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We discuss the potential and limitations of Gaussian cluster states for measurement-based quantum computing.

Using a framework of Gaussian-projected entangled pair states, we show that no matter what Gaussian local

measurements are performed on systems distributed on a general graph, transport and processing of quantum

information are not possible beyond a certain influence region, except for exponentially suppressed corrections.

We also demonstrate that even under arbitrary non-Gaussian local measurements, slabs of Gaussian cluster

states of a finite width cannot carry logical quantum information, even if sophisticated encodings of qubits in

continuous-variable systems are allowed for. This is proven by suitably contracting tensor networks representing

infinite-dimensional quantum systems. The result can be seen as sharpening the requirements for quantum error

correction and fault tolerance for Gaussian cluster states and points toward the necessity of non-Gaussian resource

states for measurement-based quantum computing. The results can equally be viewed as referring to Gaussian

quantum repeater networks.
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I. INTRODUCTION

Optical systems offer a highly promising route to quantum

information processing and quantum computing. The seminal

work in Ref. [1] showed that even with linear optical gate

arrays alone and appropriate photon counting measurements,

efficient linear optical computing is possible. The resource

overhead of this proof-of-principle architecture for quantum

computing was reduced, indeed by orders of magnitude, by

directlymaking use of the idea ofmeasurement-based quantum

computing with cluster states [2–4]. Such an approach is

appealing formany reasons; the reduction of resource overhead

is one, and the clear-cut distinction between the creation of

entanglement as a resource and its consumption in computation

is another. This ideawas further developed into the continuous-

variable (CV) version thereof [5–8], which aims at avoiding

limitations related to efficiencies of creation and detection of

single photons. In this context, Gaussian states play a quite

distinguished role, as they can be created by passive optics,

optical squeezers, and coherent states, i.e., the states produced

by a usual laser [9–13]: Indeed, Gaussian cluster states are a

promising resource for instances of quantum computing with

light. Such a CV scheme allows for deterministic preparation

of resource states, while schemes based on linear optics

with single photons require preparation methods which are

intrinsically probabilistic.

In this work, however, we highlight and flesh out some

limitations of such an approach. We do so to clarify the exact

requirements that any scheme for CV quantum computing

based on Gaussian cluster states eventually will have to

fulfill and what quantum error correction and fault-tolerant

approaches eventually have to deliver. Specifically, we show

that Gaussian local measurements alone will not suffice to

transport quantum information across the lattice, even on

complicated lattices described by an arbitrary graph of finite

dimension: Any influence of local measurements is confined
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to a local region, except from exponentially suppressed

corrections. This can be viewed as an impossibility of

Gaussian error correction in the measurement-based setting.

What is more, even under non-Gaussian measurements, this

obstacle cannot be overcome, to transport or process quantum

information along slabs of a finite width: Any influence of

local measurements will again exponentially decay with the

distance. This observation suggests that—although the initial

state is perfectly known and pure—finite squeezing has to

be tackled with a full machinery of quantum error correction

and fault tolerance [14–16], yet developed for this type of

system and, presumably, giving rise to a massive overhead.

No local measurements or suitable sophisticated encodings of

qubits in finite slabs—reminding, e.g. of encodings of the type

of Ref. [16]—can uplift the initial state to an almost perfect

universal resource. To arrive at this conclusion, in some ways,

we explore ideas of measurement-based computing beyond

the one-way model [2] as introduced in Ref. [17] and further

developed in Refs. [18–22]. We highlight the technical results

as “observations” and discuss implications of these results

in the text. While these findings do not constitute a “no-go”

argument for Gaussian cluster states, they do seem to require a

very challenging prescription for quantum error correction and

further highlight the need to identify alternative schemes for

CV quantum computing, specifically schemes based on non-

Gaussian CV states. Small-scale implementations ofGaussian

cluster-state computing, as we will see, are also not affected

by these limitations.

The structure of this article is as follows: In Sec. III we

discuss the concept of Gaussian projected entangled pair states

(GPEPSs), forming a family of states including the physical

CV Gaussian cluster state. In Sec. IV we discuss the impact

of Gaussian measurements on GPEPSs and show that under

this restriction the localizable entanglement in every GPEPS

decays exponentially with the distance between any two points

on an arbitrary lattice. This also has implications for Gaussian

quantum repeaters, which we investigate in detail. Then we

leave the strictly Gaussian stage in Sec. V and present our

main result, showing that under more general measurements
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of GPEPSs, quantum information processing in finite slabs is

still not possible.We discuss requirements for error correction,

before presenting concluding remarks.

II. PRELIMINARIES

A. Gaussian states

Before we turn to measurement-based quantum computing

(MBQC) on CV states, we briefly review some basic elements

of the theory of Gaussian states and operations which are

needed in this article [9–12]. Readers familiar with these

concepts can safely skip this section. Although the statements

made in this work apply to all physical systems described by

quadratures or canonical coordinates, including, for example,

micromechanical oscillators, we have a quantum optical

system in mind and often use language from this field as

well. Any system of N bosonic degrees of freedom, for

example, N light modes, can be described by canonical

coordinates xn = (an + a
†
n)/2

1/2 and pn = −i(an − a
†
n)/2

1/2,

n = 1, . . . ,N , where an (a
†
n) annihilates (creates) a photon

in the respective mode. When we collect these 2N canonical

coordinates in a vectorO = (x1,p1, . . . ,xN ,pN ), we can write

the commutation relations as [Oj ,Ok] = iσj,k , where the

symplectic matrix σ is given by

σ =
N

⊕

j=1

[

0 1

−1 0

]

. (1)

Gaussian states are fully characterized by their first and second

moments alone. The first moments form a vector d with entries

dj = tr(Ojρ), while the second moments, which capture the

fluctuations, can be collected in a 2N × 2N matrix γ , the

so-called covariance matrix (CM), with entries

γj,k = 2Re tr [ρ(Oj − dj )(Ok − dk)]. (2)

Hence, Gaussian states are complete characterized by d and γ .

Gaussian unitaries, that is, unitary transformations acting in

Hilbert space preserving the Gaussian character of the state

correspond to symplectic transformations on the CM. They

in turn correspond to maps γ 7→ Sγ ST with SσST = σ .

The set of such symplectic transformations forms the group

Sp(2N,R). A set of particularly important example Gaussian

states are the coherent states, for which the state vectors read,

in the photon number basis,

|α〉 = e−|α|2/2
∞

∑

n=0

αn

√
n!

|n〉 (3)

and are described by d =
√
2(Re α,Im α) and γ = diag(1,1).

Single-mode squeezed states are characterized by lower

fluctuations in one phase-space coordinate. The CM can, in a

suitable basis, then be written as γ = diag(x,1/x) with x 6= 0.

B. MBQC on Gaussian cluster states

The first proposal for MBQC on CV states has been

based on so-called Gaussian cluster states and works in

almost-complete analogy to the qubit case [5–8]. As such,

the formulation is based on “infinitely squeezed” and hence

unphysical states using infinite energy in preparation: It can be

created by initializing every mode in the p = 0 “eigenstate” of

p (formally an improper eigenstate of momentum, a concept

that can be made rigorous, for example, in an algebraic

formulation [23]). This is the CV analog to the state vector

|+〉 = (|0〉 + |1〉)/21/2 in the qubit case. Then the operation
eix⊗x , the analog to theCZ gate, is applied between all adjacent

modes. This state allows universal MBQC to be performed

with Gaussian and one non-Gaussian measurement. The state

as such is not physical and not contained in Hilbert space. The

argument, however, is that it should be expected that a finitely

squeezed version inherits essentially the same properties.

Replacing them by finitely squeezed ones, we obtain a state

which we call a physical Gaussian cluster state.

III. GPEPS

Projected entangled pair states or tensor product states

have been used for qubits to generalize matrix product states

or finitely correlated states [24,25] from one-dimensional

(1D) chains to arbitrary graphs [26–28]. One suitable way

to define them is via a valence-bond construction: One

can create a state by placing entangled pairs—constituting

“virtual systems”—on every bond of the lattice and then

applying a suitable projection to a single mode at every

lattice site. These projections, often taken to be equal, together

with the specification of the initial entangled states, then

serve as a description of the resulting state. Matrix product

states for Gaussian states (MPSGs) have been studied to

obtain correlation functions and entanglement scaling in 1D

chains [29].

In this work we focus on GPEPSs which can be obtained

from non–perfectly entangled pairs. The bonds we consider

are two-mode squeezed states (TMSSs), the state vectors of

which have the photon number representation

|ψλ〉 = (1− λ2)1/2
∞

∑

n=0

λn|n,n〉, (4)

where λ ∈ (0,1) is the squeezing parameter. We denote

the corresponding density matrix ρλ. For λ → 1 the state

becomes “maximally entangled,” but this limit is not physical

because it is not normalizable and has infinite energy as

alreadymentioned.We, therefore, carefully analyze the effects

stemming from the fact that λ < 1. The CM of this state reads

γλ =











cosh(2r) 0 sinh(2r) 0

0 cosh(2r) 0 −sinh(2r)
sinh(2r) 0 cosh(2r) 0

0 −sinh(2r) 0 cosh(2r)











, (5)

where tanh(r/2) = λ. This number r is also referred to as the

squeezing parameterwhen there is no risk of mistaking one for

the other. It is also known that any pure bipartite multimode

Gaussian state can be brought into the tensor product of a

TMSS [10,30] by means of local unitary Gaussian operations,

each having a CM in the form of Eq. (5). Then the largest r in

the vector of the resulting TMSS is referred to as its squeezing

parameter.
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(a) (b)

FIG. 1. (Color online) GPEPS on an arbitrary graph, here one

representing a cubic lattice. (a) Connected dots represent two-mode

squeezed states; circles denote vertices where Gaussian projections

are being performed. (b) The resulting GPEPS after local Gaussian

projections have been performed on the virtual systems.AnyGaussian

cluster state can be prepared in this fashion.

We also discuss GPEPSs on general graphs G = (V,E),

as shown in Fig. 1. Vertices G here correspond to physical

systems, and edges E to connections of neighborhood. In

any such graph, d(.,.) is the natural graph-theoretical distance

between two vertices. As we often consider the system of

bonds before the projection operation is performed, we employ

the following notation: We speak of operations on virtual

systems when referring to collective operations on modes

before the projection is applied and often emphasize this

when speaking of a single physical system with Hilbert space

H = L2(R). Note that we also allow for more than one edge
between two vertices in a graph.

When a particular vertex has N adjacent bonds, the

projection map is a Gaussian operation of the form

V : H⊗N → H. (6)

This operation can always be made trace preserving

[9,12,31,32], in quite sharp contrast to the situation in the

finite-dimensional setting. This operation is also referred to as

GPEPS projection. This operation can always be realized by

mixing single-mode squeezed states on a suitably tuned beam

splitter, which means that inline squeezers are not necessary

[33]. Note that any such state can also be used as a variational

state to describe ground states of many-body systems and, by

construction, satisfies an entanglement area law [34].

IV. GAUSSIAN OPERATIONS ON A GPEPS

In this section, we discuss Gaussian operations on a GPEPS

and derive some statements on entanglement swapping, the

localizable entanglement, and the usefulness as a resource for

MBQC. Since all measurements are assumed to be Gaussian

as well, this is, as such, not yet a full statement on universality,

but already shows that the natural operation for transport of

logical information in such a Gaussian cluster state does not

work with such local measurements.

A. Localizable entanglement

The localizable entanglement between two sitesA andB in

the graphG = (V,E) is defined by the maximal entanglement

obtainable on average when performing projective measure-

ments at all sites but A and B [35]. When we require both the

initial state and the measurements to be Gaussian [36,37], the

situation is simplified, as the entanglement properties do not

depend on the measurement outcomes [9,12,31,32]. Thus, we

do not need to average, but only to find the best measurement

strategy. To be specific, we measure the entanglement in terms

of the logarithmic negativity, which can be defined as [38–40]

E(ρ) = log2‖ρTA‖1, (7)

where TA denotes the partial transpose with respect to

subsystem A and ‖ · ‖1 the trace-norm, and we use the natural
logarithm. For a TMSS, E coincides with the squeezing

parameter as E(ρλ) = r . It is important to note, however, that

this choice has only been made for notational convenience:

In our statements on asymptotic degradation of entanglement,

any other measure of entanglement would also do, specifically

the entropy of entanglement for pure Gaussian states and the

distillable entanglement or the entanglement cost for mixed

states.

We mostly focus on two variants of the concept of local-

izable entanglement: Whenever we allow only for Gaussian

local measurements, we refer to this quantity as Gaussian

localizable entanglement, abbreviated EG. Then we consider

the situation where we ask for fixed subspaces SA and SB in

the Hilbert spaces associated with sites A and B to become

entangled by means of local measurements. We then refer to

subspace localizable entanglement ES. Both concepts directly

relate to transport in MBQC.

B. Entanglement swapping

The task of localizing entanglement in a PEPS is closely

related to that of entanglement swapping [41]. In this situation

we have three parties,A, B, and C, where bothA and B and B

and C share an entangled pair each. Then B, consisting of B1
and B2, is allowed to perform an arbitrary Gaussian operation

on its parts of the two pairs, followed by a measurement. The

task is to choose the operation in such a way that the resulting

entanglement between A and B is maximum.

Lemma 1. Optimality of Gaussian Bell measurement for

entanglement swapping of TMSSs. For two pairs of entangled

TMSSs shared between A and B1 and between B1 and C, the

supremum of maximum achievable negativity between A and

C by a local Gaussian measurement in B1,B2 is approximated

by the measurement that best approximates a Gaussian Bell

measurement.

We consider the situation of having a TMSS (5)

|ψ〉A,B1 =
∣

∣ψλ1

〉

A,B1
, |ψ〉B2,C =

∣

∣ψλ2

〉

B2,C
(8)

with some λ1,λ2 > 0 and restricting the operation on B to

be Gaussian. Furthermore, we allow for operations which

do not succeed with unit probability. We have to allow for

general local Gaussian operations and, also, for arbitrary local

additional Gaussian resources, with CM γB on mode B3, on

an arbitrary number of modes. The initial CM of the system

hence reads

γ = γλ1 ⊕ γλ2 ⊕ γB3 . (9)

Without loss of generality, one can assume that one performs

a single projection onto a pure Gaussian state on all modes
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referring to B. Ordering modes to A,C,B1,B2,B3, one can

write the CM in block form as

γ =







U V 0

V T W 0

0 0 γB3






, (10)

with U referring to A, C and V referring to B1,B2. When

we project the modes B1, B2, and B3 onto a pure Gaussian

state with CM 0, the CM of the resulting state of A and

C, postselected for that outcome, is given by the Schur

complement [9,31,32],

γA,C =
[

U 0

0 0

]

− [V 0]

([

W 0

0 γB3

]

+ 0

)−1 [

V T

0

]

.

(11)

Any symplectic operation S applied to B before the measure-

ment can, of course, also just be absorbed into the choice of

the CM 0. Writing

[

W 0

0 γB3

]

+ 0 =
[

X Y

Y T Z

]

, (12)

one finds that the upper-left principal submatrix of the inverse

can be written as

[

X Y

Y T Z

]−1 ∣

∣

∣

∣

B1,B2

= (X − YZ−1Y T )−1, (13)

again, in terms of a Schur complement expression. Since γB3 +
iσ > 0 and the same holds for the subblock on B3 of 0, these

matrices are clearly positive. Using operator monotonicity of

the inverse function, one finds that

(X − YZ−1Y T )−1 > 0 (14)

holds, since YZ−1Y T > 0. Therefore,

γA,C = γ ′
A,C + P, (15)

with a matrix P > 0. Here γ ′
A,C is the CM following the same

protocol, but where 0 is replaced by an identical CM, but with

Y = 0. To arrive at such a CM is always possible and still

gives rise to a valid CM by virtue of the pinching inequality.

This is still merely the CM of the Gaussian state, subjected

to additional classically correlated Gaussian noise. In other

words, it is always optimal to treatB3 as an innocent bystander

and not to perform an entanglingmeasurement betweenB1 and

B2, on the one hand, andB3, on the other hand: quite consistent

with what one could have intuitively assumed. We can hence

focus on the situationwhereB3 is absent andwemerely project

onto a pure Gaussian state in B1 and B2.

It is then easy to see that there is no optimal choice,

but the supremum can be better and better approximated by

considering more and more squeezed TMSSs (or “infinitely

squeezed states” in the first place), that is, on |ψλ〉 in the limit of
λ → 1, which is the CV analog to the Bell state for qudits. This

measurement can be realized by mixing B1 and B2 on a beam

splitter with reflectivity R = 1/2 and performing homodyne

measurement on both modes afterward (i.e., a projection on

an infinitely squeezed single-mode state being an improper

eigenstate of the position operator). From Eqs. (5) and (11)

with 0 = γλ and performing the limit λ → 1, we can calculate

the CM of the resulting state. It has the form of (5), with

r = f (r1,r2) =
1

2
arcosh

1+ cosh2r1cosh2r2
cosh2r1 + cosh2r2

. (16)

We note that f is symmetric in its arguments and fulfills

f (r1,r2) < min{r1,r2} and limr1→∞ f (r1,r2) = r2. This means

that arbitrarily faithful entanglement swapping is possible

exactly in the limit of infinite entanglement. Otherwise, the

entanglement necessarily deteriorates [41].

To show that this measurement is indeed optimal, we set

0 = SγλS
T , (17)

where S ∈ Sp(4,R). Calculating the resulting degree of entan-

glement, a direct and straightforward inspection reveals that

E(ρA,C) can only decrease whenever we choose S 6= 1.

C. 1D chain

We now turn to a one-dimensional GPEPS, not allowing

multiple bonds in the valence-bond construction, and are in

the position to show the following observation.

Observation 1. Exponential decay of Gaussian localizable

entanglement in a 1D chain. Let G be a 1D GPEPS, and A

and B two sites. Then

EG(A,B) 6 c1e
−d(A,B)/ξ1 , (18)

where c1,ξ1 > 0 are constants. The best performance is

reachable by passive optics and homodyning only.

To prove this, we interpret the preparation projection (6) and

the following measurements of the localizable entanglement

protocol as a sequence of instances of entanglement swapping.

Clearly, to allow for general Gaussian projections is more

general than using (i) the specific Gaussian projection of the

PEPS, followed by a (ii) suitable Gaussian projection onto a

singlemode; hence every bound shown for this settingwill also

give rise to a bound to the actual 1DGaussian chain. If d(A,B)

is again the graph-theoretical distance between A and B, we

have to swap k = d(A,B)− 1 times. Defining g(r) = f (r,rI ),

where rI is the initial strength of all bonds, and iterating the

argument, we obtain

rA,B = (g◦k)(rI ) = F (k). (19)

As the negativity is up to a simple rescaling equal to this two-

mode squeezing parameter, the only task left is to show that

F (k) decays exponentially. To do this, we need arcosh(x) =
log2[x + (x2 − 1)1/2] and the following relations which hold
for x > 0: cosh(x) > ex/2 and cosh(x) 6 ex . With the help of

these, we can conclude that

F (k + 1)/F (k) < Q < 1 (20)

for aQ depending only on rI . Thus,F (k) decays exponentially,

which proves Observation 1. Note that to maximize the

entanglement betweenA andB, we have chosen the supremum

of themaps better and better approximating the projection onto

an infinitely entangled TMSS. Thus, for a specific GPEPS

which is characterized by a fixed map V , the EG is generally

lower.
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FIG. 2. (Color online) The situation referred to in Lemma 2.

The strongest bonds before the projection are r1 and r2. The most

significantly entangled bond has the strength f (r1,r2).

This result has a remarkable consequence for Gaussian

quantum repeater lines: It is not possible to build a 1Dquantum

repeater relying onGaussian states, if only localmeasurements

and no distillation steps are being used. We show in Sec. V

that even non-Gaussian measurements cannot improve the

performance. If one sticks to the Gaussian setting, also relying

on complex networks does not remedy the exponential decay,

as we see. Of course, non-Gaussian distillation schemes can

be used to realize CV quantum repeater networks.

D. General graphs in arbitrary dimensions

One should suspect that the exponential decay of EG is a

special feature of the 1D situation and that higher dimensional

graphs would eventually allow localization of a constant

amount of entanglement. In this section we show that this

is not the case. We first need a lemma which follows directly

from our discussion of entanglement swapping.

Lemma 2. Collective operations on pure Gaussian states.

Let ρA,B1 be a pure Gaussian state on H
⊗2n of n modes, and

ρB2,C a pure Gaussian H⊗2m state, where one part of each
is held by A, B, and C, respectively (see Fig. 2). Let the

maximum two-mode squeezing parameter be r1 between A

and B and r2 between B and C. Then the maximum two-mode

squeezing parameter achievable with a Gaussian projection in

B between A and C is f (r1,r2).

To prove this, we again use the fact that any two-party

multimode pure Gaussian state can be transformed by local

unitary Gaussian operations on both parties into a product of

the TMSS [10,30]. This is nothing but the Gaussian version of

the Schmidt decomposition. It hence does not restrict generality

to start from this situation. As already noted, the best strategy

for entanglement swapping between two pairs is a Gaussian

Bell measurement, where the squeezing parameter changes

according to f .

We now allow for global Gaussian operations on all

subsystems belonging to B. We relax this situation to the

following, where we allow for even more general operations:

namely, a local Gaussian operation onto all modes of B, as

well as onto all modes of A and C that are not the two modes

that share the largest r . Clearly, this is a more general map than

is actually considered in the physical situation. This, however,

is exactly the situation already considered: an entanglement

swapping scheme with an unentangled bystander. Hence, we

again find that to project each pair onto a two-mode pure

Gaussian state is optimal. For that, the sequence of projections

better and better approximating an infinitely squeezed TMSS

gives rise to the supremum. Hence, we have shown the

FIG. 3. (Color online) Partitioning of the graph according to the

shortest path as described in the text. Sites drawn as squares are the

those which lie on the shortest path connecting A and B.

preceding result. Now we can prove a central result of this

work.

Observation 2. Exponential decay of Gaussian localizable

entanglement of a GPEPS in a general graph. Consider a

GPEPS in a general graph with finite dimension and let A and

B be two vertices of this graph. Then there exist constants

c2,ξ2 > 0 such that

EG(A,B) 6 c2e
−d(A,B)/ξ2 . (21)

We take the shortest path between A and B—achieving

the graph-theoretical distance d(A,B)—and denote its vertices

A,v1, . . . ,vd(A,B)−1,B. We partition the graph in such a way
that the boundaries do not intersect or touch each other and

every vertex on the shortest path from A and B is contained

in one region, which is called Rv (see Fig. 3). Again, we

consider the situation of having TMSSs distributed in the graph

between vertices sharing an edge—a general local Gaussian

measurement on a GPEPS—so the GPEPS projection, now on

several modes, followed by a specific single-mode Gaussian

measurement, can only be less general than a general collective

Gaussian measurement; thus, we again arrive at a bound to the

localizable entanglement in the GPEPS.

Now we face exactly the situation to which Lemma 2

applies. In fact, in each step in each of the parts A, B, and

C, we will have a collection of TMSSs, shared across the cut

of the three regions. If rAv1 is the strongest bond, in terms of the

two-mode squeezing parameter, betweenRA andRv1 , and rv1v2

is the strongest bond between Rv1 and Rv2 , then the strongest

bond between RA and Rv2 is given according to Lemma 2

by f (rAv1 ,rAv2). Now we can proceed exactly as in the proof

of Theorem 1—and again, any uncorrelated bystanders will

not help to improve the degree of entanglement—and thus

show Theorem 2. This again has a consequence for quantum

repeaters: Even when an arbitrary number of parties can share

arbitrary many Gaussian entangled bonds, it is not possible

to teleport quantum information over an arbitrary distance, as

shown here.

In fact, using this statement, one can show that any impact

of measurements in terms of a measurable signal is confined

to a finite region in the graph, with I now being a subset

of the graph, except from exponentially suppressed correc-

tions. This region could be a poly-sized region in which

the input to the computation is encoded. The readout of the

quantum computation is then estimated from measurements

in some region O, giving rise to a bit that is the result of

the original decision problem to be solved by the quantum

computation. From the decay of localizable entanglement,

it is not difficult to show that the probability distribution
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FIG. 4. (Color online) Exponential decay of any influence of any

measurements in region I on statistics of measurement outcomes

in region O in the graph-theoretical distance d(I,O) between the

regions.

of this bit is unchanged by measurements in I , except

from corrections that are exponentially decaying with d(I,O)

(see Fig. 4).

Note that concerning small-scale “proof-of-principle” ap-

plications, the arguments presented do not impose a funda-

mental restriction, as they apply only to the situation where

entanglement distribution over an arbitrary number of modes

(or repeater stations) is required. For any finite distance

d(A,B) and required entanglement E(A,B), there exists a

finiteminimal squeezing λmin which allows performance of the

task. Only asymptotically will one necessarily encounter this

situation. The result can equally be viewed as the impossibility

of Gaussian quantum error correction in a measurement-based

setting, complementing the results in Ref. [42].

E. Remarks on Gaussian repeater networks

These results of course also apply to general quantum

repeater networks, where the aim is to end up with a highly

entangled pair between any two points in the repeater network

(see, e.g., Ref. [43] for a qubit version thereof). That is, in

Gaussian repeater networks, one will also need non-Gaussian

operations to make the network work, quite consistent with

the findings in Refs. [9,31,32].

F. MBQC

The impossibility of encountering a localizable entangle-

ment that is not exponentially decaying directly leads to a

statement on the impossibility of using a GPEPS as a quantum

wire. Such a wire should be able to perform the following

task [17]: Assume that a single mode holds an unknown qubit

in an arbitrary encoding; that is,

|φin〉 = α|0L〉 + β|1L〉. (22)

This system is then coupled to a defined site A, the first site of

the wire, of a GPEPS by a fixed in-coupling unitary operation

which can in general be non-Gaussian. To complete the

in-coupling operation, the input mode is measured in an

arbitrary basis, wherewe also allow for probabilistic protocols;

that is, the operation does not have to succeed for all

measurement outcomes. Then one performs local Gaussian

measurements on each of the modes. Then, at the end, one

expects the mode at a single site B to be in the state

vector |φout〉 = U |φin〉 (or at least arbitrarily close in trace
norm) for any chosen U ∈ SU(2). Note that the length of
the computation, and therefore the position of output mode

B, may vary and that the computational subspace can be

left during the measurement. We want to stress that it is also

possible to consider quantum wires which process qudits or

evenCVquantum information, where even on the logical level,

information is encoded continuously. However, the capability

of processing a qubit is clearly the weakest requirement.

Thus, we address this situation only because the corresponding

statements for other quantum wires immediately follow. With

this clarification we can state the following lemma.

Observation 3. Impossibility of using Gaussian operations

on arbitrary GPEPSs in general graphs for quantum wires.No

GPEPS on any graph together with Gaussian measurements

can serve as a perfect quantum wire for even a single qubit.

This is obvious from the previous considerations, as

the measurements for the localizable entanglement and the

incoupling operation commute, and clearly, the procedure is

especially not possible for U = 1. The same argument, of

course, also holds true in general graphs: No wire can be

constructed from local Gaussian measurements in this sense,

again for an exponential decay of the localizable entanglement.

This observation is related to the decay of fidelity when

performing CV quantum teleportation with squeezed vacuum

states, as discussed in Ref. [44]. As mentioned, this statement

can also be refined to having up to exponential corrections of

finite-influence regions altogether.

V. NON-GAUSSIAN OPERATIONS

We now turn to our second main result, namely, that—

under rather general assumptions which we detail below—

Gaussian states defined on slabs of a finite width cannot be

used as perfect primitives for resources for MBQC, even if

non-Gaussian measurements are allowed for: Any influence

of local measurements will again exponentially decay with

distance.

More specifically, we first show that a 1D GPEPS cannot

constitute a quantum wire in the sense of the definition in

Sec. IV F extended to arbitrary measurements. This already

covers all kinds of sophisticated encodings that can be carried

by a single quantum wire, including ideas of “encoding qubits

in oscillators” [16]. We then discuss the situation where an

entire cubic slab of constant width is being used to encode

a single quantum logical degree of freedom and find that

the fidelity of transport will still decay exponentially. Not

even using many modes and coupled quantum wires, possibly

employing ideas of distillation, can this obstacle be overcome

with local measurements alone. That is, we show that Gaussian

states cannot be uplifted to serve as perfect universal resource

states bymeasurements on finite slabs alone: Frankly, the finite

squeezing present in the initial resources—although the state

is pure and known—must be treated as a faulty state, and

some full machinery of fault tolerance [14,15], which has yet

to be developed for this kind of system, necessarily has to

be applied even in the absence of errors. This contrasts quite

severely with other limitations known for Gaussian quantum

states. For example, while the distillation of entanglement is
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(a)

(b)

FIG. 5. (Color online) (a) Sequential preparation of a GMPS

state: Each line represents a mode of a unitary tensor network,

whereas each box stands for a Gaussian unitary. For a suitable choice

of Gaussian unitaries, the resulting state is a Gaussian cluster state

being prepared in the valence-bond construction (b).

not possible using Gaussian operations alone, non-Gaussian

operations help to accomplish this task [45].

A. Sequential preparation of 1D Gaussian quantum wires

To make the statement, we first have to introduce another

equivalent way of defining a GPEPS— or, specifically, a

GMPS—in one dimension: It is easy to see that a GMPS

with state vector |ψ〉 of N modes can be prepared as

|ψ〉 = 〈ω|N+1

N
∏

j=1

U (j,j+1)|0〉⊗(N+1), (23)

with identical Gaussian unitaries U (j,j+1) supported on modes
j,j + 1, depicted as gray bars in Fig. 5. This follows

immediately from the original construction in Ref. [24] (see

also Ref. [25]), translated into the Gaussian setting. A detailed

study of sequentially preparable infinite-dimensional quantum

systems with an infinite or finite bond dimension will be

presented elsewhere.

B. Impossibility of transport by non-Gaussian measurements

in one dimension: General considerations

We start by stating the main observation here: Frankly, even

under general non-Gaussian measurements, transport along

a 1D chain is not possible. We refer to the notions of both

localizable entanglement and the probability of transport:

This is the average maximum probability of recovering an

unknown input state in a fixed subspace S of dimension at least

dim(S)> 2 which has been transported through the wire:

Specifically, one asks for the maximum average success

probability of a positive operator-valued measure applied to

the output of the wire that leads to the identity channel up

to a constant, where the average is taken with respect to

all possible outcomes when performing local measurements

transporting along the wire.We see that this probability decays

exponentially with the distance between the input and the

output site.

This decay follows regardless of the encoding chosen.

Note that by no means do we require logical information

to be contained in a certain fixed logical subspace along the

computation: Only in the first and last steps—when initially

encoding quantum information or coupling to another logical

qubit—dowe ask for a fixed subspace. This logical subspace is

even allowed to stochastically fluctuate along the computation

dependent on measurement outcomes that are obtained in

earlier steps of the computation.

Observation 4. Impossibility of using Gaussian 1D chains

as quantum wires under general measurements. Let G be a

one-dimensional GPEPS. Let S be either S = H or a subspace
thereof. Then the probability of transport between any two

sites A and B of the wire satisfies

p 6 c3e
−d(A,B)/ξ3 (24)

for suitable constants c3,ξ3 > 0. This implies that for any

subsets of sites EA and EB and for fixed local subspaces,

the entanglement between EA and EB that can be achieved

by arbitrary local measurements of all sites except those

contained in EA and EB is necessarily exponentially decay-

ing in d(EA,EB). This also means that, for any two sites

A and B,

ES(A,B) 6 c4e
−d(A,B)/ξ3 (25)

for some c4 > 0 are constants, even if arbitrary local measure-

ments are taken into account.

We now proceed in two steps. First, it is shown that there

exists no subspace S ∈ H of dimension at least dim(S) > 2

such that Vj can be chosen to be unitary, for all j for which

pj > 0 and

〈ηj |U |ψ〉|0〉 = p
1/2

j Vj |ψ〉 (26)

for all |ψ〉 ∈ S, where all U is the Gaussian unitary of the

sequential preparation in Eq. (23), where the index of the

mode, and also any label of tensor factors, is suppressed (see

Fig. 6). {|ηj 〉} is an orthonormal basis of H, with j labeling

the respective outcome of the local measurement, possibly a

continuous function. Because the computational subspace S is

allowed to vary during the processing but must be invariant for

the computation as a whole, we have to consider all N steps

in the sequential preparation and all measurements together.

For reasons of simplicity, we present the argument for a wire

consisting of just two sites first and extend it afterward. We

(a) (b)

FIG. 6. (Color online) (a) Network representing a single step of a

sequential preparation of a GMPS; (b) tensor network representation

of 〈ψ |〈0|U †(1 ⊗ |0〉〈0|)U |0〉|ψ〉.

042336-7



M. OHLIGER, K. KIELING, AND J. EISERT PHYSICAL REVIEW A 82, 042336 (2010)

define the operator

M = U †(1 ⊗ |0〉〈0|)U (27)

and formulate the subsequent lemma.

Lemma 3. Conditions for nondecaying transport fidelity. A

necessary condition for Eq. (26) to be satisfied is that

〈ψ |〈ηj |M|ψ〉|ηj 〉 = pj (28)

for all j and all |ψ〉 ∈ S, with
∑

j pj = 1 and {|ηj 〉} forming
a complete orthonormal basis ofH.
To see this, note that the fact that Eq. (26) holds true for

each j for any |ψ〉 ∈ S means that

PS〈ηj |U |0〉PS = p
1/2

j PS, (29)

where PS denotes the projection onto S. Using completeness

of {|ηj 〉},
∑

j

|ηj 〉〈ηj | = 1. (30)

A moment of thought reveals that for any |φ〉 ∈ S⊥, the latter
denoting the orthogonal complement of S, one has that

PS〈ηj |U |φ〉|0〉 = 0. (31)

What is more,

〈φ|〈ηj |U |0〉PS = 0, (32)

again, for all |φ〉 ∈ S⊥. This further means that (see Fig. 6)

〈ψ |〈ηj |U †(1 ⊗ |0〉〈0|)U |ψ〉|ηj 〉 = 〈ψ |〈ηj |M|ψ〉|ηj 〉 = pj ,

(33)

which proves Lemma 3. Now summing over all measurement

outcomes j in Eq. (33), which is the same as performing the

partial trace (see Fig. 6) with respect to the second mode, we

obtain

〈ψ |tr2(U †(1 ⊗ |0〉〈0|)U)|ψ〉 = 1, (34)

which in turn implies, together with the preceding, that

PS tr2[U
†(1 ⊗ |0〉〈0|)U ]PS = PS . (35)

But this in turn means that the Gaussian operator tr2[U
†(1 ⊗

|0〉〈0|)U ] has at least two spectral values that are identical.
Now it is only possible for a Gaussian operator to have two

equal, nonzero spectral values if the spectrum is flat and

corresponds to an operator that is not of trace class (related to

“infinite squeezing” and “infinite energy,” which was excluded

due to the restriction to proper quantum states with finite

energy).

We now extend the argument to a wire of arbitrary length.

Toward this aim we denote the measurement basis on the

kth site {|η(k)j 〉} and the corresponding probabilities p
(k)
j .

Definition (27) is generalized to

M = [U †(1 ⊗ |0〉)]N [(〈0| ⊗ 1)U ]N . (36)

Condition (26) becomes

(

⊗k

〈

η
(k)
j

∣

∣

)

U⊗N |ψ〉|0〉⊗N =
∏

k

(

p
(k)
j

)1/2
V
(k)
j |ψ〉, (37)

where
∏

k V
(k)
j is unitary for all sequences of measurement

outcomes and, furthermore, acts trivially on S⊥. Modifying
also Eqs. (32), (33), and (35) in a similar manner and using

the completeness of the N measurement bases {|η(k)j 〉}, we
find that for Eq. (37) to hold, the Gaussian operator O =
trN (M), where trN denotes theN -fold partial trace (or suitable

tensor contraction), has two equal spectral values, which is not

possible, as already mentioned, and thus, the first step in the

proof is complete.

C. Impossibility of transport by non-Gaussian measurements

in one dimension: Proving a gap

In the second step we now show that Observation 4 holds

if Eq. (26) is not fulfilled. The problem of recovering an

unknown state after propagation through the wire is equivalent

to that of undoing a nonunitary operation. Obviously, it is

a fundamental feature of quantum mechanics that it is not

possible to implement a nonunitary linear transformation in a

deterministic fashion. Since one does not have to correct for

a nonunitary operation in each step, however, the technicality

of the argument is related to the fact that we only have to undo

an entire sequence of nonunitary Kraus operators once.

Assume that we aim to use our wire for the transport of

a single pure qubit. After N steps of transport it will still be

pure but, in general, distorted, due to the application of some

nonunitary operator

VJ = V
(N)
jN

· · ·V (1)
j1

, (38)

where J = (j1, . . . ,jN ) is an index reflecting the entire

sequence of measurement outcomes on the N lattice sites.

To recover the initial state, one has to apply an XJ such that

XJ VJ = cJ 1, (39)

with cj ∈ C. The success probability of this recovery opera-

tion, averaged over all measurement outcomes, is nothing but

the probability of transport. It will decay exponentially in N

whenever, for any k, at least a single V
(k)
jk
is not unitary. The

maximal average probability to undo random sequence VJ of

Kraus operators is found to be

pN = max tr(XJ VJ ρV
†
J X

†
J ), (40)

subject to

X
†
J XJ = 1, (41)

XJ VJ = cJ 1. (42)

A moment of thought reveals that this probability of transport

is then found to be

pN =
∑

J

λ1[(V
†
J VJ )

−1]−1 =
∑

J

λn(V
†
J VJ ), (43)

where λ1 (λn) denotes the largest (smallest) eigenvalue.

To show that Observation 4 is true if Vk is not proportional

to a unitarymatrix for at least one k can be shown by induction.

Denoting, again, the operators applied by the measurements

of the first N sites by VJ and the corresponding operators for
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site N + 1 by {Wj }, we get from Eq. (43) that

pN+1 =
∑

J,j

λn(V
†
J W

†
j WjVJ ). (44)

Before we proceed, we note that it is possible to assume that all

Wj and Vj are effective 2× 2 matrices, corresponding to the
situationwhere the computational subspace S does not change.

If this is not the case, one can account for the fluctuation of

the computational subspace by replacing Vj 7→ UjVj (and

performing an analogous replacement for Wj ) with a suitable

unitary Uj . All arguments that follow do not depend on the

choice of this unitary Uj . Key to the exponential decay is a

lemma that is proven in the Appendix.

Lemma 4. Bound to eigenvalues of the sum of 2× 2
matrices. For any positiveA,B ∈ C

2×2 with [A,B] 6= 0, there

exists a δ > 0 such that

λ2(A + B) > λ2(A)+ λ2(B)+ δ. (45)

If there exists at least one pair (i,j ) for which

[W
†
i Wi,W

†
j Wj ] 6= 0, (46)

then also

[V
†
J W

†
i WiVJ ,V

†
J W

†
j WjVJ ] 6= 0, (47)

and we can apply Lemma 4 directly to Eq. (44). If, in contrast,

[W
†
i Wi,W

†
j Wj ] = 0 (48)

for all pairs (i,j ), all W
†
i Wi can be simultaneously diagonal-

ized. This means that we can—without loss of generality—

assume that

W
†
i Wi = diag(ξi,ζi). (49)

Because a nonunitaryWi exists by assumption, min{|ξi − ζi | :
i = 1,2} > 0. In both cases we are provided with a ν < 1

such that

pN+1 6 ν
∑

J

λ2(V
†
J VJ ) = νpN , (50)

where we have used the completeness relation
∑

j

W
†
j Wj = 1. (51)

This observation gives rise to the anticipated gap that proves

the exponential decay of the probability of transport and,

therefore, to Observation 4. The exponential decay of the

subspace localizable entanglement follows directly: If there

was a nondecaying localizable entanglement, this could be

used to transport with a high recovery probability, in contrast

to what we have shown. If this were not the case, one could

use the wire to distribute entanglement, which is obviously not

possible.

D. Impossibility of transport by non-Gaussian measurements

in one dimension: Concluding remarks

Note, finally, that even though we have presented Ob-

servation 4 for local projective measurements—which suits

the paradigm of measurement-based computing—the ar-

gument obviously holds true for positive operator-valued

measurements. The proof is completely analogous, with
∑

j |ηj 〉〈ηj | = 1 being replaced by a more general resolution

of the identity.

This argument shows that 1D GPEPSs cannot be used as

quantumwires even when allowing for arbitrary non-Gaussian

local measurements. Note that for this argument to hold,

completeness of the measurement bases are indeed necessary:

For single outcomes, the condition of the output being up

to a constant unitarily equivalent to the input can well be

achieved also for matrices having a different structure; but then

one cannot assure that this is true for each outcome j of the

measurement. This, however, is required to faithfully transport

quantum information. If we allow for a finite rate of failure

outcomes j in individual steps, then the overall probability of

success will asymptotically again become 0 at an exponential

rate.

E. Gaussian cluster states under arbitrary encodings

and in higher dimensional lattices

One might wonder whether this limitation can be overcome

if a large number of physical modes of a higher dimensional

lattice are allowed to carry logical information. The same

argument, actually, can be applied to a k × k × · · · × k × n

cubic slab, as a subset of aD-dimensional cubic lattice, where

one aims at transporting along the last dimension, with local

measurements at each site (Fig. 7). In fact, contracting any

dimension except from the last—so summing over all joint

indices—one arrives at a GMPS with a bond dimension that

is exponential in k. This, however, is a constant. This situation

is hence again covered by a GMPS, as long as one allows

for more than one physical mode and more than one virtual

mode per site. Since the argument in Sec. VB does not make

use of the fact that we have only a single virtual and physical

mode per site: only that now |0〉⊗(k(D−1)) are being fed into the

sequential preparation.

Observation 5. Exponential decay of subspace localizable

entanglement in a higher dimensional lattice. LetG be a one-

dimensional GPEPS, andA andB two sites in a k × k × · · · ×
k × n slab as a subset of a D-dimensional cubic lattice, and

denote by i,j the last coordinate of sites A and B. Then

ES(A,B) 6 c4e
−d(i,j )/ξ4 , (52)

where c4,ξ4 > 0 are constants, even if arbitrary local measure-

ments are taken into account.

So even encodings in higher dimensional Gaussian cluster

states do not alter the situation that one cannot transport along

FIG. 7. (Color online) A slab of a k × n lattice, aiming at using

the second dimension as a quantum wire for quantum computation.

Again, the probability of transport between A and B decays

exponentially with the distance along the last dimension.
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a given dimension, if onewants to think of such slabs as perfect

primitives being used in a universal quantum computing

scheme.

F. Role of error correction and fault tolerance

Observations 2 and 5 show that, under mild conditions,

Gaussian cluster states need not be used as or made almost-

perfect resources by local measurements alone. This consti-

tutes a significant challenge for MBQC with Gaussian cluster

states but does not rule out this possibility. In this section, we

briefly comment on ways that might allow one to overcome

the limitations identified here.

Clearly, it is very much conceivable that this observation

may again be overcome by concatenated encoding in fault-

tolerant schemes, effectively in slabs whose width scales

with the length of the computation: Rather, at the level

of finite encodings, the resource cannot be uplifted to a

perfect resource. The situation encountered here—having pure

Gaussian states—hence has some similarity to noisy finite-

dimensional cluster states built with imperfect operations

[14,15]. Considering the preparation of the quantum wire

and the transport by local measurements as a sequence of

teleportations with not fully entangled resources, this means

that every step adds a given amount of noise to the quantum

information. In finite-dimensional schemes, if this noise

corresponds to an error rate below the fault tolerance, a nested

encoding with an error correction code allows one to perform

computations. The size of the code grows polynomially with

the size of the circuit one wishes to implement. In addition

to this intrinsic error, any physical implementation will, of

course, also suffer fromexperimental errorswhichmust also be

compensated by error correction schemes. Thus, the combined

error rate must be below the fault-tolerance threshold. It is

therefore possible that recognizing all finite squeezings as full

quantum errors—which has to be done in the light of the

results of the present work—and using suitable concatenated

encodings over polynomially many slabs, there exists a finite

squeezing allowing for full universal quantum computation

with eventual polynomial overhead. The question whether

schemes such as these—or ones where suitable polynomially

sized complex structures are “pinched” out of a large lattice—

that are universal can be constructed remains a challenging

and interesting open question.

G. Ideas on percolation

One possible way forward toward the goal of achieving a

fully universal resource under local non-Gaussian measure-

ments is to think of first performing local measurements at

each site, aiming at filtering an imperfect qubit, C
2 cluster

from a Gaussian cluster state. Ideally, one would arrive at

the situation on, say, a cubic lattice of some dimension,

where one could extract a graph state [46] corresponding to

having an edge between nearest neighbors with some finite

probability. If this probability ps is sufficiently high—higher

than the appropriate threshold for edge percolation—and if one

can ensure suitable independence, an asymptotically perfect

cluster on a renormalized lattice can be obtained [47–49].

When trying to identify such percolation schemes, one does

not have to rely solely on classical percolation schemes, but

can also make use of more general repeater-type schemes

as in Ref. [50], referred to as quantum percolation (see also

Ref. [48]). To identify such maps, either classical or quantum,

however, appears to be a very challenging task.

One might also ask whether TMSS bonds as such can

be transformed into suitable maximally entangled pairs of

C
2 ⊗ C

2 systems. This, however, clearly is the case. Again

applying a result for finite-dimensional systems to infinite-

dimensional ones by making use of appropriate nets of Hilbert

spaces, one finds that given a state vector |ψλ〉 of a TMSS
of some squeezing parameter λ > 0, the transformation |ψλ〉
to (|0,0〉 + |1,1〉)/

√
2 is possible with a generalized local

filtering on A only, together with a suitable unitary in B, with

a probability of success of [51,52]

p = min[1,2(1− λ2)]. (53)

Hence, whenever λ > 1/
√
2, this transformation can be done

deterministically. This has interesting consequences for quan-

tum repeaters. The protocol performing the transformation

|ψλ〉A,B 7→
1

√
2
(|0,0〉 + |1,1〉) (54)

can be implemented by combining A with an ancillary system

C, performing a joined unitary transform on A,C, measuring

C, and applying another unitary gate on B classically condi-

tioned on the measurement result.

But even if λ < 1/
√
2, one can still distill a resource from

a collection of TMSSs distributed in a graph, performing an

argument involving percolation here. This, however, merely

shows that Gaussian states as such can be resources for

information processing. Most importantly, this is not the

resource anticipated, so not the actual GPEPS, but a collection

of suitable TMSS. Thus, non-GPEPS projections cannot be

implemented with linear optics without a massive overhead.

Finally, the eventually created qubit cluster state would be

obtained in a single-rail representation where measurements

in the superposition bases, which are needed for the actual

computation, are experimentally very difficult and require

additional photons. So the question of actual universality of

the Gaussian cluster state, under all fair meaningful ways of

defining a set of rules, remains an interesting and challenging

question.

H. Remarks on 1D Gaussian quantum repeaters

We finally briefly reconsider the question of a quantum

repeater setting based on general non-Gaussian operations.We

have shown that it is not possible to obtain a finitely entangled

state for an arbitrary long 1D GPEPS. However, what is also

true at the same time is that a sequential repeater scheme based

on sufficiently entangled TMSSs before the PEPS projection

does yield a nondecaying entangled bond between the end

points. That is, using only projective local measurements of

each of the sites, one can transform a collection of distributed

TMSSs in a 1D setting into a maximally entangled qubit pair

shared between the end sites. To show this, it suffices to revisit

the situation for three sites, as the general statement onN sites

follows immediately by iteration.
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Now consider the quantum repeater setting and assume for

simplicity that we already have a qubit Bell pair, |φ〉A,B1 =
(|0,0〉 + |1,1〉)/

√
2, which we want to swap through a TMSS

|ψλ〉B2,C with λ > 1/
√
2. We can use the higher, unoccupied

Fock levels of the state vector |φ〉A,B1 as an ancilla to transform

|ψλ〉B2,C according to Eq. (54). As the final unitary on C after

local operations and classical communication with one-way

classical communication does not change the entanglement,

we can also omit it. As the unitary, the ancilla measurement,

and the final Bell measurement on B1,B2 are equivalent to a

single projective measurement on B1,B2, it is possible to swap

entanglement through a physical TMSS perfectly. Needless to

say, this will be a highly non-Gaussian, complicated operation

and will not overcome the limitation of Gaussian cluster states

discussed.

VI. DISCUSSION AND SUMMARY

In this article, we have assessed the requirements for

possible architectures when using Gaussian states as resources

for MBQC and for entanglement distribution by means of

quantum repeater networks. Using a framework of GPEPSs,

we have shown that under Gaussian measurements only,

the localizable entanglement decays exponentially with the

distance in arbitrary graphs. This rules out the possibility

of processing or even transporting quantum information with

Gaussian measurements only.

The preceding results also show that Gaussian cluster

states—under mild conditions of the encoding of logical

information in slabs, rather than general encodings in the

entire lattice—cannot be used as or made perfect universal

resources for MBQC. No information can be transmitted

beyond a certain influence region, and hence, no arbitrarily

long computation can be sustained. Now if one allows for

a higher energy, and hence larger two-mode squeezing, in

the resource states, this influence region will become larger.

In other words, small-scale implementations as proof-of-

principle experimental realizations of such an idea will be

entirely unaffected by this: Any state with finite energy will

constitute some approximation of the idealized improper state

having infinite energy, and its outcomes in measurements will

approximate the idealized ones. However, with this state, one

could not go ahead with an arbitrarily long computation.

This observation shows that Gaussian cluster states are fine

examples of states that eventually allow for the demonstration

of the functioning of a CV quantum computer, possibly

realized using the many modes available in a frequency

comb [5–7].

Also, we have discussed the requirements for fault tolerance

and quantum error correction for such schemes, yet to be

established, in that any finite squeezings essentially have to

be considered full errors in a concatenated encoding scheme.

This work motivates further studies of the fault tolerance of

systems with a finite-dimensional logical encoding in infinite-

dimensional systems. But it also strongly suggests that it could

be a fruitful enterprise to further at alternative CV schemes

not directly involving Gaussian states, but other relatively

feasible classes of states, such as coherent superpositions

of a few Gaussian states like the so-called cat states, which

have turned out to be very useful within another computation

paradigm [53]. We hope that this article will contribute to

clarifying the requirements that any architecture eventually

must meet based on the interesting idea of doing quantum

computing by performing local measurements on Gaussian or

non-Gaussian states of light.
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APPENDIX: PROOF OF LEMMA 4

Let A,B ∈ C
2×2, with A,B > 0. We set

c =
‖A1/2B1/2‖2

‖A‖‖B‖
. (A1)

The inequality c 6 1 follows directly from the submultiplica-

tivity of the operator norm, while equality holds if and only if

A and B commute. Rewriting

λn(A + B) = tr(A + B)− λ1(A + B)

= tr(A + B)− ‖A + B‖, (A2)

we can now use a sharpened form of the triangle inequality

for the operator norm of 2× 2 matrices in Ref. [54] to
obtain

λ2(A + B) = tr(A + B)− ‖A + B‖
> tr(A + B)− 1

2
(‖A‖ + ‖B‖)

+ 1
2
(‖A‖ − ‖B‖)2 + 4‖A1/2B1/2‖2)1/2. (A3)

If now c < 1, then there exists a δ > 0 such that

λ2(A + B) > tr(A + B)− ((‖A‖ − ‖B‖)2

+ 4‖A‖‖B‖)1/2 + δ

= tr(A + B)− (‖A‖ + ‖B‖)+ δ (A4)

= λ2(A)+ λ2(B)+ δ, (A5)

which proves Lemma 4.
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