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In this work, we put several questions related to the emergence of Gibbs states in quantum physics to rest. We

show how Gibbs or thermal states appear dynamically in closed quantum many-body systems, by completing

the program of dynamical typicality and by introducing a novel general perturbation theorem that is robust under

the thermodynamic limit, rigorously capturing the intuition of a meaningful weak coupling limit. We discuss the

physics of thermal states occurring and identify the precise conditions under which this happens. Based on these

results, we also present a fully general quantum algorithm for preparing Gibbs states on a quantum computer

with a certified runtime, including full error estimates, complementing quantum Metropolis algorithms which

are expected to be efficient but have no known runtime estimate.
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How do thermal quantum states – cornerstones of a descrip-

tion in canonical ensembles in quantum statistical physics –

arise from the underlying theory of quantum physics? This

question, a long tradition as it obviously has, is in many ways

still surprisingly wide open. Indeed, much progress was made

only quite recently [1–12]; this is motivated and triggered both

by new mathematical [5–10, 12, 13] and numerical [14] tech-

niques becoming available, as well as by new experiments

with quantum many-body systems in non-equilibrium [15].

This work aims at finally bringing – with new technical re-

sults – this question to rest. We prove equilibration towards a

Gibbs state, without any approximations, from the underlying

microscopic theory of quantum mechanics. Our results com-

plete, to a large extent, both the kinematic and the dynamic

approach towards a justification of statistical mechanics. Fi-

nally, we use our new insights into the process of thermaliza-

tion to design a quantum algorithm that prepares Gibbs states

with certified precision and runtime.

The three ingredients that enter the standard textbook proof

of the canonical ensemble in classical statistical physics are:

(i) the equal a priory probability postulate (also known as mi-

crocanonical ensemble), and an equilibration postulate (such

as the second law), (ii) the assumption of weak coupling, (iii)

an assumption about the density of states of the bath, namely,

that it grows faster than exponentially with the energy and that

it can be locally well approximated by an exponential [16].

Here each of these steps is rigorously generalized to the pure

state quantum statistical mechanics approach [1–9]. In partic-

ular (i) is replaced by a (dynamical) typicality argument that

follows directly from quantum mechanics and (ii) is made pre-

cise by proving a novel perturbation theorem that has applica-

tions far beyond the scope of the present article.

Finally we present a quantum algorithm preparing Gibbs

states with full error bounds and explicit runtime bounds,

invoking a new variant of phase estimation. Our algorithm

nicely complements another algorithm with certified runtime

that was recently proposed in [18] and recent developments

on quantum Metropolis algorithms [12], which are expected

to be efficient, but for which, unlike in our approach, no rig-

orous runtime estimates exist. A significant step towards con-

structing a certified (and in some cases efficient) algorithm

was recently made in Ref. [17] (see Appendix F for a discus-

sion).

Setting and notation. Throughout this work, we consider

systems S weakly coupled to an environment B. Thus, the

Hilbert space reads H = HS ⊗HB , where HS and HB (of

finite dimensions dS and dB) are the Hilbert spaces of the sub-

system and the “bath” respectively. The evolution of the total

system is governed by the Hamiltonian H = H0 + V , with

eigenvalues and eigenvectors {Ek} and {|Ek〉} consisting of

a uncoupled Hamiltonian H0 = HS + HB , whose eigen-

values and eigenvectors we denote by {E(0)
k } and {|E(0)

k 〉},

and a coupling Hamiltonian V . In this setup, we rigorously

clarify under which conditions under unitary time evolution

|ψt〉 = e−iHt |ψ0〉 with ψt = |ψt〉〈ψt|, the reduced state

ψS
t = TrB ψt of the subsystem S does relax for most times to

a Gibbs state ρSGibbs ∝ e−βHS . By this we mean that for most

times their trace distance D(ψS
t , ρ

S
Gibbs), which measures the

physical distinguishability [22], is small. We assume that the

HamiltoniansH andH0 are non degenerate such that time av-

eraging and dephasing in the eigenbasis give the same result

ω = ψt = lim
T→∞

1

T

∫ T

0

ψtdt =
∑

k

|Ek〉〈Ek|ψ0|Ek〉〈Ek|.

(1)

If equilibration happens, then it happens towards the time av-

eraged state [22], our insight into the mechanism of thermal-

ization thus come from studying the reduced dephased state

ωS = TrB ω.

“Natural thermalization”: Conditions for Gibbs states to

appear. In this section, by going through the points (i)-(iii),

we prove the emergence of the canonical ensemble from quan-

tum mechanics. The final conclusion is summarized in theo-

rem 2. The central point of the argument is a novel perturba-

tion theorem that relates spectral projectors of weakly inter-

acting and non-interacting Hamiltonians in a physically rele-

vant weak coupling limit. It allows us to connect results on

dynamical equilibration and measure concentration with clas-

sical counting arguments and thereby prove a set of natural

sufficient conditions for thermalization in quantum mechan-
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ics.

A stepping stone in the following argument will be states

that have a flat energy distribution in an interval [E,E + ∆],
i.e., states that have the property that the diagonal elements

in the energy eigenbasis in the subspace corresponding to the

interval are all identical and all other diagonal entries vanish.

We indicate such states, and their dephased states, by a sub-

script u like in ψu or ωu and call them rectangular states.

This class of states includes both mixed states (in particular

the microcanonical state ωu) and pure states, and thus in gen-

eral also initial states that can locally be far from equilibrium.

The equal a priory probability postulate (i) is replaced

by a notion of (dynamical) typicality using results from

Refs. [1, 2, 5]. In Ref. [1] powerful concentration of mea-

sure techniques are used to show that almost all states from a

microcanonical subspace corresponding to a microcanonical

energy window [E,E +∆] locally look like the reduction of

the corresponding microcanonical state, i.e., it is shown that

for all but exponentially few of the states ψ from the subspace

D(ψS , ωS
u) is small, where ωu is the microcanonical state on

the subspace. Refs. [5–7] complement this purely kinematic

picture with a result concerning the dynamics of states that ini-

tially can even be far from equilibrium. Under one assumption

on the spectrum of the Hamiltonian (non-degenerate energy

gaps) it is shown that all reduced states on small subsystems

of states with a high effective dimension tend to an equilib-

rium state and stay close to it for most times. Moreover all

but exponentially few states from a microcanonical subspace

have a high effective dimension.

The delicate issue, which has up to now not been addressed

in the literature in a general and rigorous way, is the weak cou-

pling approximation (ii) [6, 23]. The problem is, that due to

the exponential growth of the Hilbert space dimension and the

at most polynomial growth of the energy content, the spec-

trum of the non-interacting Hamiltonian H0 becomes expo-

nentially dense with increasing bath size. Which is why the

perturbative limit, in which the coupling V is weak compared

to the gaps of the non-interacting Hamiltonian H0, in which

it can be guaranteed that the energy eigenstates |Ek〉 of the

full Hamiltonian H = H0 + V are close to product states

|Ek〉 ≈ |ES
k 〉 ⊗ |EB

k 〉, is certainly not the physically relevant

weak coupling limit. Even worse, in this limit memory ef-

fects provably prevent thermalization [9]. As in the classical

setting, a coupling should be considered to be weak as long

as it does not change the total energy in a noticeable way,

which is equivalent to saying that the energy stored in the in-

teraction is much less than our (microcanonical) uncertainty

about the energy of the system, i.e., ‖V ‖∞ � ∆. This is

the relevant weak coupling limit in which we prove equili-

bration towards a canonical state. We do this by relating the

dephased/microcanonical state ωu to the state ω
(0)
u dephased

with respect to the non interacting Hamiltonian, for which we

can then easily perform the partial trace.

Theorem 1 (interacting vs. non-interacting case). Let ω
(0)
u

and ωu be the dephased/microcanonical states belonging to

the interval [E,E + ∆] with respect to H0 and H = H0 +
V , then for every gaps(H0) � ε < ∆/2 (the condition

gaps(H0) � ε contains a technicality made precise in the

proof)

D(ωS
u, ω

S(0)
u ) ≤ D(ωu, ω

(0)
u ) ≤ ‖V ‖∞

ε
+

∆Ω+Ωε

2Ωmin
(2)

where Ωmin and ∆Ω are the minimum, and the difference,

of the dimensions of the support of ω
(0)
u and ωu, and Ωε is

the total number of eigenstates of H and H0 in the intervals

[E,E + ε] and [E +∆− ε, E +∆].

The theorem shows that for any two initial (possibly pure)

states that have a flat energy distribution in the interval

[E,E + ∆] with respect to the Hamiltonians H0 and H with

‖V ‖∞ � ∆ the distance of their reduced dephased states

ω
S(0)
u and ωS

u is small. In particular, assuming an approxi-

mately constant density of states, such that Ωε/(2Ωmin) ≈
2ε/∆ and thus if ∆Ω/Ωmin ≈ 0 the best choice for ε is

ε ≈ (‖V ‖∞∆/2)1/2 which gives

D(ωS
u, ω

S(0)
u ) /

3
√
2

2

(‖V ‖∞
∆

)1/2

. (3)

We come back to the case of a non constant density of states

in Appendix G after introducing the concept of temperature.

Proof. First note that by monotonicity of the trace distance

and the triangle inequality

D(ωS
u, ω

S(0)
u ) ≤ 1

2
‖ωu − ω

(0)
u ‖1 ≤ ‖E − F‖1 +∆Ω

2Ωmin
, (4)

where E and F are the projectors onto the sup-

port of ωu and ω
(0)
u respectively and Ωmin/max =

min /max(rank(E), rank(F )) and ∆Ω = Ωmax − Ωmin. It

remains to bound ‖E−F‖1. Let E = 1−E and F = 1−F ,

then E − F = EF − EF and thus ‖E − F‖1 ≤ ‖EF‖1 +
‖EF‖1. To bound ‖EF‖1 we decompose E = Ei + Ee into

an interior part Ei which is the projector onto the eigenstates

from the interval [E + ε, E + ∆ − ε] and the exterior part

Ee and find ‖EF‖1 ≤ ‖EiF‖1 + ‖Ee‖1 (see Fig. 1). Using

the inequality ‖ · ‖1 ≤ rank(·)‖ · ‖∞, submultiplicativity of

the rank, and that in all realistic situations we can ensure that

rank(Ei) ≤ Ωmin by choosing ε � gaps(H0) not too small

this can be recast into ‖EF‖1 ≤ Ωmin‖EiF‖∞ + rank(Ee).
Finally, from theorem V.II.3.1 in Ref. [19] it follows that

‖EiF‖∞ ≤ ‖V ‖∞/ε. Repeating the argument for ‖EF‖1,

introducing the notation Ωε = rank(Ee) + rank(Fe), and

putting everything together gives the desired result.

The level counting argument (iii) – with is ultimately the

reason for the exponential form ρSGibbs ∝ e−βHS – car-

ries over to the quantum case in a straightforward way in

the absence of coupling between system and bath [2, 6] and

with a bit more work one can also obtain a rigorous gen-

eral trace norm error bound. If the number of states of the
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Figure 1. Definition of the projectors used in the proof of theorem 1.

bath ΩB
∆(E

B) in the interval [EB , EB + ∆] is such that

the proportion ΩB
∆(E − ES

k )/
∑

l Ω
B
∆(E − ES

k ) is close to

e−βES
k /
∑

l e
−βES

l for the given E and ∆ and some β, then

the distance of D(ω
S(0)
u , ρSGibbs) is small. This can be guar-

anteed under a set of natural assumptions that are satisfied

by a wide range of natural quantum many-body systems and

that resemble the ones commonly used in classical statistical

physics, such as continuous approximability and exponential

increase of the density of states (Appendix A). In particular,

for a bath consisting of m non-interacting spin-1/2 particles

with a slightly varying on site field strength and average local

energies of 0 and η one finds (Appendix B)

D(ω
S(0)
u , ρSGibbs) ≤

1

2
(e

4
‖HS‖2∞

η2m −1) + C (5)

with C exponentially small in the bath size. We will use this

bath later in our algorithm. For such a bath, the assumption of

uniform density of states used in the derivation of Eq. (3) does

not hold anymore. A discussion of theorem 1 for the exponen-

tial density of states is presented in Appendix G. In summary,

Eq. (5), theorem 1, and the results on dynamical equilibration

and random states from the unitary invariant measure derived

in Ref. [1, 5] lead to the following conclusions:

Theorem 2. (Kinematic) Almost all pure states ψ from a mi-

crocanonical subspace corresponding to an energy interval

[E,E+∆] of a weakly interacting, sufficiently large quantum

system are locally close to a Gibbs state in the sense that for

every gaps(H0) � ε < ∆/2 the probability that

D(ψS , ω
S(0)
u ) ≥ 2dS√

Ωmin

+
‖V ‖∞
ε

+
∆Ω+Ωε

2Ωmin
+ ε′ (6)

drops of exponentially with Ωmin ε
′2. (Dynamic) Moreover, if

the Hamiltonian in addition has non-degenerate energy gaps

[5], all initial states ψu,0 with a flat energy distribution in

the interval locally equilibrate towards ρSGibbs even if they are

initially far from equilibrium in the sense that

D(ψu,t, ω
S(0)
u ) ≤ dS

2
√
Ωmin

+
‖V ‖∞
ε

+
∆Ω+Ωε

2Ωmin
. (7)

Both inequalities are robust against deviations from the rect-

angular distribution. If the bath has an exponentially increas-

ing density of states basically only smoothness and a sharp

cutoff towards higher energies is needed (for details see Ap-

pendix B).

“Artificial thermalization”: A quantum algorithm for

Gibbs state preparation. It follows from Eq. (5) and theo-

rem 1 that all one has to do to prepare a Gibbs state is to pre-

pare a state close to ωu or ω
(0)
u on a suitable combination of

system plus bath. This is what the quantum circuit shown in

Fig. 2 does, without using any knowledge about the eigen-

states of the Hamiltonian. It requires two registers. The first

registerR consists of r qubits initially in |0〉 and is used to per-

form quantum phase estimation. The second register Q holds

quantum system plus bath and it is put into a rectangular state

by performing the following steps:

1. Initialization. The register of the system is initialized

into the completely mixed state [24], that is,

ρ1 =
1

d

d∑

k=1

|Ek〉〈Ek| ⊗ |0〉〈0|r , (8)

where d is the dimension of the total Hilbert space.

2. Partial quantum phase estimation. Second a new form

of quantum phase estimation is performed, which comprises

three steps: the application of r Hadamard gates on the qubits

of the register, the application of controlled-U operations on

the second register (with U raised to successive powers of

two), and an inverse Fourier transform on the first register.

After this operation, the state of the registers is,

ρ2 = UQPE (ρ1 ⊗ |0〉〈0|r)U †
QPE (9)

=
1

d

2r−1∑

s,s′=0

d∑

k=1

αs(ϕk)α
∗
s′(ϕk)|Ek〉〈Ek| ⊗ |s〉〈s′| ,

where ϕk = Ek/‖H‖∞ is the phase corresponding to |Ek〉
and αs(Ek) = 1

2r
1−exp(2π i(2rϕk−s))
1−exp(2π i(ϕk−s/2r)) is the amplitude of a

probability distribution peaked around the value s that best

approximates ϕk in binary format.

3. Measurement. Measuring the first q qubits of R, some

value s∗ is obtained and the system is left in the state

ρ3 ∝
s∗+∆∗∑

s,s′=s∗

d∑

k=1

αs(ϕk)α
∗
s′(ϕk)|Ek〉〈Ek| ⊗ |s〉〈s′| , (10)

where ∆∗ = 2r−q is the number of states of the ancilla regis-

ter compatible with the measurement. By choosing r one can

determine the width ∆ = ‖H‖∞2−r∆∗ of the rectangular

state that is prepared. The measured value of s∗ determines

the energy E = ‖H‖∞2−qs∗ of the rectangular state, and

thereby the temperature of the Gibbs state. To thermalize the

subsystem at some particular temperature, the previous steps

must be repeated until the desired energy is measured. This

prevents us from preparing thermal states at very low temper-

atures since the probability P (s∗) of getting outcome s∗,

P (s∗) =
d∑

k=1

s∗+∆∗∑

s=s∗

|αs(ϕk)|2 ' Ω∆(E)

d
, (11)

is proportional to the number of states Ω∆(E) in the corre-

sponding interval, which decreases exponentially with the in-

verse temperature β (see Appendix C). This is not a deficit of
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Figure 2. Quantum circuit that generates a dephased rectangular state

ω
(0)
u . I is the initialization gate, H are Hadamard gates, Uτ = U2τ ,

U = exp(− iH0/‖H0‖∞) with H0 = HS + HB , and F† is the

inverse Fourier transform.

the algorithm, for otherwise QMA-hard problems could be ef-

ficiently solved. Any general algorithm will presumably have

this feature [20]. The final state of Q is

ωQC = TrR ρ3 ∝
d∑

k=1

(
s∗+∆∗∑

s=s∗

|αs(ϕk)|2
)

|Ek〉〈Ek| . (12)

For large enough r, this state is close to the desired state ωu

with E = ‖H‖∞2−qs∗ and ∆ = ‖H‖∞2−r∆∗. The precise

deviation ε of ωS
QC from ρSGibbs,

ε = D(ωS
QC , ρ

S
Gibbs) ≤ D(ωQC , ω

(0)
u ) +D(ω

S(0)
u , ρSGibbs).

(13)

depends on the density of states of system plus bath. A good

candidate for the bath is the system of m non interacting spin-

1/2 particles discussed before (Appendix B) and we give ex-

plicit results for the errors and the complexity of our algorithm

for this bath:

Algorithm. For any chosen λ > 0 and any given inverse tem-

perature β and system Hamiltonian HS , the algorithm pre-

sented in Fig. 2, using the bath with m spin-1/2 particles and

energy scale η =
√

λ/m‖HS‖∞ discussed before (Appendix

B), prepares the system S of n qubits in a state within trace

norm distance bounded by

ε ≤ 2q−r+2
(
1 + ln(2r−q)/π2

)
e

2
λ
+β‖HS‖∞+

λ‖HS‖2∞β2

8

+
1

2
(e

4
λ −1) + C (14)

with C exponentially small in m, to a Gibbs state ρSGibbs with

a temperature in the interval [β − δβ, β + δβ], where

δβ ≤ 2−q+2

(
λ

m

)1/2
1

‖HS‖∞

(

1 +
1√
mλ

)

. (15)

This is achieved using r ancilla qubits and running the algo-

rithm an average number of

] runs ≤ 2q
( π

2m

)1/2

e
2
λ
+β‖HS‖∞+

λ‖HS‖2∞β2

8 (16)

times, where each run requires the application of n + 2r
Hadamard gates, r controlled single qubit gates, n + q with

q < r single qubit measurements and 2r controlled unitary

time evolutions under H0 = HS +HB for a time 1/‖H0‖∞.

Notice that, as the bath is a model of uncoupled spins, the

time evolution under HB can be implemented with m gates.

In practice, in absence of an oracle for the Hamiltonian of

the system, the error produced to perform the U gate carries

a second source of error that comes from the Trotter-Suzuki

approximation. Nevertheless, this error can be suppressed at

a polynomial cost for local Hamiltonians [18, 21].

The two contributions to the trace distance error ε (13) are

computed in Appendices B and E, the average number of runs

is computed in Appendix E and the error in the temperature

comes from the discrete nature of energy measurement vie

quantum phase estimation and is calculated in Appendix D.

As is clear form Fig. 2, we need
∑r−1

τ=0 2
τ = 2r, U gates and

the part of the circuit that does not correspond to the controlled

time evolution, i.e., the initialization and the inverse Fourier

transform, only requires the implementation of n + m + 2r
Hadamard gates, r controlled single qubit gates, and n+m+q
single qubit measurements.

Conclusions. Firstly, a set of sufficient conditions for

thermalization in quantum mechanics has been presented.

These conditions are basically a direct translation of the stan-

dard assumptions from classical statistical physics. Along the

way, a perturbation argument for realistic weak coupling has

been proven that we expect to have significant applications

beyond the scope of this article. Secondly, a quantum algo-

rithm for preparing thermal states has been presented. For a

fixed large λ, the error of the algorithm can be made small

by choosing an ancilla register of size O(β2‖HS‖2∞) for low

temperatures. However, this does not contradict hardness re-

sults on problems like the local Hamiltonian problem due to

the scaling of the runtime in β‖HS‖∞. It constitutes an in-

teresting perspective to fully flesh out the tightness of all in-

volved bounds, and to engineer suitable baths that give rise to

particularly efficient quantum algorithms.
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A Reduced density matrix of the dephased rectangular

decoupled state – the general case

In this section, the distance between the subsystem of the

dephased rectangular decoupled state and the Gibbs state

D(ω
S(0)
u , ρSGibbs) is computed. The discussion is similar to

that in [6].

As all eigenvectors of H0 are given by the tensor product

of the eigenbasis of HS and HB , |En〉 = |ES
k 〉 ⊗ |EB

q 〉, it

is possible to trace the degrees of freedom of the bath of the

decoupled rectangular state to get

ω
S(0)
u = TrB ω

(0)
u =

dS∑

k=1

pk|ES
k 〉〈ES

k | , (17)

with

pk =
ΩB

∆(E − ES
k )

∑

k Ω
B
∆(E − ES

k )
. (18)

Here, ΩB
∆(E − ES

k ) denotes the number of states of the bath

with an energy contained in the interval [E−ES
k , E−ES

k +∆].
For simplicity we assume that ‖HS‖∞ ≤ E. Notice that the

probabilities {pk} only depend on the shape of the spectrum

of the bath. We aim at bounding the trace distance

D(ω
S(0)
u , ρSGibbs) =

1

2

∑

k

|pk − qk| , (19)

where {qk} are the probabilities of the Gibbs state in its eigen-

basis,

qk =
e−βES

k

ZQ
, (20)

with ZQ =
∑

i e
−βES

i .

Let us define a function S as the logarithm of the number

of states of the bath

S(E) = logΩB
∆(E) . (21)

The Hilbert space of the bath is finite dimensional and thus the

spectrum of the bath is discrete, from now on it is however as-

sumed that the bath is large enough such that S : R+ → R
+

can be well approximated by a twice differentiable function

s : R+ → R
+. For natural systems and reasonable energy

ranges the additional error from this approximation is expo-

nentially small in the size of the bath. For the sake of concise-

ness we ignore such exponentially small errors. We discuss

this continuous approximation more closely in Appendix B.

From now on we will hence focus on s(E) = log ΞB
∆(E),

where ΞB
∆ it the smooth approximation of ΩB

∆. Taylor’s the-

orem ensures that for every k there exists some ξk ∈ [E −
ES

k , E], such that

s(E − ES
k ) = s(E)− ∂s

∂E
(E)ES

k +
∂2s

∂E2
(ξk)E

S
k

2

= s(E)− βES
k + γk , (22)

where

β =
∂s

∂E
(E) (23)
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is the inverse temperature and

γk =
∂2s

∂E2
(ξk)(E

S
k )

2. (24)

A linear expansion of s is equivalent to an exponential fit of

the smoothed number of states of the bath ΞB
∆(E − ES

k ),

ΞB
∆(E − ES

k ) = es(E)−βES
k +γk . (25)

Thus, the probabilities {pk} can be written as

pk =
ΞB
∆(E − ES

k )
∑

i Ξ
B
∆(E − εi)

=
e−βES

k +γk

ZP
, (26)

where ZP =
∑

i e
−βεi+γi . Therefore, the distance between

ω
S(0)
u and the Gibbs state depends on how well the density

of states of the bath is approximated by an exponential curve.

The difference between the probabilities reads

pk − qk =
e−βES

k

ZQ
︸ ︷︷ ︸

qk

(
ZQ

ZP
eγk −1

)

, (27)

where the fraction ZQ/ZP can be rewritten as

ZQ

ZP
=
∑

k

e−βES
k +γk

ZP
e−γk =

∑

k

pk e
−γk . (28)

Introducing the notation

γmin = min
k

min
ξk∈[E−ES

k
,E]
γk(ξk) (29)

γmax = max
k

max
ξk∈[E−ES

k
,E]
γk(ξk) (30)

we can write

|pk − qk| = qk

∣
∣
∣
∣
∣

(
∑

k

pk e
−γk

)

eγk −1

∣
∣
∣
∣
∣

≤ qk
(
eγmax−γmin −1

)
. (31)

The trace distance between the reduced dephased decoupled

rectangular state ω
S(0)
u and the Gibbs state is thus bounded

from above by

D(ω
S(0)
u , ρSGibbs) ≤

1

2

(
eγmax−γmin −1

)
+ C , (32)

where C is exponentially small in the bath size. We explicitly

bound γmax − γmin for a specific bath in Appendix B.

B Reduced density matrix of the dephased rectangular

decoupled state – a specific model

In order to have a more explicit expression for (32) let us

consider a particular model for the bath. We will also use this

bath for the algorithm presented in the last part of the article.

We start with the natural choice of m non-interacting un-

coupled spin-1/2 particles with energies 0 and η. The spec-

trum of this model is discrete and energy can take integer val-

ues between 0 and ‖HB‖∞ = ηm. The system is highly

degenerate and the number of states with energy k follows a

binomial distribution
(
m
k

)
.

This degeneracy makes it impossible to find a sufficiently

good smooth approximation ΞB
∆(E) for the number of states

ΩB
∆(E) such that even for intervals whose width ∆ scales like

a d−κ with 0 < κ < 1 the error in the approximation of the

local density (ΞB
∆(E) − ΩB

∆(E))/d goes to zero for large d.

That is, the continuous approximation would cause additional

errors that would not go down exponentially fast with the bath

size.

Therefore we need to assume that the degeneracy of the

levels are lifted by a suitable perturbation. As we are only

concerned about the spectrum and not the eigenstates of the

bath basically any perturbation of adequate strength, such as

a basically arbitrary weak interaction, will be sufficient to do

this, such that this is not a problem for implementations. A

convenient way to perturb the model for a theoretical study is

to replace the fixed local field strength by a normal distributed

random field strength such that on average the energy of the

local excited state is still η above the local ground state. If the

width of the normal distribution is chosen in a suitable way,

instead of the degenerate subspaces with energies at integer

multiples of η we get, with overwhelmingly high probability,

a density of states that can be well approximated by

%(E′) =
1

η
2m
(

2

πm

)1/2

e−2m( E′

ηm
− 1

2 )
2

(33)

in the aforementioned sense.

Hence, the smoothed number of states in the interval

[E,E +∆] is given by

ΞB
∆(E) =

∫ E+∆

E

%(E′)dE′ . (34)

Our aim is to bound γmax − γmin in Eq. (32) for this model.

To do this, we first consider the case when ∆ � ‖HB‖∞,

such that

ΞB
∆(E) ' ∆

η
2m
(

2

πm

)1/2

e−2m( E′

ηm
− 1

2 )
2

. (35)

We can easily compute the second derivative of the logarithm

of the above expression and find

∂2s

∂E2
= − 4

η2m
. (36)

If ∆ is not much smaller than ‖HB‖∞, s(E) deviates from

the parabolic form. But, larger ∆ only make the curvature of

s(E) smaller. In general we have

0 >
∂2s

∂E2
> − 4

η2m
, (37)
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and thus γmax − γmin ≤ γmax ≤ 4‖HS‖2∞/(η2m) so that

D(ω
S(0)
u , ρSGibbs) ≤

1

2

(

e
4

‖HS‖2∞
η2m −1

)

+ C, (38)

where C is exponentially small in the bath size. In natural

situations the right hand side of the above equation will be

very small as ‖HS‖2∞ � η2m.

The rectangular states are a quite artificial class of states.

So what happens if instead of ω
S(0)
u we take states with a dif-

ferent energy distribution? Will we still get something close

to a Gibbs state as long as the width of the energy distribu-

tion is not to small and the density of states is exponentially

increasing? The exponential increase in the density of states

ensures that most of the contribution to ω
(0)
u comes from the

upper edge of the interval E +∆ in the case of a rectangular

distribution. Thus, it can be expected that one will get a state

that is close to a Gibbs state for any energy distribution that

is sufficiently smooth, and has a sufficiently sharp cutoff to

higher energies. Where by sufficiently sharp we mean that it

must drop from a value much larger than 1/d to a value much

smaller than 1/d in an energy interval that is small compared

to (∂2s/∂E2)−1/2. The smoothness is required as for cer-

tain systems that violate the so called eigenstate thermaliza-

tion hypothesis (ETH) [14] details of the energy distribution

can have a huge impact on certain properties of the state. That

smoothness of the energy distribution is required to guarantee

thermalization in such systems can be seen for example in the

model studied in [9].

C Complexity of the algorithm at low temperatures

In this section, we discuss how the number of times the

algorithm must be repeated before the energy window cor-

responding to the desired temperature is hit depends in the

temperature. As we are only interested in the number of rep-

etitions we can assume that the algorithm runs “perfectly” in

that it generates exactly a rectangular state with fixed width

∆ at some position E of the spectrum. Furthermore we are

only interested in cases where the reduced state of the rect-

angular state can be guaranteed to be close to a Gibbs state,

i.e., we may assume that the spectrum of the bath is dense

enough such that the number of states of the bath in the inter-

val [E,E +∆], can be to well approximated by a continuous,

twice differential function ΞB
∆(E) that increases exponentially

to higher energies.

The probability of getting a position E is given by

P (E) =
Ξ∆(E)

d
=

1

d

dS∑

k=1

ΞB
∆(E − ES

k ) , (39)

Using that the density of states of the bath can be locally ap-

proximated by an exponential we obtain

P (E) ≈ 1

d

dS∑

k=1

e−βES
k ΞB

∆(E) . (40)

Then, the probability of attaining a positionE can be bounded

from above by

P (E) ≈ 1

dS

dS∑

k=1

e−βES
k PB

∆ (E) ≤ e−βES
1 PB

∆ (E) ≤ e−βES
1 ,

(41)

with PB
∆ (E) = ΞB

∆(E)/dB ≤ 1 and ES
1 the gap of the sys-

tem. The number of times that the program must be run on

average in order to get the rectangular state at the position E
is thus lower bounded by

] runs ≈ 1

P (E)
≥ eβE

S
1 . (42)

This last equation shows that generically, it is exponentially

hard to go to low temperatures. This is to be expected, of

course, as no structure of the Hamiltonian is being used, and

generic local Hamiltonian systems can presumably not be effi-

ciently cooled to arbitrarily close to their ground state (which

would then efficiently solve QMA-hard problems on a quantum

computer [20]). Needless to say, for specific Hamiltonians,

with some additional structure, an algorithm can well be more

efficient. The coefficient of the exponential is related to the

features of the spectrum at low energies. In the case in which

there is a gap the ground state could encode the solution of a

satisfiability problem that is expected to be a hard problem.

D Temperature and error in the temperature for the bath

described in Appendix A

In order to give an explicit expression for D(ωQC , ωu), the

density of states of the total system (system + bath) is re-

quired. Although the density of states of the subsystem is

completely unknown (the Hamiltonian of the system is a black

box for us), if the a particular model for the bath is taken, it is

still possible to give a bound for D(ωQC , ωu) in terms of the

operator norm ‖HS‖∞.

If we take all possible exchanges of energy between the sys-

tem and bath into account, but treat them together as a closed

system, the density of states of the whole set can be generally

written as

%(E) =

dS∑

k=1

%B(E − ES
k ) (43)

where ES
k are the energies of the system and the assumption

E ≥ ‖HS‖∞ has been used.

Next, let us consider the bath described in Appendix B. The

main motivation to focus on such a model – apart from it being

physically very plausible as an approximation to very weakly

coupled quantum systems – is its efficient simulability and the

fact that its density of states can be very well locally aproxi-

mated by an exponential curve. In particular, the smooth den-

sity of states of the bath reads

%B(E) = dB
1

η

(
2

πm

)1/2

e−2m( E
ηm

− 1
2 )

2

, (44)
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where dB = 2m is the dimension of the Hilbert space of the

bath, η is the energy unit of one excitation, m is the number

of qubits of the bath register, and 0 ≤ E < ‖HB‖∞ = ηm.

After running the algorithm, a state close to the rectangular

state is obtained at the positionE = ϕ̃‖H‖∞ of the spectrum.

The system is then thermalized at an inverse temperature

β =
d ln ΞB

∆(E)

dE
=

4

η

(
1

2
− E

ηm

)

=
4

η

(
1

2
− ϕ̃

(

1 +
‖HS‖∞
‖HB‖∞

))

. (45)

In practice, β is an input of our algorithm and, both the

number of qubits of the ancilla register r and the number of

qubits q that are measured in the end, are parameters that must

be determined before running the circuit. The algorithm will

be run repeatedly until the value ϕ̃ corresponding to the de-

sired β is obtained. For the density of states considered here,

this value ϕ̃ is

ϕ̃ =
1

1 + ‖HS‖∞

‖HB‖∞

(
1

2
− ηβ

4

)

. (46)

It follows from Eq. (46) that

δβ ≤ 4c

η

(

1 +
‖HS‖∞
‖HB‖∞

)

, (47)

as c = 2−q , to reach a given precision δβ in the temperature

it is sufficient to choose

q =

⌈

log2
‖H‖∞
∆

⌉

=







− log2




ηδβ

1 + ‖HS‖∞

‖HB‖∞



+ 2







.

(48)

E Error and average number of runs of the quantum algorithm

In this section the error of the quantum algorithm is derived

and a bound on the average number of repetitions that are nec-

essary to reach the desired energy is given. The error

ε = D(ωS
QC , ρ

S
Gibbs) ≤ D(ωQC , ω

(0)
u ) +D(ω

S(0)
u , ρSGibbs)

(49)

consists of two components. The deviation of the reduced

rectangular state from the Gibbs state D(ω
S(0)
u , ρSGibbs) that

has been calculated in Appendix A and B. In the following we

bound the deviation of the final sate of the algorithm from the

rectangular state D(ωQC , ω
(0)
u ). Again we start by consider-

ing general baths and then derive a more explicit expression

for the bath described in Appendix B. The main problem that

we will have to deal with while bonding D(ωQC , ω
(0)
u ) is that

the density of states of the bath is highly non uniform. The

partial phase estimation procedure prepares a state whose en-

ergy distribution is very close to a rectangular energy distri-

bution, but due to the highly non uniformity of the density of

states this is not sufficient to guarantee a good approximation

to a rectangular state. Although the partial phase estimation

yields a state whose energy distribution becomes, in one norm,

exponentially close to rectangular by increasing r a polyno-

mially large number of ancilla qubits is necessary to ensure a

small trace norm error from the rectangular state as the main

contribution to the error comes form the extremely dense part

of the spectrum even though there the approximately rectan-

gular energy distribution is almost zero. This is a general

problem of quantum phase estimation and not particular to

our algorithm.

We will see that the bounds on the two contributions that

we will find for the bath discussed in Appendix B

D(ω
S(0)
u , ρSGibbs) ≤

1

2

(

e
4

‖HS‖2∞
η2m −1

)

+ C (50)

D(ωQC , ωu) ≤ e
2‖HS‖2∞

η2m
+β‖HS‖∞+ η2mβ2

8 (51)

× 2q−r+2
(
1 + ln(2r−q)/π2

)
+ C

(againC is exponentially small in the bath size) depend on the

energy unit η of the bath. It is convenient to write η in term of

a dimensionless parameter λ > 0

η =

(
λ

m

)1/2

‖HS‖∞ , (52)

because then the two errors can be written in the form:

D(ω
S(0)
u , ρSGibbs) ≤

1

2
(e

4
λ −1) + C (53)

D(ωQC , ωu) ≤ e
2
λ
+β‖HS‖∞+

λ‖HS‖2∞β2

8 (54)

× 2q−r+2
(
1 + ln(2r−q)/π2

)
+ C

To reduce the trace distance D(ω
S(0)
u , ρSGibbs) it is favorable

to choose a large λ. Intuitively this captures the fact that the

energy content in the bath must be much larger than that of

the system in order to get a Gibbs state. However, this also in-

creases the error in the approximation of the rectangular state

by the algorithm because phase estimation on a system with a

more dense spectrum is harder. This increase of the error can

however be compensated by increasing the accuracy of the

phase estimation by linearly increasing the number of qubits

r in the ancilla register. Similarly lower temperatures can be

reached by a quadratic increase of the number of ancilla qubits

of order O(β2‖HS‖2∞). As the phase estimation however re-

quires a total number of 2r controlled unitary operations this

comes at an exponential cost in terms of runtime. This is ex-

pected to be a general feature of all algorithms using phase

estimation on many particle systems.

Before we go into the derivation of D(ωQC , ωu) let us

quickly calculate the average number of runs that are required

to get a certain temperature for the bath discussed in Appendix

B in terms of λ. From Eqs. (39) and (42) and the explicit for-

mula for the smoothed number states given in (76) it is easy

to see that

] runs ≤
√

πλ

2

‖HS‖∞
∆

e
2
λ
+β‖HS‖∞+

λ‖HS‖2∞β2

8 . (55)
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Deviation from the rectangular state for a general bath

The trace distance between the state generated by the circuit

ωQC and and the rectangular state ωu can be written in terms

of the one norm distance of the distributions of the diagonal

elements

D(ωQC , ωu) =
1

2

d∑

k=1

|qk − pk| , (56)

where the {qk} and {pk} are the eigenvalues of ωQC and ωu

respectively. These probability distributions can be defined as

qk =
FN (ϕk − ϕ̃)

ZF
, (57)

pk =
G(ϕk − ϕ̃)

ZG
, (58)

where ϕk = Ek/‖H‖∞ are the phases corresponding to the

eigenvalues of the Hamiltonian, ZF =
∑d

j=1 FN (ϕj−ϕ̃) and

ZG =
∑d

j=1G(ϕj − ϕ̃) are normalization constants, and the

functions FN and G read

FN (ϕ) =
1

cN

cN∑

k=0

fN

(

ϕ− k

N

)

(59)

G(ϕ) =
1

c
(Θ(ϕ)−Θ(ϕ− c)) , (60)

with

fN (ϕ) = N |α0(ϕ)|2 =
1

N

sin2(πNϕ)

sin2(πϕ)
, (61)

N = 2r, c = ∆/‖H‖∞ = 2−q the relative width of the

energy interval and Θ the step function (see main text). The

phase ϕ̃ = s∗/2
q stands for the position of the rectangular

state in the spectrum (E = ϕ̃‖H‖∞), where s∗ is the outcome

of the measurement and q the number of measured qubits. The

phases ϕk = Ek/‖H‖∞ and therefore 0 ≤ ϕk < 1 for any k.

Notice that both FN and fN are periodic functions with period

1, although they are obviously only considered in the interval

[0, 1[. Both distributions are normalized on this interval.

It is easy to see that Eq. (56) is bounded by

D(ωQC , ωu) ≤
1

ZG

d∑

k=1

|FN (ϕk − ϕ̃)−G(ϕk − ϕ̃)| .

(62)

Notice that ZG = Ω∆(E)/c, where Ω∆(E) is the number of

states in the interval [E,E +∆].
The main problem to estimate Eq. (62) is that both the spec-

trum of the system and the spectrum of the bath are unknown.

Nevertheless, considering that the spectrum of the whole sys-

tem is sufficiently dense it is possible to approximate the up-

per bound in Eq. (62) by an integral. With this aim, let us

decompose the sum (62) into bins of width ‖H‖∞/L

D(ωQC , ωu) ≤
L−1∑

i=0

∑

Ek∈[ j
L
, j+1

L [

h(Ek) , (63)

where,

h(E′) =
1

ZG

∣
∣
∣
∣
FN

(
E′

‖H‖∞
− ϕ̃

)

−G

(
E′

‖H‖∞
− ϕ̃

)∣
∣
∣
∣
,

(64)

is a function introduced to simplify the notation and L is the

number of bins in which the spectrum has been divided. The

idea here is to take an L as large as possible. The only one re-

striction that has to be taken into account is that the number of

energy values in a bin, Ω‖H‖∞/L(j‖H‖∞/L), can be well ap-

proximated by its continuous version Ξ‖H‖∞/L(j‖H‖∞/L)
(compare the discussion of the continuous approximation in

Appendix B). For a bath with a continuous form for the num-

ber of states Ξ∆(E), it is always possible to take an L propor-

tional to the dimension of the Hilbert space d or, at least, to

some power dκ with 0 < κ < 1. Thus, L scales exponentially

with the size of the bath.

As h is a differentiable function, Taylor’s theorem en-

sures that for every bin j there exist some value ξj ∈
[j‖H‖∞/L, (j + 1)‖H‖∞/L[ for which

h(Ek) = h

(
j‖H‖∞
L

)

+ h′(ξj)

(

Ek − j‖H‖∞
L

)

, (65)

where j‖H‖∞/L ≤ Ek < (j + 1)‖H‖∞/L. Then, the con-

tribution of the j-th bin in Eq. (63) can be bounded from above

by

∑

Ek∈[ j
L
, j+1

L [

h(Ek) ≤ Ω ‖H‖∞
L

(
j‖H‖∞
L

)

(66)

×



h

(
j‖H‖∞
L

)

+ sup
ξj∈[ j

L
, j+1

L [
h′(ξ)

‖H‖∞
L



 .

The last term in the parenthesis in Eq. (66) decreases with

L and thus is exponentially small in the bath size. This can

be verified with a lengthy, but straightforward calculation.

The main contribution to the error of the circuit is given by

the product Ωh. The same is true for the approximation of

Ξ∆(E) by Ω∆(E), its error is negligible with respect to the

bound given by Eq. (66).

In order to transform Eq. (63) into an integral, let us again

introduce the density of states from the continuous number of

states Ξ∆(E),

%(E′) = lim
δ→0

Ξδ(E
′)

δ
. (67)

The number of states can then be written in terms of the den-

sity of states as

Ωδ (E
′) = % (E′) δ +O(δ2) . (68)

Putting Eqs. (63), (66) and (68) together, the error of the cir-

cuit can be bounded from above by

D(ωQC , ωu) ≤
L−1∑

i=0

h

(
i‖H‖∞
L

)

%

(
i‖H‖∞
L

) ‖H‖∞
L

+O
(
L−1

)
. (69)
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Notice that the upper bound of the previous equation con-

verges to an integral for L → ∞ with deviations that scale

as O(L−1). Thus, the trace distance between ωQC and ωu is

bounded from above by

D(ωQC , ωu) ≤ ‖h %‖1 +O
(
L−1

)
, (70)

where

‖h %‖1 =

∫ ‖H‖∞

0

dE′h (E′) %(E′) . (71)

We will bound ‖h %‖1 for the model described in Appendix B

in the next section.

Deviation from the rectangular state for the bath described in

Appendix B

Next, the error of the circuit for a bath as described in Ap-

pendix A is bounded. In particular, Eq. (70) is bounded for

a bath with the density of states given by Eq. (44). The one

norm ‖h %‖1 can be trivially bounded by

‖h %‖1 ≤ c

Ξ∆(E)
‖FN −G‖1 sup

0≤E′≤‖H‖∞

%(E′) , (72)

where the definition of h given in (64) has been used. If the

density of states %(E), defined in Eq. (43), is written in terms

of the inverse temperature given in Eq. (45),

%(E) =

dS∑

k=1

e
−

2(ES
k

)2

η2m e−βES
k

× dB
1

η

(
2

πm

)1/2

e−η2mβ2/8 , (73)

it is easy to see that its maximum value corresponds to β = 0
(We only consider positive temperatures here) and the supre-

mum can be bounded by

sup
0≤E′≤‖H‖∞

%(E′) ≤ d

η

(
2

πm

)1/2

, (74)

where d = dSdB is the dimension of the Hilbert space of the

total system. Then, the one norm of ‖h %‖1 is bounded from

above by

‖h %‖1 ≤ c

Ξ∆(E)

d

η

(
2

πm

)1/2

‖FN −G‖1 . (75)

To give a more explicit expression, the number of states

Ξ∆(E) can be lower bounded by

Ξ∆(E) =

∫ E+∆

E

%(E′)dE′ ≥ %(E)∆ (76)

≥ ∆d

η

(
2

πm

)1/2

e
−2‖HS‖2∞

η2m
−β‖HS‖∞− η2mβ2

8 ,

where it has been assumed that E is in a position of the spec-

trum with positive temperature and therefore %(E) is an in-

creasing function. Then, the trace distance D(ωQC , ωu) is

bounded by

D(ωQC , ωu) ≤ e
2‖HS‖2∞

η2m
+β‖HS‖∞+ η2mβ2

8
‖FN −G‖1

‖H‖∞
+O(L−1) . (77)

In order for this error to become small the one norm ‖FN −
G‖1 must be made small enough such that it compensates the

exponential prefactors. As we will see in the next section this

can be achieved by using a polynomially large ancilla register

R.

One norm between FN and G

The one norm between FN and G is defined as

‖FN−G‖1 =

∫ ‖H‖∞

0

∣
∣
∣
∣
FN

(
E′

‖H‖∞

)

−G

(
E′

‖H‖∞

)∣
∣
∣
∣
dE′ ,

(78)

where FN and G are defined in (59) and (60). By a simple

change of variables it is easy to show that

‖FN −G‖1
‖H‖∞

=

∫ 1

0

|FN (ϕ)−G(ϕ)| dϕ , (79)

Remember that both FN (ϕ) and G(ϕ) are normalized on the

interval [0, 1] and that G(ϕ) is a step function that is non-zero

only in the interval [0, c[ and that in this interval FN (ϕ) <
G(ϕ) = 1/c. Using this, the previous integral can be rewritten

as

‖FN −G‖1
‖H‖∞

= 2

∫ 1

c

dϕFN (ϕ) (80)

=
2

cN

cN∑

k=0

∫ 1

c

dϕfN

(

ϕ− k

N

)

.

Due to the symmetry and periodicity of fN , the contribution

to the previous integral of the right tail of fN (ϕ−k/N) is the

same as the contribution of the left tail of fN (ϕ− (c− k/N))
for k/N ≤ c,

∫ k
N

+ 1
2

c

dϕfN

(

ϕ− k

N

)

=

∫ 1

c− k
N

+ 1
2

dϕfN

(

ϕ− c+
k

N

)

.

This implies that

‖FN −G‖1
‖H‖∞

=
4

cN

cN∑

k=0

∫ k
N

+ 1
2

c

dϕfN

(

ϕ− k

N

)

. (81)

The integral of the previous equation can be bounded by

∫ k
N

+ 1
2

c

dϕfN

(

ϕ− k

N

)

≤ cot (π(c− k/N))

πN
, (82)
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where the bound

fN

(

ϕ− k

N

)

≤ 1

N sin2
(
ϕ− k

N

) (83)

has been used. Therefore, the distance between the functions

FN and G can be bounded by

‖FN −G‖1
‖H‖∞

≤ 4

cN

(

1

2
+

cN−1∑

k=0

cot (π(c− k/N))

πN

)

,

(84)

where the sum has been split up in the k = cN case, which

is exactly 1/2, and the rest. The sum of the previous equation

can be bounded in two steps by

cN∑

k=1

π

N
cot

(
πk

N

)

≤ π

N
cot
( π

N

)

+

∫ c

1
N

du cot(πu)

≤ 1 + ln (cN) . (85)

Thus, the one norm between FN and G is bounded by

‖FN −G‖1
‖H‖∞

≤ 4

π2

1

cN

(
π2

2
+ 1 + ln(cN)

)

, (86)

where as before N = 2r, c = ∆/‖H‖∞ = 2−q . Inserting

this into (77) we get

D(ωQC , ωu) ≤ e
2‖HS‖2∞

η2m
+β‖HS‖∞+ η2mβ2

8 (87)

× 2q−r+2
(
1 + ln(2r−q)/π2

)

up to errors exponentially small in the bath size. This com-

pletes the discussion of an upper bound of the error made in

the quantum algorithm.

F Discussion of the argument presented in Ref. [17]

Ref. [17] presents a novel approach towards thermalizing

quantum systems using an iterative approach, in which pre-

thermalized parts are put together in a suitable fashion in order

to arrive at a Gibbs state of a quantum system with a local

Hamiltonian. This argument provides a new intuition on how

one can think of thermalizing local quantum systems, different

from a quantum Monte Carlo approach (and the one presented

here). In this appendix, however, we point out a quite serious

challenge that seem to have to be overcome to make such an

argument fully rigorous. The authors of Ref. [17] are aware

of, and have acknowledged the existence of, this challenge.

Each merging step consists of two steps. The first is a prob-

abilistic step that updates the probability weights of the Gibbs

state by means of postselection. The second one aims at ro-

tating the eigenbasis of the old Hamiltonian to the one of the

new Hamiltonian by means of an instance of dephasing. Each

step has as an input a chosen ε > 0, and for the entire algo-

rithm to work, this procedure has to be correct up to errors of

O(ε). In what follows, we refer to the equation numbering of

the preprint v2.

In Eq. (5), perfect dephasing is being achieved when σ →
∞ is taken. This is approximated by imperfect dephasing

based on a choice of a finite σ. From the Dyson series of

second order (6)-(8), it follows that (in the asymptotic nota-

tion)

σ = O(1/ε). (88)

This is not made explicit in the paper, but appears to be cru-

cial. Intuitively speaking, if σ becomes larger, the dephasing

is more exact, but then (6)-(8) can no longer be used.

This step is then used in the procedure following Eq. (13).

A ζ is introduced and dephasing between eigenstates with rel-

ative gap larger than ζ is considered. Then a new Hamiltonian

H̃ is constructed that has this feature: It has the same eigen-

basis as H + εh, but with eigenvalues grouped in bins, such

that the smallest gap between bins is ζ. For the following

procedure to work, one has to take (again in the asymptotic

notation)

σ = θ(1/ζ), (89)

so both σ = O(1/ζ) and σ = Ω(1/ζ) (although only σ =
O(1/ζ) is made explicit, both bounds are actually needed).

This, however, seems to already fix ζ = Ω(ε). So there is

no longer the freedom to have

ζ = ε2β‖h‖2, (90)

which would mean that ζ = θ(ε2). This appears to contra-

dict the above statement. Again, intuitively, σ is “forced to

be small for the Dyson approach to work”, but at the same

time this gives a constraint to ζ which then “implies σ to be

large”. It seems challenging to combine these apparently con-

tradictory constraints in a fully rigorous argument, although

this might well be possible.

G Theorem 1 for an exponential density of states

As we have seen in the main text in theorem 1 the distin-

guishability of the microcanonical states ω
(0)
u and ωu corre-

sponding to an interval [E,E + ∆] of the Hamiltonians H0

and H = H0 + V is bounded by

D(ωS
u, ω

S(0)
u ) ≤ D(ωu, ω

(0)
u ) ≤ ‖V ‖∞

ε
+

∆Ω+Ωε

2Ωmin
, (91)

where Ωmin and ∆Ω are the minimum, and the difference,

of the dimensions of the support of ω
(0)
u and ωu, and Ωε is

the total number of eigenstates of H and H0 in the intervals

[E,E + ε] and [E +∆− ε, E +∆].
In the main text, in order to give a more comprehensible

interpretation to Eq. (91), an approximately constant density

of states was assumed and it was shown that

D(ωS
u, ω

S(0)
u ) /

3
√
2

2

(‖V ‖∞
∆

)1/2

. (92)
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Nevertheless, we have seen that thermal states emerge in

situations where the density of states is locally well approx-

imable by an exponential, and therefore, the assumption of

uniform density of states is not true anymore. Thus, new con-

ditions that ensure the indistinguishability of the microcanon-

ical states ωS
u and ω

S(0)
u must be derived for the exponential

density of states

%(E) =
dΞ∆(E)

dE
∝ eβE . (93)

In order to do this, let us notice that both terms in the upper

bound of Eq. (91) are positive and must be simultaneously and

independently small. For the first term, this trivially implies

that ‖V ‖∞ � ε. To find the condition for the second term, let

us assume that the interaction does not shift excessively the

energy levels such that ∆Ω/Ωmin can be neglected. Thus,

1 � Ωε

2Ωmin
>

∫ E+∆

E+∆−ε
%(E′)dE′

2
∫ E+∆

E
%(E′)dE′

=
1− e−βε

2(1− e−β∆)
, (94)

and the condition βε � 1 is required. These two necessary

conditions can be summarized as

β‖V ‖∞ � βε� 1 . (95)

It is easy to see that they are also sufficient conditions by

bounding Eq. (91),

D(ωS
u, ω

S(0)
u ) ≤ ‖V ‖∞

ε
+

βε

1− e−β∆
, (96)

where it has been used that

Ωε

2Ωmin
<

∫ E+∆

E+∆−ε
%(E′)dE′

∫ E+∆

E
%(E′)dE′

=
1− e−βε

1− e−β∆
≤ βε

1− e−β∆
.

Finally, let us simply choose ε =
√

‖V ‖∞/β. The trace

distance between the microcanonical states ω
(0)
u and ωu then

reads,

D(ωS
u, ω

S(0)
u ) ≤ 2

1− e−β∆

√

β‖V ‖∞ . (97)

Equation (97) ensures the indistinguishability of the inter-

acting and non-interacting microcanonical states as long as

∆ > kBT is not too small and the condition

‖V ‖∞ � kBT , (98)

where kB is the Boltzmann constant and T the absolute tem-

perature, is fulfilled. That is, Eq. (97) gives us a physical in-

tuition about when an interaction is weak in the sense of the-

orem 1. An interaction is weak if it is small with respect to

the thermal energy, i. e. kBT , which sets the intensive energy

content of the system. This reflects the fact that how strong an

interaction feels for the system depends on how much energy

it contains.


