Furthermore, it is not known if

they have analogs in general quantum networks or whether

the bounds can be improved by better estimation of defect

parameters.
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