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Abstract

Quantum entanglement enables measurements with precision beyond what is possible classically,

ideally attaining the Heisenberg limit. Enumerating the resources required to reach a specified

precision is key to deciding whether the classical bound has been breached. We address this question

for a real-world quantum sensor of optical phase by demonstrating a scalable scheme for generating

heralded photonic Holland-Burnett states [1], characterized by full quantum state tomography.

These entangled states exhibit Heisenberg scaling and show near optimal loss-tolerance [2, 3]. The

sensor performance is quantified by the quantum Cramér-Rao bound (QCRB), the best precision

that can be achieved with the actual prepared state, independent of detector configuration. We then

show how the commonly applied measures of super-resolution and super-sensitivity [4] compare to

the QCRB and demonstrate that post-selection can provide an artificial precision enhancement.

This analysis allows us to place limits on the sensor parameters required for operation beyond the

classical limit.

∗Electronic address: n.thomas-peter1@physics.ox.ac.uk
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An important class of quantum-enhanced technologies involves sensing, in which a quan-

tum probe is used to measure parameters of another physical system [5]. Such sensors are

ubiquitous for gathering information about systems from gravitational waves to tenuous

molecular gases. Entangled states of multiple particles are a critical resource to enable

quantum enhancement [6], as are detectors that implement optimal measurements [7]. The

cost of such resources provides a basis for deciding whether the quantum device outperforms

its classical counterpart. In realistic experimental implementations, where loss and noise

are unavoidable, heralded or deterministic input probe preparation is necessary to ensure

accurate resource accounting. Aside from potentially yielding a distorted impression of the

cost of a measurement, poor accounting may be problematic when the system being probed

is degraded by absorbing any energy from the input state, for example, a Bose-Einstein

condensate or fragile biological system. In these situations, practical sensing strategies must

involve noise- and loss-tolerant probe states to enable quantum enhancement even in the

presence of realistic experimental imperfections. Furthermore, the QCRB is reached only

when optimal measurements are performed [7]. Therefore, attention must be paid both

to preparing a state that reaches the Heisenberg limit, and to measurements that extract

maximum information from that state, saturating the QCRB.

Here we consider a sensor based on optical interferometry. We evaluate the cost, in terms

of time and photon number, of reaching a given precision in an estimate of the phase, φ,

between two modes of a light field. To estimate φ, an input probe is prepared in state

ρ̂, which evolves into the state ρ̂(φ) by interaction with the phase-shifting element in the

interferometer. A measurement on ρ̂(φ) is performed at the sensor output. This is repeated

ν times and φ is estimated from the ν measurement outcomes. We employ an optical

sensor design based on a heralded two-photon Holland-Burnett (HB) state that, in principle,

attains a QCRB with Heisenberg scaling. It is the simplest configuration that exhibits a

quantum enhancement, providing the least stringent constraints on sensor transmissivity

and decoherence as well as allowing assessment of the impact of real-world imperfections on

precision measurement.

The scheme used to generate heralded HB states is shown in Fig. 1a. A polarisation based

N -photon HB state is obtained by combining two orthogonally polarised N/2-photon Fock

states at a polarizing beam splitter. The required Fock states are generated by two paramet-

ric downconverters (PDC), where N/2 photons in one mode of each PDC are heralded by
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detection of N/2 photons in the other mode. The PDCs are designed to produce spectrally

disentangled modes [8] so that heralding does not compromise the state purity, which is cru-

cial for high-visibility interferometry. Since spectral filtering is not required to increase the

state purity, the preparation efficiency is determined solely by the system loss. In principle

this source, with the use of photon-number-resolving heralding detectors [9], generates a

perfect HB state of arbitrary N . Furthermore, the optimal detection arrangement for these

states is experimentally feasible.

The quality of the heralded Fock states used to generate the HB state were tested by

means of Hong-Ou-Mandel interference between heralded single photons (Fig. 2a). The

theoretical fit gives a visibility of 90 ± 3% (80 ± 3% raw) and sets a lower bound on the

input photon purity and distinguishability. The residual impurity is partly intrinsic [8] and

partly due to imperfect compensation of the optical fiber birefringence.

The heralded HB states are launched into a polarisation Mach-Zehnder interferometer

(PMZI in Fig. 1b), which introduces a controllable relative phase, φ (see Appendix A)

between the two modes. Figure 2b shows the detection count-rate phase-dependence for

heralded single-photon states (dashed) and heralded two-photon HB states (solid). The

theoretical fits show visibilities of 90.9± 0.5% for the single-photon and 80.6± 1.5% (76.4±
1.4% raw) for the HB state. The latter is consistent with the measured state purity.

In general, the precision of the phase estimate for a given sensor configuration is limited

by the Cramér-Rao bound (CRB) [7], ∆φ ≥ 1/
√

νF (φ), where

F (φ) =
∑

j

1

pj(φ)

∣

∣

∣

∣

∂pj(φ)

∂φ

∣

∣

∣

∣

2

, (1)

is the Fisher information (FI). The probabilities pj(φ) = Tr(ρ̂(φ)Π̂j) correspond to a partic-

ular outcome j of a measurement described by a set of measurement operators {Π̂j}. The

CRB is achieved for large ν with maximum likelihood estimation [10]. F (φ) is bounded

from above by the quantum Fisher information (QFI), FQ, found by maximising F (φ) over

all physical measurement operator sets. Hence the quantum Cramér-Rao bound (QCRB),

∆φ ≥ 1/
√

νFQ(φ), depends only on the input state and is independent of the specific

detector configuration [7].

Ideally, the QCRB of N uncorrelated photons leads to the standard quantum limit ∆φ ≥
∆φSQL = 1/

√
νN . However, if the sensor has finite transmissivity η, this becomes the

standard interferometric limit (SIL) ∆φ ≥ ∆φSIL = 1/
√
νηN [2].
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The Heisenberg limit ∆φ ≥ ∆φHL = 1/
√
νN is saturated by the widely studied ‘N00N

state’ [4, 11–24]. This state is very susceptible to loss; removal of even a single photon

results in a state insensitive to phase. The QFI is therefore scaled by the probability that

all photons are transmitted, ηN , and the QCRB becomes ∆φ ≥ 1/
√

νηNN . Alternatively,

this can be interpreted as requiring ν ′ = ν/ηN successful trials (i.e. a measurement time

that grows exponentially in N) to reach the same level of precision as in the lossless case

(see Appendix B).

By comparison, the QCRB of a HB state in the lossless case is ∆φ ≥ 1/
√

νN(N/2 + 1)

which, for large N , has Heisenberg scaling that differs only by a constant factor. With

loss this state retains phase sensitivity and precision enhancement far better than N00N

states [3]. Indeed, the QCRB for the HB state approximately follows the optimum value for

moderate η and moderate N [2].

For N = 2, HB and N00N states are equivalent and their associated optimal mea-

surement is a projection onto |Ψ±〉 = (|2, 0〉 ± |0, 2〉)/
√
2, where |m,n〉 denotes m (n)

diagonally (anti-diagonally) polarised photons. This measurement set has three possible

outcomes: j = ± (detection of |Ψ±〉) and j = 0 (otherwise). In practice, it is diffi-

cult to realise single-mode sensors and the measurement outcomes typically have proba-

bilities p±(φ) = f [1 ± V cos(2φ)]/2 and p0(φ) = 1 − p+(φ) − p−(φ), leading to a bound

∆φ ≥ ∆φmin = 1/
√
νfNV (see Appendix B). Here, f = ηpη

2 where ηp, the preparation

efficiency, is the proportion of the input state which can lead to a two-click detection event;

η2 is the probability that two photons are transmitted through the sensor and successfully

registered; V is the interference visibility accounting for imperfect state preparation and

detectors. Multimode states and measurements may lead to non-ideal interference because

of unmeasured distinguishing information. The state is said to exhibit super-resolution if

p±(φ) oscillates at twice the applied phase. For larger N , super-resolution requires oscilla-

tions of N times the applied phase. To surpass the SIL requires ∆φmin < ∆φSIL, leading to a

threshold visibility Vth =
√

η/fN . A state is said to exhibit super-sensitivity if V ≥ Vth [4].

This analysis is commonly applied in post-selection where only data resulting inN -photon

outcomes are recorded. Then η and f are set to 1, and N is the number of photons detected.

For the two-photon case, this yields a threshold visibility Vth = 1/
√
2. The measured HB-

state fringe visibility (Fig. 2b) significantly exceeds this bound and so, by this analysis,

we achieve super-sensitivity. Heralding, however, affords a more complete reckoning of the
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resources consumed by counting all photons input into the interferometer, since f and η can

then be estimated experimentally. f is determined from the ratio of four-fold coincidences to

heralding events, giving f = 0.0161± 0.0003. Assuming that heralding ensures two photons

are initially present (ηp = 1) implies f = η2. This results in Vth =
√

η/Nf = 1.99, an

unphysical visibility, demonstrating that this configuration cannot beat the SIL. Thus we

conclude that for a quantum sensor with real-world imperfections, measures of quantum

enhancement based on post-selection can underestimate the resources required to obtain a

given precision.

The above discussion considers post-selecting on events where only two photons are de-

tected. As previously discussed, this ignores any information that may be present in the

lower photon-number subspaces. More importantly, to calculate the QCRB for the heralded

state and to compare it to the SIL requires the complete density matrix. This is obtained

by state tomography using the experimental arrangement shown in Fig. 1c [25] (see Ap-

pendix A). Population in lower photon number subspaces arises from loss, meaning that

coherences between subspaces of different photon number are zero.

Figure 3 shows the reconstructed density matrix. The heralded state has populations of

0.686, 0.277, and 0.037 in the zero-, one-, and two-photon subspaces respectively. It also

has an average photon number of 0.35 and FQ = 0.104, giving a QCRB ∆φ ≥ 3.11/
√
ν. We

compare this with the CRB of the post-selected state, ∆φ ≥ 3.24/
√
ν. This demonstrates

that post-selecting can discard useful information. Furthermore, for a classical state with the

same average input photon number as the reconstructed state we have ∆φSQL = 1.69/
√
ν,

showing that, according to the QCRB, the SQL cannot be surpassed.

To go beyond the classical performance limit with realistic quantum sensors requires

stringent bounds on sensor throughput as well as probe-state preparation and detection

efficiencies. For heralded N00N states, f = ηpη
N must satisfy

f ≥ η/NV 2, (2)

(see Appendix B). For the ideal two-photon situation (ηp = V = 1), where HB and N00N

states are equivalent, this implies η ≥ 1/2. This benchmark for heralded two-photon states,

which includes detector efficiencies and sensor transmissivity, provides a challenging goal

that must be achieved to surpass the classical limit and which has not yet been achieved.

Quantum photonics using feasible laboratory technology holds great promise for per-
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formance beyond the classical domain. Here we have demonstrated a scalable method to

generate heralded entangled states of light for precision phase estimation, a key step to

demonstrating a real-world improvement over the SQL. By fully characterizing this source

we have calculated the ultimate precision that can be obtained and in doing so we have put

bounds on the sensor parameters required in order for quantum technologies to be viable.
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Appendix A: Heralded Holland-Burnett state generation

The heralded HB-state source is based upon generation of heralded Fock states by means

of parametric downconversion in Potassium Dihydrogen Phosphate (KDP) [8]. A crucial

feature of this nonlinear source is that the modes are entangled only in photon number and

have no entanglement in any other degrees of freedom. This allows detection of N photons

in one mode to herald, in principle, N photons in the other mode in a pure spatiotemporal

quantum state. No spectral filtering is needed to increase the state purity of the heralded

photons. This scheme is therefore scalable, since there is no decrease in heralding efficiency

arising from discarding photons by filtration. The use of high-efficiency number-resolving

heralding detectors enables production of precisely the target HB state abrogating the need

for ancillary assumptions about contamination from higher or lower photon numbers.

A mode-locked Ti:Sapphire laser system operating at 80 MHz provides 100 fs duration

pulses centered at a wavelength of 830 nm. These pulses are frequency doubled in Beta Bar-

ium Borate (BBO) to a wavelength of 415 nm. After filtering any residual infrared radiation,

the UV-pulses are used to concurrently pump two KDP crystals oriented for type-II collinear

parametric downconversion (PDC) [8]. The orthogonally polarised PDC modes are split us-

ing polarizing beam splitters. The vertically polarised mode of each PDC source is detected

by a fiber-coupled avalanche photodiode (APD) serving as a herald signal for the horizontal

modes. After rotating one of the horizontal modes to vertical polarisation, the heralded

modes are sent to a fiber-coupled polarizing beam splitter (FPBS) where they are combined
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into a single spatial mode. Each heralded beam and the FPBS output are passed through po-

larisation compensation wave plates to ensure appropriate polarisation after passing through

the optical fibers. The FPBS output has additional polarisation compensation. Successful

preparation of the heralded state is signaled by a coincidence detection event between these

two heralding detectors. When only one photon is registered at each herald detector, this

heralds the state |1, 1〉HV) where |n,m〉HV denotes n (m) horizontally (vertically) polarised

photons. This is equivalent to the two-photon HB state (|2, 0〉+−
− |0, 2〉+−

)/
√
2, where

+,− denotes the 45◦ rotated basis. Note that single photons are typically heralded with an

efficiency of 0.18 in this experimental configuration.

Interferometry

We used a polarisation-based interferometer to apply phase shifts between +45◦ and −45◦

plane polarisation modes. This consists of a half-wave plate situated between two quarter-

wave plates. The quarter-wave plates were initially aligned to rotate + into − without the

half-wave plate. The addition of the half-wave plate allows application of the phase, φ,

being twice the angle of the half-wave plate. The + and − modes are then interfered on a

polarizing beam splitter for analysis.

State tomography of the heralded state

We characterize the polarisation and photon number degrees of freedom of the heralded

state by performing state tomography [25, 26]. A half- (HWP) is followed by a quarter-wave

plate (QWP), the angles of which determine the measurement implemented. The HWP and

QWP are followed by a polarizing beam splitter (PBS) with the transmitted mode coupled

into a single mode fiber-coupled APD and the reflected mode coupled into a single-mode

fiber beam splitter (50:50) with outputs connected to fiber-coupled APDs. This allows

partial photon number resolution, giving information about the different photon number

subspaces when measured in coincidence with the herald signal. The wave plate settings

used, {θ, φ}, were {0, 0}, {0, 11.25}, {0, 22.5}, {0, 45}, {22.5, 0}, {22.5, 22.5}, {22.5, 45}, and
{45, 22.5}, where θ and φ are the angles of the QWP and HWP respectively. This forms

an over-complete set of measurements on the whole space. The state was reconstructed by
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maximum likelihood estimation [27] using the measurement outcomes. In order to check

the consistency of the reconstructed density matrix, we calculate an overlap of 0.85 of the

two-photon subspace with the ideal two-photon HB state, Fig. 3c, in agreement with the

Hong-Ou-Mandel interference visibility.

Appendix B: Fisher Information and Phase Uncertainty

The amount of information about the phase φ between two modes (polarisation in our

case) that can be extracted by a given experimental configuration is quantified by the Fisher

information

F (φ) =
∑

j

1

pj(φ)

∣

∣

∣

∣

∂pj(φ)

∂φ

∣

∣

∣

∣

2

, (B1)

where the probabilities pj(φ) correspond to a particular outcome j of a measurement de-

scribed by a set of operators {Π̂j} when the actual parameter to be estimated has a value

φ. The precision with which φ can be estimated is determined by the Cramér-Rao bound

(CRB),

∆φ ≥ 1/
√

νF (φ), (B2)

which can be achieved for a large number of trials ν and an unbaised estimator, such as a

maximum likelihood method. The CRB is bounded from below by the quantum Cramér-Rao

bound (QCRB), which is independent of the measurement and depends only on the state

used,

∆φ ≥ 1/
√

νF (φ) ≥ 1/
√

νFQ(φ), (B3)

where FQ (φ) = FQ (ρ̂(φ)) is the quantum Fisher information.

In a realistic experiment an N -photon detection event, which would ideally signal pro-

jection onto a two-mode N00N state, is realised with a probability determined by the

generalised measurement operators

Π̂± =
∑

λ

P̂
(λ)
± , (B4)

where {P̂ (λ)
± } are a set of projection operators onto two-mode ±N00N states, |Ψ±〉λ =

(|N, 0〉λ ± |0, N〉λ)/
√
2. Here, λ denotes experimentally inaccessibly degrees of freedom

(e.g. spectral modes) which provide distinguishing information and |m,n〉λ are states with
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m photons in one polarisation mode and n photons in the other. The probability of an

N -photon detection event is then

p±(φ) = Tr
(

ρ̂(φ)Π̂±

)

, (B5)

and probability p0(φ) = 1−p+(φ)−p−(φ) that no detection event is registered. In the most

common cases, where the input state consists of more than one space-time mode containing

correlated photons, p±(φ) takes the form:

p±(φ) = f [1± V cos(Nφ)]/2, (B6)

where f and V both depend upon the presence of distinguishing information in the input

state. Note that the different projectors, Π̂±, are realised by variation of a known reference

phase in the interferometer. The Fisher information for this configuration is given by

F (φ) = fN2V 2 sin2(Nφ)

1− V 2 cos2(Nφ)
, (B7)

where we have made use of the first derivatives of p±(φ) with respect to φ,

∂p±(φ)

∂φ
= ∓f

2
NV sin(Nφ). (B8)

Note that the denominator in Eq. (B7) is greater than or equal to sin2(Nφ) for 0 ≤ V ≤ 1,

which sets a bound on the Fisher information,

F (φ) ≤ fV 2N2. (B9)

The phase uncertainty that can be achieved with ν trials is then bounded by the Cramér-Rao

bound

∆φ ≥ 1/(
√

νfNV ). (B10)

Comparison with the precision that can be achieved in a classical approach with N particles,

i.e. the standard quantum limit (SQL),

∆φSQL = 1/
√
νN, (B11)

implies that in order to demonstrate precision beyond the SQL,

V ≥ 1/
√

fN. (B12)
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Effects of loss on measurement precision

We consider the case of a single spectral-mode (λ) sensor, since this enables f to be

calculated straightforwardly and allows comparison with previous work involving super-

resolution and super-sensitivity criteria. For the case of no loss, we define f = ηp, the

production efficiency of the single-mode N00N state. When there is balanced loss in the

interferometer, characterized by the transmissivity η, the probability that an N -photon

N00N state is successfully detected is decreased by a factor ηN , giving f = ηpη
N . In the

classical case, the probability that a coherent state is transmitted is simply η so that the

classical phase uncertainty is bounded by ∆φSIL = 1/
√
νηN .

Heralding a perfect N00N state means that ηp = 1 and f can be estimated from the

ratio of successful N00N detection events to herald events, giving the channel transmission

η = N

√

f/ηp. To surpass the performance allowed classically, i.e. ∆φSIL ≥ 1/(
√
νfV N), the

fringe visibility must be

V ≥
√

η

fN
. (B13)

Another way to view this is that the system transmissivity is bounded by the intrinsic

source efficiency ηp, N00N -state photon number N , and fringe visibility. This limit is

determined from Eq. (B13) by substituting ηpη
N = f and solving for η, which gives

η ≥
(

ηpNV 2
)1/(1−N)

. (B14)

Quantum Fisher Information of the Reconstructed State

For the reconstructed density matrix in our experiment, the quantum Fisher information

is given by

FQ = 2
∑

k,l

(pk − pl)
2

pk + pl
|〈ξk|n̂|ξl〉|2, (B15)

where n̂ is the photon number operator in the sensor arm of the interferometer, and {pk}
and {|ξk〉} are the eigenvalues and corresponding eigenvectors of the reconstructed density

matrix.
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Time required to achieve equal precision: Classical and Post-Selection

To calculate the time it takes for a post-selected scheme to achieve the same level of

precision as a classical scheme when losses are present, we assume that both experiments

are run at a rate of γ. In this case the phase uncertainties for the classical and post-selected

N00N state are bounded by

∆φc = 1/
√

νcN, (B16)

and

∆φN00N = 1/
√

νN00NηpV 2N2, (B17)

where νc = γTc and νN00N = γTN00N are the number of successful detection events in the

classical and post-selected cases. Setting Eqs. (B16) and (B17) equal leads to a constraint

on the number of post-selected trials necessary

νN00N =
νc

ηpV 2N
. (B18)

The time required to register νc(N00N) classical (post-selected N00N) events when losses

are present is Tc = νc/(ηγ) (TN00N = νN00N/(η
Nγ)), which stems from a decreased rate of

successful detection events by the transmission probability η (ηN). Dividing both sides of

Eq. (B18) by ηNγ, giving TN00N on the left-hand side, we obtain

TN00N =
Tc

ηN
η

ηpNV 2
, (B19)

which shows that the time taken to collect sufficient data with the post-selection approach

to give a precision equal to a classical scheme grows exponentially with the number of post-

selected photons.
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FIG. 1: Setup for generation and characterization of heralded Holland-Burnett

states. a Scalable HB state generation based on two parametric downconverters (PDC)

(see Appendix A). A half- (H) and a quarter-wave plate (Q) after each PDC adjust the

polarisations to combine the photons at a fiber polarizing beam splitter (FPBS). A

coincidence detection event between the heralding avalanche photodiodes (Herald APDs)

signals the presence of the two-photon HB state at the output of the FPBS. b A

polarisation Mach-Zehnder interferometer (PMZI) applies a phase φ between ±45◦ rotated

polarisation modes. Coincidence detection events between the avalanche photodiodes

(APD) implement the optimal measurement for the two-photon HB state. c Tomographic

measurements are implemented using a quarter- (Q) and half-wave plate (H) combination

followed by a polarizing beam splitter (PBS). Outputs are coupled into single-mode fiber

(FC) with the reflected mode split by a 50:50 fiber beam splitter (FBS) to allow partial

number resolution. All outputs are detected using avalanche photodiodes (APD).
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FIG. 2: Quantum intereference of heralded photonic states. a Hong-Ou-Mandel

interference between two heralded single photons as a function of the externally controlled

delay, τ . b Setting τ to zero and scanning the PMZI phase shows two-photon (solid) and

single-photon (dashed) interference. The two-photon fringes clearly exhibit

super-resolution. Error bars in both plots are derived from Poissonian statistics and

contributions from multiple PDC pair emissions are removed from the Hong-Ou-Mandel

interference and the two-photon fringes.

15



a

〈0, 0|
〈1, 0|
〈0, 1|
〈2, 0|
〈1, 1|
〈0, 2|

|0,
0〉

|1,
0〉

|0,
1〉

|2,
0〉

|1,
1〉

|0,
2〉

〈1, 0|
〈0, 1|
〈2, 0|
〈1, 1|
〈0, 2|

|1,
0〉

|0,
1〉

|2,
0〉

|1,
1〉

|0,
2〉P

ro
b
ab

ili
ty 0

0

0.2

0.4

0.6

0.8

0.15

b

〈2, 0|
〈1, 1|

〈0, 2|

|2,
0〉

|1,
1〉

|0,
2〉

P
ro

b
ab

ili
ty

0

0.25

0.5

c

〈2, 0|
〈1, 1|

〈0, 2|

|2,
0〉

|1,
1〉

|0,
2〉

P
ro

b
ab

ili
ty

0

0.25

0.5

FIG. 3: Reconstructed heralded quantum state. a The full reconstructed state

including vacuum, one-, and two-photon subspaces. (Inset) An enlargement of the one-

and two-photon subspaces. b An enlargement of the two-photon subspace with elements

normalized so that the trace is unity. c The ideal two-photon HB state. In all density

matrices, |m,n〉 denotes m diagonally (+45◦) polarised photons and n anti-diagonally

(−45◦) polarised photons. Bars are colored according to their magnitude.
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