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The problem of how complex quantum systems eventually come to rest lies at the heart of statistical me-

chanics. The maximum entropy principle put forward in 1957 by E. T. Jaynes suggests what quantum states

one should expect in equilibrium but does not hint as to how closed quantum many-body systems dynamically

equilibrate. A number of theoretical and numerical studies accumulate evidence that under specific conditions

quantum many-body models can relax to a situation that locally or with respect to certain observables appears

as if the entire system had relaxed to a maximum entropy state. In this work, we report the experimental obser-

vation of the non-equilibrium dynamics of a density wave of ultracold bosonic atoms in an optical lattice in the

regime of strong correlations. Using an optical superlattice, we are able to prepare the system in a well-known

initial state with high fidelity. We then follow the dynamical evolution of the system in terms of quasi-local den-

sities, currents, and coherences. Numerical studies based on the time-dependent density-matrix renormalization

group method are in an excellent quantitative agreement with the experimental data. For very long times, all

three local observables show a fast relaxation to equilibrium values compatible with those expected for a global

maximum entropy state. We find this relaxation of the quasi-local densities and currents to initially follow a

power-law with an exponent being significantly larger than for free or hardcore bosons. For intermediate times

the system fulfills the promise of being a dynamical quantum simulator, in that the controlled dynamics runs for

longer times than present classical algorithms based on matrix product states can efficiently keep track of.

Ultracold atoms in optical lattices provide highly control-

lable quantum systems allowing to experimentally probe var-

ious quantum many-body phenomena. In this way, ground

state properties of Hamiltonians that play a fundamental role

in the condensed matter context have been investigated un-

der precisely tunable conditions [1–3]. Features that are even

harder to probe in actual condensed matter materials or to

simulate in numerical studies are dynamical ones, including

dynamical properties emerging in adiabatic sweeps [4] and

far from equilibrium [5–11]. In this respect, for example, the

quench from a shallow to a deep optical lattice [6–8] and the

phase dynamics emerging after splitting a one-dimensional

Bose liquid [12] have previously been studied experimentally.

In this article, we report on the direct observation of re-

laxation dynamics in an interacting many-body system using

ultracold atoms in an optical lattice. Starting with a patterned

density with alternating empty and occupied sites in isolated

Hubbard chains, we suddenly switched on the tunnel coupling

along these chains and measured the emerging dynamics in

terms of quasi-local densities, currents and coherences. Both

the initial state preparation and the detection was realized us-

ing a bichromatic optical superlattice [13, 14]. For a wide

range of (repulsive) inter-particle interactions, we find a fast

relaxation of the measured observables to steady state val-

ues which are consistent with a dynamical version of Jaynes’

principle [15]. The timescale of the relaxation cannot be at-

tributed to a classical ensemble average. For short times, we

compare the experimental results to time-dependent density-

matrix renormalization group simulations (t-DMRG, for a re-

view see Refs. [16, 17] and references therein) of the Hamil-

tonian dynamics without free parameters, further developing

the ideas of previous numerical studies [18, 19].

Concept of the experiments. We consider a one-

dimensional chain of lattice sites coupled by a tunnel coupling

J and filled with repulsively interacting bosonic particles. In

the tight-binding approximation, the Hamiltonian takes the

form of a one-dimensional Bose-Hubbard model [3, 20]

Ĥ =
∑

j

[
−J

(
â†j âj+1 + h.c.

)
+
U

2
n̂j(n̂j − 1) +

K

2
n̂jj

2

]
,

where âj annihilates a particle on site j, n̂j = â†j âj reflects

the number of atoms on site j and U is the on-site interaction

energy. The parameter K = mω2d2 (m is the particle mass,

d the lattice spacing) describes an external harmonic trap with

trapping frequency ω ' 2π × 61Hz, present in the experi-

ments.

The experimental sequence can be described in three parts

(see Fig. 1a): (i) At t = 0, the system is initialized in a

density wave represented as a state vector |ψ(t = 0)〉 =
| · · · , 1, 0, 1, 0, 1, · · · 〉, such that only lattice sites with an

even site index are occupied and no tunnel-coupling is present

along the chain. (ii) After the quench to a distinct set of pos-

itive parameters J , U and K, the system follows the non-

equilibrium dynamics of the above Hamiltonian Ĥ . (iii) Fi-

nally, the tunnel-coupling is suppressed again and the proper-

ties of the evolved state vector |ψ(t)〉 are read out.

We started our experiments by loading a BEC of about

45× 103 87Rb atoms in the |F = 1,mF = −1〉 Zeeman level

into a 3D optical lattice formed by retroreflected laser beams

of wavelength λxl = 1530 nm along one direction (“long lat-

tice”) and λy,z = 844 nm along the other two. In this loading

we were crossing the transition to a Mott-insulator which re-

sulted in an occupation of not more than one particle per site.
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FIG. 1. Relaxation of the density pattern. (a) Concept of the exper-

iment: after having prepared the density wave |ψ(t = 0)〉 (i), the

lattice depth was rapidly reduced to enable tunneling (ii). Finally,

the properties of the evolved state were read out after all tunneling

was suppressed again (iii). (b) Even-odd resolved detection: parti-

cles on sites with odd index were brought to a higher Bloch band. A

subsequent band-mapping sequence was used to reveal the odd- and

even-site populations [13, 14]. (c) Integrated band-mapping profiles

versus relaxation time t for h/(4J) ' 0.9ms, U/J = 5.16(7) and

K/J ' 9 × 10−3. (d) Odd-site density extracted from the raw data

shown in c. The shaded area marks the envelope for free Bosons

(light grey) and including inhomogeneities of the Hubbard parame-

ters in the experimental system (dark grey).

Finally we added to the long lattice another optical lattice with

wavelength λxs = 765 nm = λxl/2 (“short lattice”) with the

relative phase between the two adjusted to load every second

site of the short lattice [14, 21]. Completely removing the

long lattice gave an array of practically isolated 1D density

waves |ψN 〉 = | · · · , 1, 0, 1, 0, 1, · · · 〉 – thus realizing step (i)

– with a distribution of particle numbers N and thus lengths

L = 2N − 1 given by the external confinement. For our pa-

rameters, we expect chains with a maximal particle number of

Nmax ' 43 and a mean value of N̄ ' 31 (see Supplementary

Material for details on the loading procedure).

To initialize the many-body relaxation dynamics of step (ii),

we quenched the short-lattice depth to a small value within

200µs, allowing the atoms to tunnel along the x-direction.

After a time t, we rapidly ramped up the short lattice to its

original depth, thus suppressing all tunneling. Finally, we

read out the properties of the evolved state in terms of den-

sities, currents and coherences in step (iii). Note that in the

experiments we always measured the full ensemble average

X(t) = E{N}〈ψN (t)|X̂|ψN (t)〉 of an observable X̂ over the

array of chains (denoted by the averaging operator E{N}),

rather than the expectation value for a single chain with N
particles.

Relaxation of quasi-local densities. We first discuss mea-

surements of the density on sites with either even or odd index.

After the time evolution, we transferred the population on odd

sites to a higher Bloch band using the superlattice and detected

these excitations employing a band-mapping technique (see

Fig. 1b) [13, 14]. Fig. 1c shows the integrated band-mapping
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FIG. 2. Relaxation of the local density for different interaction

strengths. We plot the measured traces of the odd-site population

nodd(t) for four different interaction strengths U/J (circles). The

solid lines are ensemble-averaged results from t-DMRG simulations

without free parameters. The dashed lines represent simulations in-

cluding next-nearest neighbor hopping with a coupling matrix ele-

ment JNNN/J ' 0.12 (a), 0.08 (b), 0.05 (c) and 0.03 (d) calculated

from the single-particle band structure.

profiles as a function of relaxation time for h/(4J) ' 0.9ms,
U/J = 5.16(7) and K/J ' 9 × 10−3. We plot the resulting

traces nodd(t) in Fig. 1d. We generally observe oscillations

in nodd with a period T ' h/(4J) which rapidly dampen out

within 3-4 periods to a steady value of ' 0.5. The same qual-

itative behavior is found in a wide range of interactions (see

Fig. 2).

We performed t-DMRG calculations, keeping up to 5000
states in the matrix-product state simulations (solid lines in

Fig. 2). The Bose-Hubbard parameters used in these sim-

ulations were obtained from the respective set of experi-

mental control parameters. Furthermore, we took into ac-

count the geometry of the experimental setup by perform-

ing the corresponding ensemble average E{N} over chains

with different particle numbers N (see Supplementary Ma-

terial). For the times accessible in the simulations, these av-

erages differ only slightly from the traces obtained for a sin-

gle chain with the maximal particle number Nmax = 43 of

the ensemble (see Supplementary Material). For interaction

strengths U/J . 6 (Fig. 2a-c), we find a good agreement

of the experimental data and the simulations. In this regime,

only small systematic deviations can be observed, which are

strongest for the smallest value of U/J which corresponds

to the smallest lattice depth. They can be attributed to the

breakdown of the tight-binding approximation for shallow lat-

tices which gives rise to a significant amount of longer-ranged

hopping. When including a next-nearest neighbor hopping

term −JNNN

∑
j(â

†
j âj+2 + h.c.) in the t-DMRG simulations

we obtain quantitative agreement with the experimental data

(dashed line in Fig. 2). For larger values of U/J and corre-

spondingly deeper lattices, the tight-binding approximation is

valid. For U/J & 10 (Fig. 2d), larger deviations are found.

Here, the dynamics become more and more affected by resid-

ual inter-chain tunneling and non-adiabatic heating as the ab-
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solute timescale of the intra-chain tunneling ∝ 1/J becomes

larger.

The results of the density measurements can be related to

the expectations for an infinite chain with K = 0. There,

the time-evolution can be calculated analytically in the case

of either non-interacting bosons (U/J = 0) or infinite inter-

actions (U/J → ∞) [18, 19]. These limiting cases can be

well-understood through the mechanism of local relaxation by

ballistically propagating excitations. The on-site densities fol-

low 0-th order Bessel functions describing oscillations which

are asymptotically dampened by a power law with exponent

−1/2. The damping we observe in the interacting system,

however, is much faster. This behavior has also been found in

t-DMRG simulations of homogeneous Hubbard chains with

finite interactions [18, 19]. The exact origin of this enhanced

relaxation in the presence of strong correlations constitutes

one of the major open problems posed by the results presented

here.

Measurements of quasi-local currents. Employing the

bichromatic superlattice, we were also able to detect the mag-

nitude and direction of quasi-local density currents. Instead of

raising the short lattice at the end of step (ii), we ramped up

the long lattice to suppress the tunnel-couplings through ev-

ery second potential barrier in the chain (see Fig. 3a). At the

same time, we set the short lattice to a fixed value to obtain

always the same value of (U/J)DW ' 0.2 in the emerging

double wells. By tuning the relative phase between the long

and short lattice we were able to selectively couple sites with

index (2j, 2j+1) (“even-odd”, j integer) or (2j−1, 2j) (“odd-

even”). We recorded the time-evolution in the now isolated

double-wells using the same final read-out scheme as for the

densities (see Fig. 3b). We find sinusoidal tunnel oscillations

which dephase only slowly and decrease in amplitude with in-

creasing relaxation time t. The phase φ and amplitude A of

these oscillations were extracted from a fit of a sine-wave to

the data and are plotted in Fig. 3c as a function of the relax-

ation time for U/J = 5.16(7). While the phase contains the

information about the direction of the mass flow, the ampli-

tude is a combination of the local population imbalance and

the strength of the local current.

We find φ to evolve linearly in time, giving strong evidence

that the excitations in the system expand approximately ballis-

tically as suggested in Refs. [18, 19]. Furthermore, its value

does not change when coupling even-odd or odd-even sites,

indicating the absence of center-of-mass motion in the sys-

tem. The amplitude A on the other hand decays to zero on

the same timescale as the oscillations in the local densities

dampen out – in fact the quantities (1 ± A)/2 provide en-

velopes to the traces nodd and neven (see Supplementary Ma-

terial). On short timescales, 0 < 4Jt/h < 3, we find the

decay of the amplitude to follow an approximate power-law

∝ t−α with α = 0.86(7). This behavior might well change at

longer times, where no significant amplitude was measurable.

We extract the power-law coefficients α for a wide range of

U/J (right inset to Fig. 3c). In all cases, the absolute values

of the coefficients are larger than the one expected for free par-

ticles, where α = 0.5, again indicating the faster relaxation in

the presence of interactions.
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FIG. 3. Quasi-local current measurement. (a) To measure the quasi-

local density flow every second tunnel coupling was suppressed,

coupling either odd-even or even-odd pairs. (b) Oscillations of the

odd-site population in the double-wells with fitted sine-waves for

t = 100µs (solid), 200µs (dashed) and 400µs (dotted). The value

of U/J during the relaxation was 5.16(7). (c) Extracted amplitude

A and phase φ of the double-well oscillations for odd-even (filled

circles) and even-odd (open circles) couplings. The solid lines show

the respective results of the t-DMRG simulations. The dashed lines

are fits to a linear increase in the phase and a power-law decay of the

amplitude. The insets show the amplitude in a log-log plot (left) and

the extracted power-law coefficients (right). The horizontal grey line

indicates the power-law coefficient α = 0.5 for free and hardcore

bosons.

It is key to the experiment that the observed fast damping

cannot be attributed to a mere classical ensemble averaging

due to the inhomogeneous distribution of tunnel-couplings in

the various chains (var(J)/J ' 0.4%) or the external trap.

Furthermore, we ensure that the transverse tunnel-coupling

between adjacent chains J⊥ is always one to two orders of

magnitude smaller than J . Furthermore, the dynamics of

a single site – or of the densities of odd sites – cannot be

described in terms of simple rate equations, and not even

in terms of Markovian quantum master equations reflecting

damped motion (see Supplementary Material). Similarly, no

dynamical mean-field description can capture the dynamics

for large U [22]. Hence, any realistic description has to nec-

essarily include the many-body and non-Markovian features

of the dynamics, contributing to the challenge for a numerical

simulation for intermediate times.

Time-evolution of the quasi-momentum distribution. A

different view on the relaxation can be obtained from the

quasi-momentum distribution of the ensemble. When instan-

taneously switching off all trapping potentials after a relax-
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FIG. 4. Build-up of short-ranged correlations. (a) Plot of the

integrated density profiles obtained after ToF versus 4Jt/h for

U/J = 5.16(7) as obtained in the experiment (left) and recon-

structed from numerical t-DMRG simulations (right). The images

show the crossover from a purely Gaussian distribution (t = 0) to

a more complex quasi-momentum distribution (0 < 4Jt/h < 2)

to a purely sinusoidal pattern (4Jt/h > 2). (b) Visibility of the

interference patterns versus 4Jt/h obtained experimentally (circles)

and from the simulations (solid curve). The grey line represents the

measured visibility at 4Jt/h ' 5, while the dashed line corresponds

to the value obtained from the simulation of a homogeneous system

[19]. (c) Steady-state value of the visibility measured at 4Jt/h ' 5.

The solid line is a guide for the eye ∝ J/U .

ation time t and letting the cloud expand freely for a time

tToF, the density distribution takes the form nToF(r) ∝
|w̃0(mr/~t)|2S(mr/~t). Here, w̃0(k) is the Fourier trans-

form of the on-site Wannier orbital and the interference term

for the ensemble of decoupled Hubbard chains in the far-

field limit is S(k) = E{N}

∑
j,j′ e

ikx(j−j′)d〈â†j âj′〉 with d =

λxs/2 being the lattice spacing along the chain direction. In

Fig. 4a, we plot the measured density profiles integrated over

the y- and z-direction as a function of the relaxation time (left

panel) together with the corresponding patterns reconstructed

from t-DMRG simulations for the full distribution of chains

(right panel) for U/J ' 5. Both the experimental data and the

numerical calculation show a rapid build-up of short-range co-

herence, not present in the initial state.

At short relaxation times 4Jt/h . 2, the simulation data

shows a strong cosinusoidal component with a period of

2~k = 2htToF/(mλxs) and weaker contributions from higher

harmonics. While the former correspond to next-neighbor

coherences in the system, the latter are a signature of corre-

spondingly longer range coherences which rapidly decay in

the relaxation process [19]. Due to the noise on the experi-

mental data, the higher frequency components are weak, but

can still be identified. For longer relaxation times 4Jt/h & 2,

only the next-neighbor coherences remain as also found from

t-DMRG simulations of homogeneous Hubbard chains with

finite interactions [19]. We extract the visibility of the lowest

frequency component as described in Ref. [14] both from the

experimental data and the t-DMRG calculations (see Fig. 4b).

In the absence of local currents in the system, the visibility of

the lowest Fourier component is given by 4E{N}Re〈â†j âj+1〉.
We find good agreement between experiment and numerics.

The visibility builds up towards a first maximum at 4Jt/h '
0.5 corresponding to the first maximum in nodd(t) (Fig. 2c),

followed by dampened oscillations. From 4Jt/h ' 2 on, we

find the visibility to increase slowly with t towards an equi-

librium value which is significantly higher than the one found

for a homogeneous system (dashed line in Fig. 4b). In the

presence of the trap, the system can expand after the quantum

quench, converting kinetic energy proportional to −〈â†j âj+1〉
into potential energy associated with 〈n̂jj

2〉. As a conse-

quence, the absolute value of 〈â†j âj+1〉 increases.

We observe the same qualitative behavior for the whole

range of interaction strengthU/J accessed in the experiments,

but with a strength of the next-neighbor correlations which

depends on U/J . In Fig. 4c, we plot the visibility of the in-

terference patterns found from experiments at different values

of U/J with at a relaxation time of 4Jt/h = 5, where den-

sities and currents are fully relaxed. We find the visibility

to have a maximum around U/J = 4 while it decreases to-

wards the analytic limits of U → 0 and U → ∞. In both

of these limits, the problem can be mapped onto free particles

where no coherences will survive for long times. In the lat-

ter case of hardcore bosons, the coherences are found to be

suppressed with J/U in the experiments. The same behavior

can be found from perturbation theory in J/U for a thermal

state in the lattice [19]. Recent theoretical results show that

for non-degenerate spectra, the time-averaged state is always

identical to the maximum entropy state given by the full set of

constants of motion [23]. On the other hand, if a state relaxes

locally, it has to be to the projection of this time-averaged state

on the respective subsystem. However, it is up to now unclear

how to physically interpret and identify all constants of mo-

tion defining the maximum entropy state. Interestingly, the

findings presented here are compatible with the expectations

for a Gibbs state defined only by the total energy and the total

number of particles. Finally note that the build-up of short-

range phase coherence to a finite value complements the ob-

served decay of the density pattern and the currents. It cannot

be explained by any classical dephasing mechanism, but is a

result of genuine many-body dynamics in the system.

For the time-evolution of the densities, currents and coher-

ences, t-DMRG simulations and experimental results show

a remarkable congruence. This emphasizes the clean im-

plementation of controlled quantum dynamics in the one-

dimensional interacting Hubbard-model and the high fidelity

of the initial-state preparation. All parameters are calculated

ab inito from the experimental control parameters. Therefore,

the experiments can be seen as a self-sustained dynamical

quantum simulation where the simulation effort is the same

for each value of t and each set of parameters. As long as

the time-evolution is not perturbed by experimental imper-



5

fection, this dynamical quantum simulator outperforms any

continuous-time numerical simulation for which the calcula-

tional effort increases with t. Simulation methods on classical

computers such as matrix-product state based time-dependent

DMRG used here suffer from an extensive increase in entan-

glement entropy which limits the relaxation times accessible

in the calculations [24, 25].

Conclusions and Outlook. In conclusion, we have demon-

strated measurements on the relaxation of a charge-density

wave of in a strongly correlated one-dimensional Bose gas

with varying interactions. Using a bichromatic optical su-

perlattice, we were able to prepare a patterned density state

with high fidelity and to induce non-equilibrium dynamics

by rapidly switching on the tunnel-coupling along the chain.

We could follow the dynamical evolution of the initial state

in terms of even- and odd-site densities, local currents and

short-range correlations visible in the quasi-momentum dis-

tribution. We have compared our measurements to parameter-

free t-DMRG simulations, finding excellent agreement and

identifying contributions from next-nearest neighbor hopping.

All three observables can be seen as local probes of the sys-

tem and show a rapid relaxation to steady state values as it is

predicted for Hubbard-type models by a central limit theorem

[26, 27]. These steady state values are compatible with the

system globally being in a maximum entropy state. This idea

can be seen as a dynamical version of Jaynes’ principle which

could recently be substantiated theoretically for local observ-

ables or reduced states [18, 28, 29] and for two-periodic ob-

servables [19, 22] as considered here. After a finite time, the

closed quantum system cannot be distinguished locally from

having reached a global Gibbs state under the constraint of a

set of macroscopic constants of motion set by the initial state

[15, 26, 29, 30].

A direct measurement of global observables to, e.g., iden-

tify constants of motion of the dynamics is inhibited by the

ensemble of chains with various particle numbers in the ex-

perimental realization. This limitation might be overcome by

either preparing a single chain with fixed length or by select-

ing a single chain from the ensemble for detection. This will

open the way to answer what global state is after all reached in

the evolution, including possible pre-thermalization [31] and

experimental studies of the eigenstate thermalization hypothe-

sis [32–34]. It is the hope that the present work triggers further

experimental studies which address theoretically unsolved key

questions of non-equilibrium dynamics.
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FIG. 5. a Measured atom number on sites with n = 1 versus the total

atom number. The solid line represents the condition Ntot = Nn=1.

The arrow indicates the total atom number used in our experiments.

b Distribution of particle numbers per chain caused by the harmonic

confinement calculated for our loading sequence.

SUPPLEMENTARY MATERIAL

I. LOADING PROCEDURE AND SUDDEN QUENCH

We started the loading procedure by ramping up the long

lattice to a depth of 30Exl
r which results in an array of isolated

two-dimensional quantum gases. The lattice depth is given in

units of the respective recoil energy Ei
r = h2/(2mλ2i ). Sub-

sequently, we ramped up the two transverse optical lattices

with wavelengths of λy,z = 844 nm to 30Ey,z
r , crossing the

Mott insulator transition in each of the two-dimensional gases

with a maximal filling of one atom per site (see Supplemen-

tary Material). We then added the short lattice with a depth of

30Exs
r to the long lattice, forming a bichromatic period-two

superlattice [14]. We set the relative phase between the short

and the long lattice such that every second short-lattice site co-

incided with a minimum of the long-lattice potential. Finally

removing the long lattice completely yielded an ensemble of

one-dimensional density waves | · · · , 1, 0, 1, 0, 1, · · · 〉 [7, 14]

with various particle numbers N .

We verified the loading of single atoms by bringing each

atom into a superposition of the states |F = 1,mF = −1〉 and

F = 2,mF = 1〉, where atom pairs can undergo hyperfine-

relaxing collisions which would expel them from the lattice.

We measured the total number of particles with (Ntot) and

without this filtering step (Nn=1), finding that up to a total

number of 60 × 103 atoms, no pairs were removed from the

lattice (see Fig. 5a). For the experiments, we chose a parti-

cle number of 45 × 103 in order to obtain maximally singly

occupied sites.

II. DMRG SIMULATION RESPECTING THE GEOMETRY

OF THE PROBLEM

After the loading procedure, the occupied sites form an el-

lipsoid around the center of the trap. Thus, due to the sup-

pressed transversal hopping, the experimental setup is de-

scribed by a two-dimensional approximately circular array

of one-dimensional chains with different particle numbers

N with Nmax = 43. For a realistic theoretical description,
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FIG. 6. DMRG results for the relaxation of the quasi-local densities

nodd. The solid lines represent the ensemble averaged t-DMRG data

plotted in Fig. 2a-d. The dashed lines are the simulation results for a

single chain in the ensemble with N = 43 particles. The parameters

used in the simulations are the same as in Fig. 2.

DMRG calculations were performed for several particle num-

bers ranging from 5 to 43 and weighted according to the dis-

tribution shown in Fig. 5b. In Fig. 6, we plot the averaged den-

sities as obtained from DMRG and shown in Fig. 2 together

with the results for a single chain with the maximal number

of particles. Both curves differ only slightly on the timescales

accessible by the simulations.

In the experiment, the smooth external trap leads to a slow

expansion of the cloud along the x-direction, rather than a

sharp reflection of excitations traveling at a velocity ∝ J in

the system. Thus, the length of the one-dimensional lattices

in the DMRG calculations (∼ 121) was chosen such that the

particles do not reach the system boundary during the simu-

lated times. This absence of a sharp reflection also explains,

together with the averaging over different chains with differ-

ent particle numbers for which recurrences would happen at

different times, why no recurrences of the density wave are

visible in our experiments.

III. CURRENT MEASUREMENTS

We measure the quasi-local currents by suppressing every

second tunnel coupling in 200µs with the help of the superlat-

tice, such as to obtain chains of symmetric double-wells (see

Fig. 3a). For all current measurements, we chose the super-

lattice depths to be 40Exl
r and 4Exs

r , respectively. In this

configuration, we have a tunnel coupling within the double-

wells of JDW ' h × 8 kHz and an interaction strength of

(U/J)DW ' 0.2, such that the particles in the double-well

will practically tunnel independently. In Fig. 3b, we plot the

relative population on the left side of the double wells nL as a

function of the holdtime tDW and for three different relaxation

times as they were evaluated for Fig. 3c. Here, we have mea-

sured the population on the left and right sides of the double

wells by the same band mapping technique which was used

for the density measurements. The phase φ and the amplitude
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of the oscillations shown in Fig. 3c are extracted from a simple

sinusoidal fit to the data.

If we assume the particles in the double-well formed by the

sites with index j and j+1 to evolve under the simple single-

particle Hamiltonian ĤDW,j = −JDW(â†j âj+1 + h.c.), we

find the oscillation amplitude to be

Aj(t) =

√(
〈n̂j(t)〉 − 〈n̂j+1(t)〉

)2
+ 4 Im

(
〈âj(t)†âj+1(t)〉

)2
,

(1)

where t is the relaxation time. From the simultaneous mea-

surement of the local densities, it is thus possible to recon-

struct the bare mass current Im〈âj(t)†âj+1 (t)〉 through the

barrier between the two sites as a function of the relaxation

time t. Furthermore, it is evident from Eq. (1), that when-

ever the mass current vanishes the amplitude is measuring the

population imbalance between the sites j and j + 1. At these

points, the quantities (1±A)/2 reproduce the even- and odd-

site densities, respectively. Therefore they provide two en-

velopes to nodd,even(t).
For the phase φj(t), we find from the same calculation as

above

φj(t) = arctan

(
−
2Im

(
〈âj(t)†âj+1(t)〉

)

〈n̂j(t)〉 − 〈n̂j+1(t)

)
. (2)

We use these two relations to calculate the ensemble-averaged

amplitude E{N}A(t) = |E{N}

∑
j Ai(t) exp(iφj(t))| and

phase E{N}φ(t) = arg[E{N}

∑
j Ai(t) exp(iφj(t))] from the

DMRG simulations (solid lines in Fig. 3b).

IV. DEVIATION FROM MARKOVIAN AND MEAN-FIELD

DYNAMICS

In this section, we show that the time evolution cannot be

described by a Markovian quantum master equation, signify-

ing the complex relaxation dynamics beyond a situation that

can be described in terms of rates. That is to say, each con-

stituent does not see the rest of a chain as a mere bath it is

weakly coupled to, but intricate memory effects do play a

role. To see this, it is sufficient to consider the simple case

of local relaxation dynamics of a single site and the case of

U = 0. We restrict ourselves to the infinite translationally in-

variant case and an initial state of a density wave as described

above—any other setting is only more complex and in general

also non-Markovian. To follow a Markovian time evolution

of the reduced state of some odd site j, denoted as ρ, means

that its time evolution follows a master equation in Lindblad

form

d

dt
ρ(t) = i[ρ(t), ĥ] +

∑

α,β

Gα,β

(
F̂αρ(t)F̂

†
β − 1

2
{F̂ †

β F̂α, ρ(t)}+
)
,

where ĥ is a Hermitian operator that can be different from the

free Hamiltonian Ĥ , and G and F̂α are some arbitrary matri-

ces, reflecting the influence of the rest of the chain. This is

the most general form of a master equation when the dynam-

ical map, mapping the initial state |1〉〈1| = ρ(0) 7→ ρ(t),

reflects Markovian dynamics. Since this is a bosonic free

model, one can keep track of the evolution by specifying the

first and second moments alone. The second moment matrix

of ρ(t) is given by, with b̂ = b̂j , X̂ = (b̂ + b̂†)/
√
2 and

P = i(b̂† − b̂)/
√
2,

γ(t) =

[
2〈X̂2〉(t) 〈X̂P̂ 〉(t) + 〈P̂ X̂〉(t)

〈X̂P̂ 〉(t) + 〈P̂ X̂〉(t) 2〈P̂ 2〉(t)

]
,

and the evolution is given by the Gaussian channel γ(t) =
A(t)γ(0)AT (t) +B(t). A straightforward calculation gives

B(t) =

(L/2∑

k=1

(2|Vj,2k(t)|2 + 1)

)
I2, A(t) = |Vj,j(t)|2I2,

with V (t) = e−itH , as a matrix exponential.

This evolution then has to be compared with a Markovian

time evolution, one that satisfies

A(s+s′) = A(s)A(s′), B(s+s′) = A(s)B(s′)A(s)T+B(s)

as would necessarily be true for a dynamical semi-group gen-

erated by a Gaussian Markovian master equation. A reason-

able figure of merit of Markovianity of a Gaussian channel,

is, for a given time t ≥ 0, how different the dynamical map

is from a Markovian one. There exists more than one reason-

able way to quantify such a difference, yet all lead to qual-

itatively identical results. A physically well-defined way of

quantifying this is a norm difference from the Jamiolkowski

covariance matrix of the closest Markovian Gaussian channel

to the given channel at hand [35]. A more pragmatic—but

in the certification of non-Markovianity equally effective—

means is, for a time t ≥ 0, to simply compute

inf ‖A(s+ s′)−A(s)A(s′)‖2, (3)

with the minimization being performed with respect to s, s′ ≥
0 such that s + s′ = t. This quantity can easily be seen to

take positive values for intermediate times, giving rise to a

bound that can be directly related to observable differences on

states. Hence, no Markovian dynamics—amounting to rate

equations—can model the dynamics encountered here, and

memory and genuine quantum many-body effects have to be

considered.

The dynamics found here is also not consistent with a

mean-field picture for values of U significantly different from

zero. In such a picture, one looks for a time-dependent self-

consistent solution for

x(t) =
1

L

∑

j

(−1)j−1〈n̂j〉(t),

for L sites in a mean-field Hamiltonian

Ĥ(t) = −
∑

j

[
b̂†j+1b̂j + b̂†j b̂j+1 +

U

2

(
−1

2
+ (−1)j−1x(t)

)
n̂j

]
,

in a variant of the findings of Ref. [22]. Using Runge-Kutta

numerical integration one finds that although for short times
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and small U , the evolution of densities 〈n̂j〉(t) is quite com-

patible with a mean-field picture, one encounters significant

deviations for larger U and larger times. This again shows the

non-triviality of the dynamics, in that a mean field picture can-

not capture the dynamics at hand, and sophisticated t-DMRG

simulations are necessary.


