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Simulation of classical thermal states on a quantum computer: A transfer-matrix approach
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We present a hybrid quantum-classical algorithm to simulate thermal states of classical Hamiltonians on a

quantum computer. Our scheme employs a sequence of locally controlled rotations, building up the desired

state by adding qubits one at a time. We identified a class of classical models for which our method is efficient

and avoids potential exponential overheads encountered by Grover-like or quantum Metropolis schemes. Our

algorithm also gives an exponential advantage for two-dimensional Ising models with magnetic field on a square

lattice, compared with the previously known Zalka’s algorithm.
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Simulation of a finite-temperature physical system with a

controllable quantum device is one of themost important goals

of quantum simulation [1,2]. Classical Markov-Chain Monte

Carlo (MCMC) algorithms are powerful tools for sampling

Gibbs distributions. They are efficient provided that the gap

1 of the transition matrix is nonvanishing; the running time

typically scales as τ ∼ O(1/1). A quantum generalization

[3] of MCMC has recently been explored by the quantum

information community due to the connection to quantum

walks [4]. Richter [5] developed a method for sampling from

the Gibbs distribution for periodic lattices. Somma et al. [6]

combined quantum walk and quantum Zeno effect to achieve

quantum speedup. Wocjan and Abeyesinghe [7] improved it

by using fixed point quantum search. Generally, these quantum

algorithms allow the running time to scale as τ ∼ O(1/
√

1),

a quadratic speedup compared with the classical counterparts.

However, for many problems of practical interest, such as

optimization problems and spin glasses, the gap 1 may

become exponentially small when the system size increases,

making it unpractical to use MCMC algorithms for solving

them (see Fig. 1). Therefore, gap-independent methods are

more desirable for solving these problems.

A class of gap-independent methods is called belief prop-

agation [8], which generalizes the transfer matrix methods in

statistical physics. For problems involving a regular geometry,

it can be very efficient. This property will be exploited in this

Rapid Communication, where a different way for obtaining

samples from the thermal state is discussed. This approach is

a generalization of the state preparation method by Lidar and

Biham [9] and Zalka [10]. We show that in some cases, the

structure of the system under investigation allows for large

speedups over the general methods. This is because the cost

of our method is independent of the temperature and the gap

size.

Our proposed strategy is to construct a coherent encoding of

a thermal state (CETS) |ψCETS〉 directly, rather than sampling
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from the thermal probability distribution:

|ψCETS〉 =
∑

s

√

e−βH (s)/Z|s〉, (1)

where s = {0,1}N , β ≡ 1/kBT is the inverse temperature,

H (s) is the eigenenergy of some classical spin Hamiltonian

for the N -spin configuration s = s1s2 · · · sN , and Z is the

partition function. This CETS can be transformed into the

corresponding thermal state

ρth = e−βH /Tr(e−βH ) (2)

by including a set of N ancilla qubits, performing bit-by-bit

controlled-NOT (CNOT) transformations such that

|s〉 ⊗ |0 · · · 0〉A → |s〉 ⊗ |s〉A, (3)

and tracing over the ancilla system. However, for some

applications, such as the partition functions estimation in [11],

it is preferable to use the CETS directly. With the CETS, all

the thermal properties can be extracted. In Ref. [2], several

efficient methods of measurement applicable to CETS are

outlined. For completeness, in the appendix [12], we include

a self-contained description of the measurement methods, and

consider how randomness can be introduced efficiently.

We will present a method for preparing the CETS of

a classical Hamiltonian from the initial state |0 · · · 0〉 by a
sequence of locally controlled rotations. Zalka’s approach

[10], as applied to discrete cases [13], allows for preparing

the CETS by adding qubits one by one, and performing a

rotation (controlled by all of the previous qubits) on each new

qubit as

|s1 · · · sk〉|0〉 → |s1 · · · sk〉(cos θs |0〉 + sin θs |1〉), (4)

where cos2 θs is the conditional probability of sk+1 = 0, given

that the first k spins are in a particular configuration s1s2 · · · sk .

The problemhere is that in general, this requires the knowledge

(or efficient calculation) of O(2N ) conditional probabilities.

Thus, Zalka’s method is efficient only when the probability

distributions are efficiently integrable [14]. Here we focus on

the cases where the controlled rotations are local, i.e., they

depend only on a few previous qubits. This in turn allows

efficient computation of the respective rotation angles.

1050-2947/2010/82(6)/060302(4) 060302-1 ©2010 The American Physical Society



RAPID COMMUNICATIONS

YUNG, NAGAJ, WHITFIELD, AND ASPURU-GUZIK PHYSICAL REVIEW A 82, 060302(R) (2010)

Classical Markov Chains

Markov Chains with Quantum Speedup

Classical Belief Propaga.on Methods

Belief Propaga.on with Quantum Speedup

Quadra.c Quantum Speedup

R
u

n
n

in
g

 .
m

e

Markov Chain Gap ∆∆∗

FIG. 1. (Color online) The running time τ ∼ O(1/1) of Markov

chain methods, limited by the gap 1 of the Markov matrix. A

quantum quadratic speedup τ ∼ O(1/
√

1) (black solid line) relative

to classical Markov chains (black dashed line) can be achieved by a

quantum computer. Below some critical gap size 1 < 1∗, Markov

chain methods become inefficient (shaded region), and classical

belief propagation methods (red dashed line), including transfer

matrix methods (which are gap independent), become more efficient.

Combined with quantum amplitude amplification, a further quantum

speedup is possible (red solid line).

Real-space renormalization. This method is also related

to the renormalization group method [15], which idea is to

integrate out some degrees of freedom (coarse-graining) in

the partition function Z, and describe the subsystem with

a similar system with modified (renormalized) couplings.

As an example, consider a linear chain of three spins

[Fig. 2(a)]. The partition function after eliminating spin 3

[cf. Eq. (21)],

Z = 3(β)
∑

s1,s2

eB(β)s1s2 , (5)
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FIG. 2. (Color online) Real space renormalization approach

for preparing the coherent encoding of a thermal state (CETS).

(a) Spin 3 is eliminated by integration, inducing an effective

interaction (green bond) between spin 1 and spin 2. (b) A controlled

rotation is performed on spin 3, inducing an effective interaction (red

bond) between spin 1 and spin 2. (c) A quantum circuit demonstrating

the sequential construction of the full thermal state.

is proportional to that of spin 1 and spin 2 interacting with an

effective interaction−B(β)/β. In contrast to this conventional

renormalization treatment, where the degrees of freedomof the

physical systems are progressively reduced, our method works

in a reverse fashion: at each step, we increase the number of

degrees of freedom, and then perform a controlled rotation

(Fig. 2(b)), which also changes the effective interaction of

spins 1 and 2.

We next define a sequential method for preparing a CETS

for a generalized Ising Hamiltonian ofN classical spins which

has multiple spin-spin coupling constants:

Hs =
∑

j

Aj sj +
∑

ij

Bij sisj +
∑

ijk

Cijksisj sk + · · · . (6)

Our goal is to investigate how a CETS can be constructed by

locally controlled quantum rotations. Suppose we are given a

CETS as defined in Eq. (1) of k spins |ψk〉 for the Hamiltonian
given by Eq. (6), and an additional qubit initialized in the state

|0〉 that will become spin k + 1 of our CETS. Let us define the
rotation angle θs by

cos θs ≡
√

e−βms /Ws, (7)

whereWs ≡ e−βms + eβms = 2 cosh(βms), and

ms ≡ m(s1, . . . ,sk) (8)

is a function (to be determined later) of the spin variables of

the first k spins. After performing a controlled rotation (4) on

spin k + 1, with angles given by Eq. (7), we obtain a CETS
|ψk+1〉 of a new (k + 1)-spin Hamiltonian

Hk+1 = H̃k + mssk+1. (9)

To justify this statement, rewriteW in Eq. (7) as

Ws = e−βms + eβms = 3ke
−β(Hk−H̃k), (10)

for some constant3k and some k-spin Ising spin Hamiltonian

H̃k (with possible higher order interactions). The state that we

get from |ψk〉|0〉 by the controlled rotation (7) is
∑

s

√
F (s)|s〉

with F (s) ≡ F (s1,s2, . . . ,sn) given by

F (s) =
e−βHk

Zk

e−βms sk+1

Ws

=
e−β(H̃k+mssk+1)

Zk3k

, (11)

i.e., a CETS for the Hamiltonian (9). Moreover, the new

normalization constant is the same as the partition function

Zk+1 for the system with Hamiltonian (9) and can be obtained
simply by

Zk+1 = 3kZk. (12)

The term H̃k in (9) is an Ising Hamiltonian of the form

(6) for the first k spins, but associated with a different

set of renormalized couplings {Ãj ,B̃ij ,C̃ijk, . . .}. Finally, the
constant 3n can be shown to be the geometric mean of the

left-hand side of (10)

3k = 2
∏

ms

[cosh(2βms)]
1/2k

. (13)

This is reminiscent of formulas which appear in classical

algorithms such as belief propagation [8] for calculating

some thermal properties of some spin systems. The controlled
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rotation is therefore the crucial element of our renormalization

step. Using our method iteratively as shown in Fig. 2(c), we

can generate the CETS of a particular spin Hamiltonian. In

general, H̃k could contain up to k-local interaction terms. If

all the terms in H̃k involve at most t spins, we call this a

t-renormalizable operation.

Finite-range interactions and belief propagation. As a

general construction, we consider spin chains with finite-range

interactions involving z neighboring spins. The computational

complexity of this approach generally scales exponentially in

z. As an example, consider two groups of spins s and t , each can

be considered as a 2z-dimensional system. The Hamiltonian is

of the form

H = Hs + Ht + Hst , (14)

where Hs and Ht are the internal interaction terms for spins

within group s and t , andHst contains the interactions between

the groups. We start with preparing the state of the group s as

1
√

M

∑

s

√

e−βHs γs |s〉, (15)

where M is a normalization constant, and γs is a function of

the spins s to eliminate renormalization effects induced by the

spins in group t . The group t is initialized in the state |0 · · · 0〉.
We choose the controlled rotation

|s〉|0 · · · 0〉 → |s〉
∑

t

√

e−β(Ht+Hst )(γt/γs)|t〉, (16)

with γt determined by the next group of spins to be included

in the preparation procedure. If group t is the last group, then

all γt are equal to 1. To ensure unitarity of this operation, we

require

γs =
∑

t

γte
−β(Ht+Hst ), (17)

which is a recursion relation typically encountered in belief

propagation [8] problems. For a group of z spins, and a given

set of γt , the sum involves O(2z) terms, scaling exponentially

in z. To perform the multi-qubit rotation, we can apply

Zalka’s algorithm [10], which requires the computation of

O(2z) rotation angles, and a polynomial number of subsequent

quantum operations. To save computational resource for large

z, it is more efficient to determine the angles for rotation

“on the fly.” This can be achieved by the quantum amplitude

amplification algorithm [16] calculated with some ancilla

qubits.

We can apply this approach to an N × N square lattice

of Ising spins with nonuniform couplings and arbitrary local

magnetic fields. We make a group for each row of z = N

spins. In the worst case scenario, the number of required

operations in the above approach then scales1 as O(22N ),

which becomes O(2N ) after combining with the amplitude

amplification algorithm. This is still an exponential algorithm,

but nevertheless with an exponential speed up over the direct

application of Zalka’s algorithm, whose complexity scales

1With belief propagation, for a chain of d-dimensional qubits, the

partition function scales as (N − 1)d2.

as O(2N2

), as it requires the preparation of a probability

distribution with 2N2

amplitudes. However, for the uniform

two-dimensional Ising model without magnetic fields, an

efficient t-renormalizable approach might exist, as classical

polynomial algorithms exist for this problem [17].

Building blocks for frustrated magnets and spin ice. As

another example, we show how to generate a CETS of a

triangle plaquette of three Ising spins by a 2-renormalizable

operation. Our goal is to prepare a CETS of three spins (see

Fig. 2(b)) for the Hamiltonian

H3 = J (s1s2 + s1s3 + s2s3). (18)

Let us start with two qubits initialized as

1
√

M

∑

s1,s2={0,1}

√

γs1s2e
−βJs1s2 |s1s2〉, (19)

where M is a normalization constant and γs1s2 > 0 is some

positive function of s1 and s2 to be determined later. Let us

add a third qubit in the state |0〉 to the system, and act with the
controlled rotation (7) depending on the values of the first two

qubits. When we choose

ms = J (s1 + s2) (20)

for some constant J , we can use the well-known result in

renormalizing the one-dimensional Ising chain [15], and write

Ws = e−βJ (s1+s2) + eβJ (s1+s2) = 3eβBs1s2 , (21)

where the coefficients 3 and B are

3 = 2
√

cosh(2βJ ),
(22)

B = (1/2β) ln cosh(2βJ ).

Observe now that if we chose γs1s2 = 3eβBs1s2 when preparing

the first two qubits, applying the controlled rotation of the

third qubit eliminates this factor. Consequently, this operation

produces the CETS for the three-spin Ising cycle H3. We will

discuss more examples in the appendix [12].

Connection to matrix product state (MPS) representation.

Many-body quantum states can be expressed in the form

of matrix product states (MPS) [18,19]; our CETS is of no

exception. The representation in terms of MPS,

|ψMPS〉 =
∑

s

tr
{

A(1)s1
A(2)s2

· · · A(n)sn

}

|s1s2 · · · sn〉, (23)

where A1s1 is a vector and the rest of the A’s are matrices,

is closely related to the classical algorithm called the density

matrix renormalization group (DMRG) [20]. In the practical

implementation of DMRG algorithms, the matrices A are

truncated to a constant size (m × mwherem ¿ 2n) and stored

in the memory, instead of the actual form of the quantum state;

this leads to a significant reduction of thememory requirement.

We investigated the validity of MPS truncation for a class

of CETS (details in the appendix [12]); the result suggests that

the truncation inMPS is efficient in the high-temperature limit.

This is expected as there is no entanglement in the CETS in

that limit. However, in the T → 0 limit, due to the degeneracy

of the ground state, the truncation would cause large errors.

On the other hand, the MPS representation of quantum

states can lead to an alternative way to obtain the CETS.
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This is because the CETS can in principle be mapped to the

ground state of certain artificial Hamiltonians [21]; a DMRG

procedure can therefore be implemented for the CETS, which

results in a MPS representation. For example, to solve the

ground-state problem, applying the phase estimation algorithm

(PEA) to the MPS can result a projection to the exact ground

state, with an efficiency depending on the fidelity of the

MPS [2]. To this end, we elaborate this pointmore by including

a discussion in the appendix [12] on how tomodify our method

to map any given MPS representation to the state of a register

of qubits.

Conclusion. To summarize, we have developed an algo-

rithm which identifies a class of classical spin problems that

can be simulated efficiently with a quantum computer. In this

class of problems, our method scales efficiently compared

with MCMC methods [6,7,22], as it is independent of the

gap of the Markov chain and temperature. On the other hand,

we believe that the tools developed here could be useful for

classifying the complexity classes of certain spin models. An

avenue for further research is the complexity classification of

spin systems by their t-renormalizability, which may suggest

a deeper understanding of the connection between complexity

theory and quantum simulation.
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