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We analyze a proposed experiment [Boixo et al., Phys. Rev. Lett. 101, 040403 (2008)] for achieving sensitivity

scaling better than 1/N in a nonlinear Ramsey interferometer that uses a two-mode Bose-Einstein condensate

(BEC) of N atoms. We present numerical simulations that confirm the analytical predictions for the effect of

the spreading of the BEC ground-state wave function on the ideal 1/N3/2 scaling. Numerical integration of

the coupled, time-dependent, two-mode Gross-Pitaevskii equations allows us to study the several simplifying

assumptions made in the initial analytic study of the proposal and to explore when they can be justified. In

particular, we find that the two modes share the same spatial wave function for a length of time that is sufficient

to run the metrology scheme.
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I. INTRODUCTION

Recent advances in experimental techniques are providing

access to unprecedented levels of control over quantum

systems and turning the quest for the fundamental limits of

metrology into a question of practical importance, instead of

just a theoretical curiosity. The success of many experiments

that rely on weak-signal detection inevitably depends on

improvement of metrological methods that operate near the

limits established by quantum mechanics.

In this regard, several strategies have been proposed over

the past few years in order tomake quantum-limitedmetrology

accessible to current experiments. Most of these protocols fo-

cus on schemes for preparing optimal states, such as squeezed

states, cat states, and path entangled states (N00N states), to

be fed into linear interferometers. Ideally, these states achieve

sensitivities at the quantum limit for linear interferometry,

often referred to as theHeisenberg limit [1]. The optimal input

states, however, are difficult to prepare and very vulnerable to

decoherence, thus making these protocols a major challenge

for experimental realization. An alternative approach, using

nonlinear interferometry, has emerged as a promising way to

outperform 1/N -limited linear interferometry without relying

on entanglement or squeezing [2–6].

In single-parameter estimation, the Heisenberg limit cor-

responds to the best possible scaling of sensitivity with the

resources available for the measurement, here taken to be the

number of quantum subsystems available for the task. This

scaling is not universal, but rather depends on the nature

of the coupling between the quantum subsystems and the

parameter to be estimated, and is enhanced by nonlinear

couplings [2,3,7–9]. Moreover, further analysis showed that

this enhancement is purely a dynamical effect, which is inde-

pendent of entanglement generation [4,6]. This, in turn, makes

the enhanced scaling potentially robust against decoherence,

as opposed to the strategies previously mentioned. Initial

entangled states are required to achieve the optimal scaling in

nonlinear metrology, but protocols that only involve separable

states are sufficient to beat the 1/N Heisenberg scaling of

linear metrology [2–6].

In this paper, we analyze the experiment proposed in [4,6],

which uses a two-mode Bose-Einstein condensate (BEC) of

N atoms to implement a nonlinear Ramsey interferometer

whose detection uncertainty scales better than the optimal

1/N Heisenberg scaling of linear interferometry. This protocol

takes advantage of the pairwise scattering interaction in a BEC,

which essentially allows interferometric phases to accumulate

N times faster than in a linear interferometer, thus permitting

a measurement sensitivity that scales as 1/N3/2.

As was investigated analytically in previous work [6],

there are various challenges and potential problems in im-

plementing such a measurement protocol and achieving the

desired scaling. In view of currently available techniques and

realistic experimental parameters, we further investigate such

issues by means of numerical simulations and more accurate

approximation procedures.

We first review, in Sec. II, an approximate analytical

description of the proposed protocol, which was presented

in [6]; we highlight the several simplifying assumptions of

this approximation. We then compare, in Secs. III and IV,

these analytical estimates and predictions with the results

of numerical simulations. By solving the time-independent

Gross-Pitaevskii (GP) equation, we first analyze, in Sec. III A,

how the spreading of the BEC wave function with increasing

N affects the scaling and how this effect can be suppressed by

the use of low-dimensional, hard-trap geometries. Numerical

integration of the time-dependent, two-mode GP equations

is presented in Sec. III B; these numerical results simulate

the fringe signal of the protocol, allowing us to investigate

how position-dependent phase shifts across the condensate

degrade the fringe visibility. Section IV considers further

the differentiation of the spatial wave functions of the two

modes by investigating in some detail an alternative analytical

approximation to the two-mode dynamics, proposed in [6],

which takes into account the effects of the position-dependent
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phase shifts for times before the two modes separate spatially.

SectionV concludes with additional perspective on our results.

II. NONLINEAR INTERFEROMETRY USING A BEC

As pointed out in [4,6], a two-mode BEC ofN atoms can be

used to implement a nonlinear Ramsey interferometer whose

detection sensitivity scales better than 1/N . We briefly review

in this section key aspects of this metrology protocol and of

the zero-order model used to describe the evolution of the

two-mode BEC. Further details can be found in [6].

A. Model

We consider a BEC of N À 1 atoms that can occupy two

hyperfine states, henceforth labeled |1〉 and |2〉. We assume
the BEC is at zero temperature and that all the atoms are

initially condensed in state |1〉 with wave function ψN (Er),
which is the N -dependent solution (normalized to unity) of

the time-independent GP equation
(

− h̄2

2m
∇2 + V (Er)+ g11N |ψN (Er)|2

)

ψN (Er) = µNψN (Er),

(2.1)

where V (Er) is the trapping potential, µN is the chemical

potential, and g11 is the intraspecies scattering coefficient.

This coefficient is determined by the s-wave scattering length

a11 and the atomic mass m according to the formula g11 =
4πh̄2a11/m.

We describe the system by the so-called Josephson ap-

proximation, which assumes that both modes have and retain

the same spatial wave function ψN (Er) from Eq. (2.1). In

this approximation, the BEC dynamics is governed by the

two-mode Hamiltonian

Ĥ = NE0 + 1

2
ηN

2
∑

α,β=1
gαβ â

†
β â†

α âα âβ . (2.2)

Here â†
α (âα) creates (annihilates) an atom in the hyperfine

state |α〉, with wave function ψN , gαβ = 4πh̄2aαβ/m, E0 is

the mean-field single-particle energy, given by

E0 =
∫

d3r

(

h̄2

2m
|∇ψN |2 + V (Er)|ψN |2

)

, (2.3)

and the quantity

ηN =
∫

d3r|ψN (Er)|4 (2.4)

is a measure of the inverse volume occupied by the condensate

wave function ψN . Notice that this effective volume renor-

malizes the scattering interactions, thereby defining effective

nonlinear coupling strengths gαβηN . The Josephson approxi-

mation applies if one can drive fast transitions between the two

hyperfine levels, the two levels are trapped by the same external

potential, the atoms only undergo elastic collisions, and the

spatial dynamics are slow compared to the accumulation of

phases in the two hyperfine levels. In addition, notice that

the zero-temperature mean-field treatment of the Josephson

Hamiltonian (2.2) assumes that the quantum depletion of the

condensate is negligible. We make this assumption throughout

on the grounds that the depletion is expected to be very

small [10].

The Josephson-approximation evolution is described in

a more convenient way in terms of Schwinger angular-

momentum operators [11]. Introducing the operator Ĵz =
(â

†
1â1 − â

†
2â2)/2, one finds that Eq. (2.2) can be written as

Ĥ = γ1ηNNĴz + γ2ηN Ĵ 2z , (2.5)

where we define two new coupling constants that characterize

the interaction of the two modes,

γ1 = 1
2
(g11 − g22) and γ2 = 1

2
(g11 + g22)− g12. (2.6)

We omit c-number terms whose only effect is to introduce an

overall global phase.

The dynamics governed by Eq. (2.5) is analogous to

that of an interferometer with nonlinear phase shifters [4].

Due to the different scattering interactions, the first term of

Eq. (2.5) introduces a relative phase shift that is proportional

to the total number of atoms in the condensate, whereas

the Ĵ 2z term leads to more complicated dynamics that create

entanglement and phase diffusion. Both terms can be used

to implement nonlinear metrology protocols whose phase

detection sensitivity scales better than 1/N . For initial product

states, the entanglement created by Ĵ 2z has no influence on

the enhanced scaling and therefore offers no advantage over

the NĴz evolution. On the contrary, it is better to avoid the

associated phase dispersion [3], which can be accomplished

by a suitable choice of the condensate atomic species.

We consider a condensate of 87Rb atoms constrained to the

hyperfine levels |F = 1,MF = −1〉 ≡ |1〉 and |F = 2,MF =
1〉 ≡ |2〉. These states possess scattering properties that offer
a natural way to suppress the phase diffusion introduced by

the Ĵ 2z evolution; namely, the s-wave scattering lengths for

the processes |1〉|1〉 → |1〉|1〉, |1〉|2〉 → |1〉|2〉, and |2〉|2〉 →
|2〉|2〉, respectively, are a11 = 100.40a0, a12 = 97.66a0, and

a22 = 95.00a0 [12], with a0 being the Bohr radius, which

implies that γ2 ' 0. Consequently, the Ĵ 2z term becomes

negligible, and the effective dynamics is simply described

by the NĴz coupling. This NĴz coupling is that of a linear

Ramsey interferometer (i.e., a coupling proportional to Ĵz),

which accumulates phase at a rate enhanced by a factor of

NηN . This allows the coupling constant γ1 to be estimated

with a sensitivity that scales as 1/N3/2ηN . Notice that the exact

scaling can only be determined once the trapping potential

is specified, since the N dependence of ηN depends on trap

geometry.

B. Nonlinear Ramsey interferometry

As in typical Ramsey interferometry schemes, our pro-

tocol runs as follows. The atoms are first condensed to the

state ψN (Er)|1〉, and a fast optical pulse suddenly creates
the superposition state ψN (Er)(|1〉 + |2〉)/

√
2 for each atom.

The atoms are then allowed to evolve freely for a time t , which

brings the atomic state to [ψN,1(Er,t)|1〉 + ψN,2(Er,t)|2〉]/
√
2.

A second transition between the hyperfine levels is then used

to transform any coherence between the two modes into

population information that is finally detected. For this second

053636-2



NONLINEAR INTERFEROMETRY WITH BOSE-EINSTEIN . . . PHYSICAL REVIEW A 82, 053636 (2010)

transition, we choose a π/2 rotation about the Bloch x axis,

changing the atomic state to

1

2
(ψN,1 − iψN,2)|1〉 − i

2
(ψN,1 + iψN,2)|2〉. (2.7)

The detection probabilities for each hyperfine level,

p1,2 = 1
2
[1∓ Im(〈ψN,2|ψN,1〉)], (2.8)

aremodulated by the overlap of the two spatial wave functions,

〈ψN,2|ψN,1〉 =
∫

d3rψ∗
N,2ψN,1. (2.9)

This implements a measurement of Ĵy .

Within the Josephson approximation of Eq. (2.5), the only

effect of the evolution is to introduce a differential phase shift

NηNγ1t/h̄ between the two modes. This implies that ideally

the probabilities oscillate as

p1,2 = 1
2
[1∓ sin(ÄN t)], (2.10)

where

ÄN ≡ NηNγ1/h̄ (2.11)

is the idealized fringe frequency. This fringe pattern allows

one to estimate the coupling constant γ1 with an uncertainty

given by

δγ1 = 〈(1Ĵy)
2〉1/2

|d〈Ĵy〉/dγ1|
∼ 1√

NNηN

. (2.12)

III. NUMERICAL SIMULATIONS

The several simplifying assumptions in the proposed

model make it straightforward to see how a scaling ap-

proaching 1/N3/2 can be obtained. Those assumptions were

made based on rough calculations that suggest that the

protocol is implementable with current techniques [6]. The

main purpose of this paper is to examine the validity

of those assumptions by numerically simulating the dis-

cussed interferometry scheme under realistic experimental

conditions.

A. Spreading of the BEC wave function

As emphasized before, the exact scaling of the detection

sensitivity ultimately depends on how ηN varies with the num-

ber of atoms in the condensate, which is essentially determined

by the geometry of the trapping potential, considering that

η−1
N is a measure of the volume occupied by the condensate.

Because of the repulsive interactions, the expansion of theBEC

with increasing N dilutes the effective nonlinear couplings,

which can ruin the enhanced scaling of the sensitivity [6].

The expansion of the atomic cloud can be reduced by using a

potential with hard walls, which suppresses theN dependence

of ηN . Another strategy is to operate in traps of effectively

lower dimension so that the condensate wave function has

fewer dimensions to spread into.

We thus determine the effect of the spreading of the conden-

sate wave function captured by ηN by numerically integrating

the time-independent, three-dimensional GP equation (2.1)

[13]. We restrict our numerical analysis to the case of highly

elongated BECs, which, according to previous results [6], offer

the best scalings. We assume that the BEC is tightly confined

by a transverse harmonic potential and loosely trapped by a

power-law potential; i.e., we consider cylindrically symmetric

trapping potentials of the form

V (ρ,z) = 1
2

(

mω2T ρ2 + kzq
)

, (3.1)

with q = 2,4, and 10. These three potentials allow us to

explore how the results depend on the hardness of the

potentials. Notice that the limit q → ∞ recovers the case of a

hard-walled trap.

In the so-called quasi-one-dimensional (quasi-1D) regime,

the scattering interaction does not drive any appreciable dy-

namics in the transverse directions. One can thus approximate

the condensate wave function by the product ansatz

ψN (ρ,z) = χ0(ρ)φN (z), (3.2)

where χ0 is the ground-state wave function of the transverse

harmonic potential and φN is the solution of the one-

dimensional, longitudinal GP equation

(

− h̄2

2m

d2

dz2
+ 1

2
kzq + g11NηT |φN |2

)

φN = µLφN . (3.3)

Here µL = µN − h̄ωT is the longitudinal part of the chemical

potential and ηT is the inverse transverse cross section of the

condensate, given by

ηT =
∫

d2ρ|χ0(ρ)|4 = 1

2πρ20
, (3.4)

where ρ0 = √
h̄/mωT .

This quasi-1D approximation is valid only as long as the

number of atoms in the condensate is small compared to

an (upper) critical atom number N̄T , which is specified by

determiningwhen the scattering energy becomes as large as the

transverse kinetic energy. This condition sets the characteristic

energy required to excite any dynamics in the transverse

dimensions. We thus define N̄T by solving the equation

g11

2
NηN = h̄2

2m

∫

d2ρ|∇χ0|2. (3.5)

Generally this equation would have to be solved numerically,

but for N = N̄T , the kinetic energy term in Eq. (3.3) can

be neglected, and the longitudinal wave function is well

approximated by the Thomas-Fermi solution [11]

|φN (z)|2 = µL − kzq/2

Ng11ηT

, (3.6)

where µL ≡ kz
q

N/2 is determined from the normalization

condition for φN . This defines the Thomas-Fermi longitudinal

size of the trap to be

zN =
(

q + 1
q

Ng11ηT

k

)1/(q+1)
. (3.7)

Given the Thomas-Fermi approximate solution to the 1D

GP equation (3.3), ηN can be easily calculated from the
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condensate wave function (3.2) and is found to be given by

ηN = q

2q + 1

(

q + 1
q

)q/(q+1) (
k

Ng11

)1/(q+1)

×
(

1

2πρ20

)q/(q+1)
, (3.8)

which yields

N̄T = q

2(q + 1)

(

2q + 1
q

)(q+1)/q
z0

a

(

z0

ρ0

)2/q

= q

2(q + 1)

(

2q + 1
q

)(q+1)/q
NT , (3.9)

where z0 = (h̄2/mk)1/(q+2) is an approximation to the bare
ground-state width in the longitudinal direction.

For the analysis presented in [6], it was not necessary to

keep track of the purely q-dependent coefficient that appears

in Eq. (3.9), which was thus omitted from the definition of the

critical atom number NT . This coefficient decreases from 1.3

for a harmonic trap and goes to 1 in the limit of a hard trap

(q → ∞). In the numerical analysis that we present here, we
find that Eq. (3.9) provides a better estimate of the critical atom

number that characterizes the crossover between the one- and

three-dimensional regimes, therefore justifying the change in

definition from NT to N̄T .

The analysis in [6] introduced another (lower) critical

atom number NL as the number of atoms at which the

longitudinal kinetic energy is equal to the scattering energy.

The one-dimensional Thomas-Fermi approximation (3.6) is

only justified for atom numbers well above NL. For the

potentials and parameters we consider here, NL is less than

ten atoms.

For the numerical integration, we set the transverse fre-

quency to 350 Hz and the longitudinal frequency to 3.5 Hz

for the harmonic case (q = 2), with the result that N̄T '
14 000 atoms. To compare the simulations for the different

power-law potentials, we choose the stiffness parameter k so

that N̄T remains the same for the two other values of q; thus

all the traps have the same one-dimensional regime of atom

numbers. For such choice of parameters, we find ρ0 ' 0.6 µm

and the aspect ratio of the traps (ρ0:z0) to be approximately

equal to 1:10, 1:24, and 1:57, respectively, for q = 2,4,10. In

addition, according to Eqs. (3.7) and (3.9), whenN = N̄T , the

condensate aspect ratios (ρ0:zN ) are 1:158, 1:146, and 1:138

(for q = 2,4,10). These parameters are typical of those in

elongated BECs [14].

We numerically compute ηN for the trapping poten-

tials (3.1) and different atom numbers by first solving the

time-independent, three-dimensional GP equation (2.1) [13].

In Fig. 1 we plot the numerical results for ηN as a function

of the number of atoms in the condensate for the three

different values of q and compare the numerical results with

the Thomas-Fermi approximation in both the 1D and 3D

regimes. These results clearly show how the spreading of

the condensate wave function with increasing N affects the

scaling. For N ¿ N̄T , the tight transverse trap prohibits the

spreading in the radial direction. The BEC can only expand in

the longitudinal dimension. Such one-dimensional behavior

is well described by Eq. (3.8), which predicts the scaling
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FIG. 1. (Color online) N dependence of the inverse volume ηN

in harmonic trap units. The points correspond to the results of the

numerical integration of the 3DGP ground-state solution for different

trap geometries: circles (blue) correspond to q = 2, squares (black) to

q = 4, and triangles (red) to q = 10. The respective Thomas-Fermi

predictions for the 1D [Eq. (3.8)] and 3D regimes are the dotted (blue)

line for q = 2, dashed (black) line for q = 4, and solid (red) line

for q = 10 [15]. The stiffness parameter k of the trapping potential

is chosen so that the crossover from 1D to 3D behavior occurs at

N̄T ' 14 000 for all three values of q.

N−1/(q+1). As N approaches N̄T , the atomic repulsion gets

stronger than the radial confinement, and one sees deviations

from the quasi-1D behavior. Although the full expansion in the

crossover regime can only be determined numerically, we find

that forN <∼ N̄T , one can predict the correct spreading withN

by means of perturbative techniques, which will be presented

in a forthcoming publication. ForN À N̄T , the scattering term

in Eq. (2.1) becomes dominant, and the transverse potential

can no longer suppress the growth in the radial dimension. In

fact, the BEC enters the full three-dimensional Thomas-Fermi

regime, in which the entire kinetic energy becomes negligible,

and it is found that ηN varies as N−(q+1)/(2q+1) [6].
From the numerical evaluation of ηN , it is straightforward

to determine the exact scaling of δγ1 with the number of atoms

in the condensate and thus verify that in all cases it is better

than 1/N .

B. Ramsey fringes

The dynamics of the two-mode 87Rb BECwe consider here

is well described by a mean-field approach which neglects

the entanglement and associated phase diffusion generated by

the Ĵ 2z interaction [12,16]. In this approximation, the wave

functions for the two hyperfine levels evolve according to the

time-dependent, coupled, two-mode GP equations

ih̄
∂ψN,α

∂t
=



− h̄2

2m
∇2 + V +

2
∑

β=1
gαβNβ |ψN,β |2



 ψN,α,

α = 1,2, (3.10)

which take into account the effect of the different scattering

processes on the evolution of each mode wave function [17].

Here N1 and N2 denote the respective (mean) populations of

levels 1 and 2.
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FIG. 2. (Color online) Ramsey fringes for a cigar-shaped 87Rb

BEC of 1000 atoms (labeling convention as in Fig. 1 [15]). The points

represent the numerical results of the integration of the coupled,

two-mode, three-dimensional GP equations (3.10) for the different

trapping potentials (3.1), whereas the lines are the respective idealized

Josephson-approximation predictions (2.10), with the value of ηN

supplied by the numerics of Sec. III A. The Josephson approximation

improves as the trap gets harder.

We simulate the Ramsey interferometry scheme presented

in Sec. II B as follows. Assuming that the atoms can be

prepared in the superposition state ψN (Er)(|1〉 + |2〉)/
√
2 with

unit fidelity, we first integrate Eq. (2.1) to find ψN (Er) and
then evolve it for a time t according to the coupled, three-

dimensional GP equations (3.10) for the different poten-

tials (3.1) [18]. Finally, supposing that the detection procedure

can be considered instantaneous, we find the spatial overlap

of the computed two-mode wave functions, ψN,1(Er,t) and
ψN,2(Er,t), which modulates the detection probabilities p1,2(t)

of Eq. (2.9) [19].

Figure 2 shows the resulting Ramsey fringe pattern for

a BEC of 1000 atoms, as well as the idealized, Josephson-

approximation fringe pattern (2.10), in which we use the

numerical value of ηN found for the potentials (3.1), as

described in Sec. III A. The agreement between the idealized

fringe pattern and the numerical results for the tenth-order

potential is quite remarkable in view of the complete ne-

glect of spatial evolution by the Josephson approximation.

As q decreases or time increases, however, the simulated

fringe pattern clearly deviates from the simplified dynam-

ics described by the Josephson approximation. Such dis-

crepancy reveals, in fact, the breakdown of the Josephson

approximation.

The breakdown of the Josephson approximation becomes

more evident in the case of 5000 atoms shown in Fig. 3. Due

to the difference in the scattering lengths and the scattering

potentials, each wave function has a complex nonlinear

evolution that, except for short times, can no longer be

approximated as no evolution at all, as is assumed by the

Josephson approximation. The short-time behavior can be

better seen in Fig. 4, where we plot the Ramsey fringes for up

to 120 ms. For longer times, the wave functions differentiate

spatially, which leads to the reduction in fringe visibility and

the change in the fringe frequency seen in Figs. 2 and 3. For

q = 2 and 5000 atoms, the fringe pattern is already entering
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FIG. 3. (Color online) Ramsey fringes for a cigar-shaped 87Rb

BEC of 5000 atoms (labeling convention as in Fig. 1 [15]). The

points represent the numerical results of the integration of the

coupled, two-mode, three-dimensional GP equations (3.10) for

the different trapping potentials (3.1), whereas the lines are the

respective idealized, Josephson-approximation predictions (2.10).

Here we only plot the idealized fringe pattern (2.10) for short times,

since it quickly deviates from the simulated nonlinear evolution;

the deviation is a consequence of the differentiation of the wave

functions of two modes as they evolve separately under the coupled

GP equations. (Figure 4 shows a closeup of the first 120 ms.)

a revival before 1 s. The fringe visibility is clearly better

preserved by going to a harder trap.

It is worth emphasizing that our results indicate that the

integrated phase shift that we are interested in detecting is

accumulated more rapidly than the time scale for the two wave

functions to differentiate spatially. Moreover, for the regimes

we consider and in viewof typical Ramsey pulses and detection

times ( <∼1 ms) [12,16,20], our simulations confirm that the

Josephson model holds for a length of time that is sufficient to

implement the metrology scheme.

In the following section, we analyze an alternative ana-

lytical model, proposed in [6], which attempts to provide a

better description of the nonlinear detection signal shown in

Figs. 2 and 3, by allowing the wave functions to accumulate a

position-dependent phase shift.
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FIG. 4. (Color online) Closeup of Fig. 3 for the first 120 ms. The

Josephson approximation improves as the trap gets harder.
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IV. DIFFERENTIATION OF THE SPATIAL

WAVE FUNCTIONS

As already pointed out in the previous section, the distinct

scattering lengths of the allowed s-wave collisions for the 87Rb

atoms ultimately make each wave function evolve differently

in a nontrivial way [21]. In fact, it is known that due to the

interspecies repulsion, the twomodes tend to separate spatially

[20]. Before the modes segregate, however, the effect of the

different nonlinearities is to produce a relative phase between

the two modes that depends on the local density within the

condensate.

All these phenomena have recently been observed in a

ground-breaking set of experiments. In [16], Anderson et al.

measured the position-dependent phase shifts in the same two-

mode 87Rb BEC that we consider here, whereas Mertes et al.

[12] demonstrated the nonequilibrium separation dynamics of

the binary superfluid. The details of both experiments were

shown to be well accounted for by numerical integrations of

the coupled, two-modeGP equations (3.10), with an additional

phenomenological loss term included.

In short, the two-mode dynamics can be explained as fol-

lows. For short times, the integrated part of the relative phase,

which corresponds to the average difference in the energies of

the scattering processes, is the dominant dynamical effect and

provides the signal for our measurement protocol. The residual

position-dependent part of the relative phase affects the two-

mode dynamics on a somewhat longer time scale and reduces

the visibility of the interference fringes on which the detected

signal relies. Eventually, the position-dependent phases drive

differences between the atomic densities associated with

the two hyperfine levels, and this leads to spatial separation of

the two modes.

The above-described effects occur on different time scales,

which were estimated in [6] to be sufficiently different that the

metrology protocol could be successfully implemented. The

analytical estimates suggest that making the longitudinal trap

harder leads to a greater separation of these three time scales.

In order to retain good fringe visibility, the required operation

time scale of the protocol was estimated to be well within the

first fringe, which we can confirm from our simulations and is

illustrated in Figs. 2 and 3.

In an attempt to model the complex dynamics of the

two-mode condensate, we modify our analytical descrip-

tion by allowing the spatial wave functions to acquire a

position-dependent phase shift in addition to the uniform

phase shift of the Josephson approximation. Since the spatial

segregation of the modes occurs on a longer time scale than

the accumulation of a position-dependent phase shift, it is

not relevant to this discussion. Moreover, for the regimes

that concern us, we can include the position-dependent phase

shift in a quite straightforward way. As before, we limit

our analysis to the trapping potentials (3.1) and to quasi-1D

BECs. In addition, considering our numerical simulations,

we focus on the particular case of both modes being equally

populated, although a more general discussion can be found

in [6].

As in the case of the ground state of a single-mode BEC in

the one-dimensional regime,whichwas discussed in Sec. III A,

the wave functions of the two modes can be approximated by

the product of transverse and longitudinal wave functions,

ψN,α(ρ,z,t) = e−iωT tχ0(ρ)φN,α(z,t), α = 1,2, (4.1)

whereχ0 is the previously defined time-independent, Gaussian

ground state in the transverse dimensions. The longitudinal

wave functions satisfy the time-dependent, coupled, longitu-

dinal GP equations

ih̄
∂φN,α

∂t

=



− h̄2

2m

d2

dz2
+ 1

2
kzq + 1

2
NηT

∑

β

gαβ |φN,β |2


 φN,α,

(4.2)

where we have used our assumption that N1 = N2 = N/2.

For the traps and atom numbers that we are considering, it is

legitimate to ignore the kinetic-energy terms in Eq. (4.2) [6], as

is done in the 1D Thomas-Fermi approximation. Within this

approximation, the probability densities do not change with

time, i.e.,

|φN,α(z,t)|2 = |φN (z,0)|2 ≡ q0(z), (4.3)

with |φN (z,0)|2 given by Eq. (3.6); hence the evolution under
the coupled GP equations simply introduces a phase that

depends on the local atomic linear density,

φN,α(z,t) =
√

q0(z)

× exp



− it

h̄





1

2
kzq + 1

2
NηT q0(z)

∑

β

gαβ







 .

(4.4)

This yields an overlap

〈ψN,2|ψN,1〉 = 〈φN,2|φN,1〉 =
∫

dz q0(z)e
−iδθ(z), (4.5)

where the position-dependent differential phase shift is given

by

δθ (z) = q0(z)NηT γ1t

h̄
= ÄN t

(

1+ q0(z)− ηL

ηL

)

. (4.6)

Here

ηL ≡
∫

dz q20 (z)

= q

2q + 1

(

q + 1
q

)q/(q+1) (
k

Ng11

)1/(q+1)
(

2πρ20
)1/(q+1)

,

(4.7)

and we have separated out the integrated phase shift ÄN t ,

whose angular frequency (2.11) is defined as in the Josephson

approximation. This makes it clear that the residual position-

dependent phase shift adds a correction to the integrated phase

shift that we have previously calculated.

Putting all this together, we can write the overlap as

〈ψN,2|ψN,1〉 =
∫

dz q0e
−iq0NηT γ1t/h̄ = e−iÄN t

×
∫

dz q0e
−iÄN t(q0−ηL)/ηL , (4.8)
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FIG. 5. (Color online) Same as Fig. 2 (1000 atoms), but here

the lines correspond to the improved analytical prediction (4.8)

for the three different values of q (labeling convention as in Fig. 1

[15]). The improved model succeeds in predicting a reduction in

fringe visibility as time increases, but it does not give a better estimate

of the fringe frequency.

whose imaginary part, as before, is responsible for the fringe

pattern in our interferometry scheme. In Fig. 5, we compare the

numerical fringes with the imaginary part of the overlap (4.8)

for 1000 atoms. We do exactly as the current approximation

instructs: we use the longitudinal Thomas-Fermi probability

density q0(z), the corresponding ηL from Eq. (4.7), and the

transverse ηT from the transverse ground state χ0 [Eq. (3.4)].

The improved model captures an approximation to the re-

duction in fringe visibility, with agreement with the numerics

getting better as q increases, but it predicts a fringe frequency

that is too large. Indeed, by comparing Fig. 5 to Fig. 2, one

sees that the frequency of the improved model is too high by

an amount that is somewhat larger than the amount by which

the Josephson approximation’s frequency is too low.

It is not hard to identify a source for this frequency disparity.

The current approximation uses an atomic density profile that

comes from the product wave function (4.1), with the longitu-

dinal wave function coming from Eq. (4.4) and the transverse

wave function assumed to be the N -independent Gaussian

ground state of the transverse harmonic trap. In contrast, the

frequency ÄN we use in the Josephson-approximation plots

of Figs. 2 and 3 comes from numerical computation of the 3D

GP ground state.

We can test whether this is a source of the frequency

disparity by making an ad hoc adjustment to the model of

this section. In particular, in using the analytical overlap (4.8),

we can use the longitudinal Thomas-Fermi probability density

q0(z) and its ηL from Eq. (4.7), as the approximation instructs.

We could instead adopt the ad hoc procedure of using the

numerically computed ηN plotted in Fig. 1; the transverse

ηT determined in this procedure from ηT = ηN/ηL, is no

longer that of the transverse ground state and acquires an N

dependence from ηN and ηL.

In Figs. 6 and 7, we compare the numerical fringes with the

imaginary part of the overlap (4.8), computed using the ad hoc

modification, for 1000 and 5000 atoms. The improved model,

with this ad hoc adjustment, is surprisingly good at predicting

both the fringe frequency and the reduction in fringe visibility,

especially for q = 10 (the Josephson-approximation fringes
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FIG. 6. (Color online) Same as Fig. 2 (1000 atoms), but here the

lines correspond to the improved analytical overlap (4.8), computed

using the numerically computed ηN from Sec. III A, as described

in the text, for the three different values of q (labeling convention

as in Fig. 1 [15]). The improved model, with the ad hoc use of the

numerically computed ηN , provides a reasonably good account of

the fringe frequency and of the reduction in fringe visibility as time

increases, with better agreement for short times and for harder traps.

would have the same frequency discrepancy had we used the

1D Thomas-Fermi approximation and the transverse ground

state to determine ηN , instead of using the numerical value).

We emphasize that the fringe visibility is preserved better by

going to harder traps. Within the improved model, it is clear

that the better fringe visibility of harder traps is due to the

fact that as q increases, the trapping potential becomes more

flat bottomed, making the atomic density profile more uniform

across the trap and and thus reducing the size of the residual

position-dependent phase shift.

It is clear that our improved analytical model does indeed

provide a more accurate description of the nonlinear evolution

of the two-mode condensate and consequently of the fringe

pattern of our protocol. Notice, however, that for longer times

effects that are not considered in this model, such as mode

segregation, become significant, and therefore the Ramsey

•

•

•

•

•

••
•

•

•

•

•

•

•

•

•

•
••

•

•

•

•

•

•

•

•
••

•

•

•

•

•

•

•

•
••

•
•

•

•

•

•

•
••••

•
•
•
•
•
•••••

•
•
•
•••••

•
•
•••••

•
•
•

•
•
•
•••

•

•

•

•

•

•

•

•
••

•

•

•

•

•

•

•

0 200 400 600 800 1000
1.0

0.5

0.0

0.5

1.0

Time ms

Im
ψ

N
,1

ψ
N

,2

FIG. 7. (Color online) Same as Fig. 3, but here the lines

correspond to the improved analytical overlap (4.8), computed using

the numerically computed ηN from Sec. III A, for the three different

values of q (labeling convention as in Fig. 1 [15]). The improved

model, with the ad hoc use of the numerically computed ηN , is

surprisingly good even in the third fringe period for q = 10.
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fringes can no longer be described by Eq. (4.8). As already

noted, for q = 2 and 5000 atoms, the nonlinear evolution is

undergoing a revival well before t = 1 s, an effect that cannot

be described within our model.

Throughout this analysis we consider the case of a

one-dimensional BEC whose ground-state wave function is

supposed to be well approximated by the product ansatz (3.2).

In this approximation, one assumes that the effect of the

scattering interaction on the transverse degrees of freedom

of the gas can be completely neglected. As we discuss in

Sec. III A, this is a good approximation as long as the number

of atoms in the condensate is small compared to the critical

atom number N̄T . In fact, from Fig. 1 one sees that as N

approaches N̄T , the product wave function (3.2) fails to give

an accurate estimate of the inverse volume ηN .

Themain reason for this discrepancy is that asN approaches

the critical atom number N̄T , the condensate begins to spread

in the transverse dimensions. Indeed, the analysis in this

section shows that we obtain a reasonably good account of

the fringe signal by including a position-dependent phase shift

to describe the reduction in fringe visibility and by allowing ηT

to change withN as dictated by the numerical 3D ground-state

wave function, thus reflecting the spreading of the condensate

in the transverse dimensions.

V. CONCLUSION

We present in this paper a detailed numerical analysis of

a recent proposal of a Ramsey interferometry scheme that

takes advantage of the nonlinear scattering interactions in a

two-mode 87Rb Bose-Einstein condensate to achieve detection

sensitivities that scale better than the 1/N limit of linear

metrology [4]. In view of current experimental techniques and

typical parameters, this scheme is a feasible proof-of-principle

experiment that in terms of sensitivity scaling can outper-

form Heisenberg-limited linear interferometry. The proposed

protocol does not rely on complicated state preparation or

measurement schemes nor on entanglement generation to

enhance the measurement sensitivity.

We first analyze here how the scaling is affected by the

expansion of the atomic cloud as a function of the number of

atoms in the condensate and of the geometry of the trap, by

considering the case of quasi-1D BECs trapped by different

potentials. Later we find the exact dependence of the atomic

density with the atom number N , solving numerically the

single-mode, three-dimensional GP equation. This allows us

to pin down the exact scaling and to verify that in all the

considered cases a scaling better than 1/N can be achieved.

In addition, we simulate the proposed interferometric

scheme and the corresponding measurement signal by solving

the two-mode, coupled, three-dimensional GP equations. Our

numerical results not only confirm the theoretical predictions

derived in [6], but also show that the assumption that the

two modes share the same spatial wave function is justified

for a length of time sufficient to run the metrology scheme.

For longer times, it becomes evident that the Josephson

Hamiltonian (2.5) is unable to handle the full two-mode

dynamics because it ignores entirely the spatial evolution of

the condensate wave functions.

To get a more accurate description of the fringe signal, one

needs to take into account the spatial differentiation of the

wave functions of the two modes. We formulate an improved

model that partially describes the differentiation of the wave

functions by including a position-dependent phase shift across

the condensate. This model, based on a one-dimensional

Thomas-Fermi approximation, gives a considerably refined

account of the fringe signal of our protocol.

Our analysis shows that as the number of atoms in the con-

densate approaches the critical atom number N̄T , deviations

of the assumed product wave function from the numerically

computed initial condensate wave function result in less

accurate analytical estimates of the oscillation frequency of the

fringe pattern. Preliminary results indicate, however, that this

effect can be described by means of perturbative techniques,

which treat the scattering interaction as a perturbation to

the single-particle transverse Hamiltonian and which will be

presented elsewhere. The perturbation theory indicates that

there should be corrections to the product wave function as

well. For more hard-walled and flat-bottomed potentials, we

find that corrections to our idealized models become less

important, confirming that one should consider potentials such

as boxes or rings as the preferred architectures for nonlinear

BEC metrology.
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