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Quantum field theory is the application of quantum physics to fields. It provides a theoretical

framework widely used in particle physics and condensed matter physics. One of the most distinct

features of quantum physics with respect to classical physics is entanglement or the existence of strong

correlations between subsystems that can even be spacelike separated. In quantum fields, observables

restricted to a region of space define a subsystem. While there are proofs on the existence of local

observables that would allow a violation of Bell’s inequalities in the vacuum states of quantum fields as

well as some explicit but technically demanding schemes requiring an extreme fine-tuning of the

interaction between the fields and detectors, an experimentally accessible entanglement witness for

quantum fields is still missing. Here we introduce smeared field operators which allow reducing the

vacuum to a system of two effective bosonic modes. The introduction of such collective observables is

motivated by the fact that no physical probe has access to fields in single spatial (mathematical) points but

rather smeared over finite volumes. We first give explicit collective observables whose correlations reveal

vacuum entanglement in the Klein-Gordon field. We then show that the critical distance between the two

regions of space above which two effective bosonic modes become separable is of the order of the

Compton wavelength of the particle corresponding to the massive Klein-Gordon field.

DOI: 10.1103/PhysRevD.81.125019 PACS numbers: 03.70.+k, 03.67.!a, 03.67.Mn

I. INTRODUCTION

Entangled states of composed quantum systems are a

subject of particular interest since they manifest genuinely

quantum mechanical properties—they yield correlations

between observables measured on the subsystems that

cannot be explained by any local realistic model [1].

Since entanglement is the primary resource that allows

quantum communication and computation protocols to

outperform classical ones [2], its investigation reaches far

beyond fundamental concepts of quantum physics. It also

has a central role in some macroscopic properties of sol-

ids—internal energy, heat capacity or magnetic suscepti-

bility can reveal the existence of entanglement within

solids in the thermodynamical limit [3–5]. Entanglement

is further related to superfluidity, the Meissner effect and

flux quantization in superconductors as well as long range

order correlations in Bose-Einstein condensates (BEC) [6].

A natural framework for considering systems composed

of parts, which are associated with disconnected regions of

space, is quantum field theory with its causal and local

structure, where one may treat fields supported on space-

like separated regions as subsystems. Here we will con-

sider the entanglement of the relativistic vacuum state.

This is not only thought to be connected with black holes

thermodynamics [7] or the holographic principle [8], but

also to manifest itself in the Bekenstein-Hawking black

hole radiation [9] and Unruh acceleration effects [10].

There are a number of studies proving entanglement

between spatial regions in the ground state of relativistic

quantum field theory. The central result underlying all the

‘‘proofs in principle’’ is the Reeh-Schlieder theorem [11],

formulated in the language of algebraic quantum field

theory. Let A be a space-time region and AðAÞ the local

algebra of all the operators with support in A.1 The theorem
states that, for any state of finite energy jc i (in particular,

the vacuum) the subspace AðAÞjc i is dense in the entire

Hilbert space, which means that for an arbitrary state jc 0i,
we can find a sequence of local operations !n such that

limn!1!njc i ¼ jc 0i. In particular, we can reconstruct an
arbitrary state jc Bi in region B by applying such opera-

tions in A and then tracing outside B. The vacuum is thus

an entangled state as it allows for a remote state prepara-

tion [12].

As a consequence of the Reeh-Schlieder theorem and

the positivity of a partially transposed separable density

matrix, it is possible to prove that causally separated local

regions are entangled in the vacuum state [13]. There exist

operators Â, B̂ in algebras AðAÞ, BðBÞ associated with

causally separated regions A, B that allow for constructing

an entanglement witness (an operator whose mean value is

larger or equal to zero for all separable states), which is

violated (i.e. negative) in the vacuum reduced to these two

regions. It is possible to choose operators Â, B̂ as annihi-

lation or creation operators of some local bosonic modes

but the explicit construction is not known.

1More precisely, AðAÞ is defined as the algebra generated by
operators of the form

R

A dxdtfð ~x; tÞ&̂ð ~x; tÞ, RA dxdtgð ~x; tÞ+̂ð ~x; tÞ
with test functions f, g.
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It is also possible to prove the existence of local, bipar-

tite observables that allow violation of Bell inequalities in

the vacuum state [14], but, again, the specific form of these

observables is not known. Another result is that it is

possible to locally couple two qubits (detectors) to the field

in such a way that, after a finite time, the reduced state of

such a pair of two-level systems has negative partial trans-

pose [15]. In this last case, one needs an explicit expression

for the space-time dependence of the detector-field cou-

plings. In order to prove entanglement for arbitrary sepa-

ration of the detectors, these couplings need to be of a very

specific, fine-tuned, form, involving superoscillating func-

tions that require switching the sign of the interaction

between the field and probes during the experiment. This

seems technically extremely demanding. Along different

lines (without referring to observables) in [16] entangle-

ment between two separated segments of one-dimensional

free Klein-Gordon field in the vacuum state is quantified by

the logarithmic negativity which is investigated numeri-

cally and shown to be finite for both critical and noncritical

field limit.

To which extent can the vacuum of a quantum field be

operationally accessed and used as an entanglement re-

source? By integrating over scalar Klein-Gordon field

operators with compactly supported real functions—i.e.

detection profiles localized in two regions of space—we

define collective field operators (and collective conjugate

momenta). These weighted averages of operators allow

reducing the vacuum to a system of two effective bosonic

modes. To such a reduced state we apply the entanglement

measure for continuous variables systems based on

Simon’s criterion for separability [17]. This approach has

several advantages. Since separability criteria for infinite-

mode states are unknown, we need to reduce the vacuum to

a more comprehensible system. Our approach enables to

quantify entanglement present in the resulting two-mode

system, which is still infinite dimensional, unlike in [15],

where entanglement is first transferred to two qubits.

Physical probes have finite spatial resolution, so introduc-

ing collective observables is a reasonable first approxima-

tion towards a more realistic treatment of the problem.

Finally, the Klein-Gordon field is the continuum limit of

an infinite linear harmonic chain, and within this ‘‘collec-

tive approach’’ entanglement between blocks of oscillators

in the ground state of the chain was found and quantified in

[18]. It is therefore interesting in itself to understand the

relation between the field and the chain from this particular

perspective.

In this paper we prove the existence of a critical distance

between two regions of space above which two effective

bosonic modes associated with the regions become sepa-

rable. From the numerical analysis of the linear harmonic

chain this critical distance is estimated to be of the order of

the Compton wavelength of the particle corresponding to

the massive one-dimenisonal Klein-Gordon field (the con-

tinuum limit of the linear harmonic chain). We also give an

explicit example of the possible profiles that allow for a

construction of entangled modes. Numerical results ob-

tained for this exemplary functions are presented and

discussed.

The structure of the paper is as follows: In Sec. II the

entanglement criterion and measure, which are further

applied, are introduced and commented. Section III is

devoted to the collective operators in the relativistic scalar

quantum field theory framework. We give their definition

in terms of the detection profiles and discuss the constraints

on the latter. Next, we derive one of the main results: the

proof of the existence of a critical distance above which the

modes defined within the collective operators approach,

become separable. The section is closed with an explicit

construction of the interaction needed to read out our

observables. Section IV deals with the linear harmonic

chain. First, the relation between harmonic chain and

continuous field is briefly reviewed. Second, on the basis

of numerical analysis, the optimal profiles (maximizing the

entanglement witness) in the discrete case are described

and the critical distance for them is obtained. For the

optimal profiles in the continuum limit this distance is

then estimated to be of the order of the particles’

Compton wavelength. In Sec. V we give an explicit ex-

ample of profiles that allow for defining entangled modes

and present the numerical results obtained for this special

case. We close the paper with final remarks and conclusion

in Sec. VI.

II. SEPARABILITY CRITERIA

In this paper we use a particular form of the separability

criterion derived by Simon [17], necessary and sufficient

for two-mode Gaussian states. Following the original no-

tation, we introduce a vector of phase space operators for

the two-modes system:

-̂ * ðQ̂A; P̂A; Q̂B; P̂BÞT ;
where T denotes transposition. Canonical commutation

relations (CCR) in natural units, i.e. @ ¼ c ¼ 1, can be

concisely written in a matrix form

½-̂i; -̂j, ¼ i(ij;

where we use the two-mode symplectic matrix

( :¼ 0 1

!1 0

" #
M 0 1

!1 0

" #

:

Defining the variance matrix Vij :¼ 1
2
hf-̂i ! h-̂ii; -̂j !

h-̂jigi, where fÂ; B̂g :¼ Â 0 B̂þ B̂ 0 Â, we obtain a compact

statement of the Heisenberg uncertainty relations:

V þ i

2
( 2 0: (1)

Every physical state has to satisfy this inequality. For
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separable states it must hold also after partial transposi-

tion.2 The effect of partial transposition at the level of

variance matrix elements is only hP̂AP̂Bi ! !hP̂AP̂Bi,
provided that the system also satisfies

A1: hQ̂ii ¼ hP̂ii ¼ 0; i 2 fA; Bg;

A2:
1

2
hfQ̂i; P̂jgi ¼ 0; i; j 2 fA; Bg;

which is always the case for us (one can always find a local

symplectic transformation that enforces A1 and A2

[17,19]). Thus, all physical separable states fulfilling A1,

A2, satisfy the following inequality (Simon’s criterion):

1

4
! hQ̂2

AihP̂2
Ai ! hQ̂2

BihP̂2
Bi ! 2jhQ̂AQ̂BihP̂AP̂Bij

þ 4ðhQ̂2
AihQ̂2

Bi ! hQ̂AQ̂Bi2ÞðhP̂2
AihP̂2

Bi ! hP̂AP̂Bi2Þ 2 0:

(2)

In the case that the system additionally satisfies

A3: hQ̂2
Ai ¼ hQ̂2

Bi; hP̂2
Ai ¼ hP̂2

Bi;

we can considerably simplify the separability criterion by

first factorizing it
%
1

4
! ðhQ̂2

Ai ! jhQ̂AQ̂BijÞðhP̂2
Ai ! jhP̂AP̂BijÞ

&

4
%
1

4
! ðhQ̂2

Bi þ jhQ̂AQ̂BijÞðhP̂2
Bi þ jhP̂AP̂BijÞ

&

2 0:

Notice that the second factor is always non positive. If it

equals zero, both correlations hQ̂AQ̂Bi and hP̂AP̂Bi must

vanish, but then also the first factor equals zero. So finally,

the above inequality is equivalent to

ðhQ̂2
Ai ! jhQ̂AQ̂BijÞ 0 ðhP̂2

Ai ! jhP̂AP̂BijÞ 2
1

4
: (3)

Condition A3 is not satisfied for general profiles, but can be

justified by physical assumptions (e.g., using the same

detectors in regions A and B). In Sec. IV this assumption

will also be supported by numerical results. We also have

some evidence that profiles that minimize the left-hand

side of (2) satisfy A3 (see Sec. IV).

To quantify entanglement, we will use the degree of

entanglement given by

" ¼ 1! 4ðhQ̂2
Ai ! jhQ̂AQ̂BijÞ 0 ðhP̂2

Ai ! jhP̂AP̂BijÞ: (4)

For Gaussian states " > 0 iff the state is entangled. In this

case " is a monotonically increasing function of the nega-

tivity N (the absolute sum of the negative eigenvalues of

the partially transposed density matrix): " ¼ N

Nþ1
2

. The

negativity is based on the Peres-Horodecki criterion

[20,21] and was shown to be an entanglement monotone

[22,23].

In the literature there are plenty of other criteria which,

as well as the one we use, are necessary and sufficient

for Gaussian states and also are phrased with second order

correlations between phase space operators (e.g.

[19,24,25]). It is then obvious that for Gaussian states

they all yield the same results. However, for non-

Gaussian states those criteria are only sufficient, so we

should ask which of these is in general the strongest. In

other words: are there any non-Gaussian entangled states

such that one criterion out of those mentioned above would

detect it, whereas some other would fail? The answer is

negative: either all of them will be satisfied or all violated.

From a physical point of view this is clear, simply because

we cannot discriminate Gaussian from non-Gaussian states

on the basis of their variance matrices (second order cor-

relations). Mathematically, it can be shown that all those

criteria are given by the same inequality up to a local linear

canonical transformation of modes. This means

that the choice of any of these criteria results in the same

set of states detected as entangled. In any case, as we are

going to see, in this work we will only be concerned with

Gaussian states, so that (2) [and (3), when A3 is met] will

always provide necessary and sufficient conditions for

separability.

III. COLLECTIVE OPERATORS

We consider a massive Klein-Gordon (KG) field. The

field 8̂ð ~x; tÞ and conjugate momentum +̂ð ~x; tÞ satisfy the

equal-time canonical commutation relations, [26]

½+̂ð ~x; tÞ; 8̂ð ~y; tÞ, ¼ i:3ð ~x! ~yÞ;
½8̂ð ~x; tÞ; 8̂ð ~y; tÞ, ¼ 0;

½+̂ð ~x; tÞ; +̂ð ~y; tÞ, ¼ 0:

(5)

They can be expanded in terms of creation and annihi-

lation operators, â ~k and ây~k of normal modes:

8̂ð ~x; tÞ ¼ 1

ð2+Þ3=2
Z þ1

!1
d3k

ffiffiffiffiffiffiffiffiffi

1

2$k

s

4 ðâ ~ke
i ~k ~x!i$kt þ ây~k e

!i ~k ~xþi$ktÞ;

+̂ð ~x; tÞ ¼ !i

ð2+Þ3=2
Z þ1

!1
d3k

ffiffiffiffiffiffiffi
$k

2

r

4 ðâ ~ke
i ~k ~x!i$kt ! ây~k e

!i ~k ~xþi$ktÞ;

where $k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

p

.

The vacuum state is defined by the property

â ~k
j0i ¼ 08 ~k: (6)

2For relativistic quantum field theory partial transposition on
the level of field operators is a partial CPT (completely positive
and trace preserving)-map combined with reflection [13]. In our
case it reduces to partial time reversal, exactly as in nonrelativ-
istic continuous variables systems [17].

ENTANGLEMENT BETWEEN SMEARED FIELD OPERATORS . . . PHYSICAL REVIEW D 81, 125019 (2010)

125019-3



We study the possibility to detect entanglement in the

vacuum state when the allowed measurements are con-

strained to field operators smeared over two bounded

space-time regions (collective field observables). Our mo-

tivation is twofold: first, a field operator in a single space-

time point is not a physical observable but a purely mathe-

matical concept. Physical probes always have finite spatial

resolution, so introducing collective observables is a rea-

sonable first approximation towards a more realistic treat-

ment of the problem. Second, since separability criteria for

infinite-mode states are unknown, we want to reduce the

vacuum to a system consisting of only two bosonic modes.

In a general case, the smearing is given by two different

real functions gAð ~xÞ, gBð ~xÞ with compact supports and

collective operators in the regions A, B are defined as

follows:

Q̂ð ~xA=BÞ * Q̂A=B :¼
Z þ1

!1
d3xgA=Bð ~x! ~xA=BÞ8̂ð ~x; tÞ;

P̂ð ~xA=BÞ * P̂A=B :¼
Z þ1

!1
d3xgA=Bð ~x! ~xA=BÞ+̂ð ~x; tÞ:

(7)

We consider collective operators that satisfy CCR

½Q̂A; P̂A, ¼ i; ½Q̂A; P̂B, ¼ 0; etc . . . (8)

which hold if the profiles satisfy orthonormality conditions

(to be discussed in the next paragraph). The fact that

collective phase space operators satisfy CCR guarantees

that indeed we deal with two distinct bosonic modes, so it

is meaningful to treat them as subsystems and speak about

entanglement or separability of their joint state.3

Completing the set fgAð ~x! ~xAÞ; gBð ~x! ~xBÞg to an or-

thonormal basis in L2ðR3Þ, (7) can be extended to a linear

canonical transformation of modes, two of which coincide

with our collective ones. Tracing the global ground state

over all but these particular two modes gives the final state

of the two subsystems. Since the vacuum of a scalar

quantum field is Gaussian and both transformations pre-

serve this property, the final reduced state is Gaussian as

well. This observation is very important as it means that the

criterion (3) is in our case necessary and sufficient (if

condition A3 is satisfied) and (4) indeed gives the degree

of entanglement between the two bosonic modes. It is clear

that the expectation values of all the possible products and

combinations of the collective operators (7) in the global

vacuum (6) coincide with their values calculated with

respect to the reduced state.

The idea of restricting the possible measurements to a

pair of collective modes is an extension of [18] (where the

chain of harmonic oscillators is considered) to the frame-

work of scalar quantum field theory (QFT) with general

profiles. Our main goal is to explicitly find two profiles

gA=Bð ~xÞ such that the effective modes (7) are entangled.

A. Conditions on the profiles

Before proceeding to prove our main results, we need

explicit expressions for the constraints that the detection

profiles gA=Bð ~xÞ have to satisfy. It is useful to express them
in terms of the Fourier transform

gð ~kÞ :¼ 1

ð2+Þ3=2
Z þ1

!1
d3xe!i ~k ~xgð ~xÞ:

We require that the collective operators (7) satisfy CCR

(8). All the relations involving only collective position or

only momentum operators are automatically satisfied due

to (5). The remaining ones lead to orthonormalization of

fgAð ~x! ~xAÞ; gBð ~x! ~xBÞg in L2ðR3Þ. With i, j ¼ A, B, we
have

½Q̂i; P̂j, ¼ i:ij ,
Z þ1

!1
d3ke!i ~kð ~xi! ~xjÞgið ~kÞgjð! ~kÞ ¼ :ij:

(9)

Further, all correlations in (3) should be finite. From the

Cauchy-Schawrz inequality jhQ̂AQ̂Bij 8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hQ̂2
AihQ̂2

Bi
q

and

jhP̂AP̂Bij 8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hP̂2
AihP̂2

Bi
q

. So, (with assumption A3) it is

only necessary that hQ̂2
Ai and hP̂2

Ai are finite. This indeed

holds, if the Fourier transforms of the smearing functions

decay fast enough4:

jĝA=Bð ~kÞj 8
1

j ~kjA
for j ~kj ! 1;

A >
dþ 1

2
in d space dimensions:

(10)

Finally, we demand A1-A3. Note that A1, A2 are satisfied

for every profile, while A3 is equivalent to the additional

conditions

hQ̂2
Ai ¼ hQ̂2

Bi ,
Z þ1

!1
d3k

1

2$k

jgAð ~kÞj2

¼
Z þ1

!1
d3k

1

2$k

jgBð ~kÞj2;

hP̂2
Ai ¼ hP̂2

Bi ,
Z þ1

!1
d3k

$k

2
jgAð ~kÞj2

¼
Z þ1

!1
d3k

$k

2
jgBð ~kÞj2:

All correlations appearing in the criterion (3) in terms of

the Fourier transforms of the profiles read (i, j ¼ A, B)

3More precisely, the collective operators on A and B generate
two commuting subalgebras, that in turn induce two subsystems
in the Hilbert space [27], each of which is isomorphic to the
space of a one-dimensional particle.

4This condition was not satisfied in a paragraph devoted to
scalar quantum field in [18]. However, this fact does not affect
the validity of the results obtained there for the linear harmonic
chain
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hQ̂iQ̂ji ¼
Z þ1

!1
d3k

1

2$k

e!i ~kð ~xi! ~xjÞgið ~kÞgjð! ~kÞ;

hP̂iP̂ji ¼
Z þ1

!1
d3k

$k

2
e!i ~kð ~xi! ~xjÞgið ~kÞgjð! ~kÞ:

(11)

We will further denote ~D :¼ ~xB ! ~xA. This parameter,

appearing in hQ̂AQ̂Bi and hP̂AP̂Bi, is a measure of the

distance (separation) between the subsystems.

B. Large separations limit

It is natural to ask whether there exist profiles satisfying

all the constraints given above and defining entangled

modes for arbitrary separations. In this paragraph we will

show that this is not possible. Below we prove that for

every pair of allowed profiles there exists a finite critical

distance Dcrit such that corresponding collective operators

are separable at distances larger than the critical one. More

precisely: for every pair of orthonormal functions gA=Bð ~xÞ,
satisfying A3 and (10) [giving finite correlations in (3)]

there exists Dcrit <1 such that the modes defined by

gAð ~x! ~xAÞ, gBð ~x! ~xBÞ are separable for every j ~Dj>
Dcrit. We will give the proof in three space dimensions

but it remains valid in arbitrary finite dimensions.

First, notice that the integral form of the Cauchy-

Schwarz inequality (i.e. Hölder’s inequality) together

with condition (10), not only guarantees the finiteness of

all the correlations (11) but, also asserts that their inte-

grands are functions from L1ðR3Þ (space of functions,

which absolute value is integrable). In particular, it enables

to prove that both gAð ~kÞgBð! ~kÞ
$k

and $kgAð ~kÞgBð! ~kÞ are in

L1ðR3Þ.
From Riemann-Lebesgue lemma [28] (it says that the

Fourier transform of an L1 function vanishes at infinity) it

now immediately follows that

lim
j ~Dj!1

hQ̂AQ̂Bi ¼ lim
j ~Dj!1

Z þ1

!1
d3k

1

2$k

e!i ~k ~DgAð ~kÞgBð! ~kÞ

¼ 0;

lim
j ~Dj!1

hP̂AP̂Bi ¼ lim
j ~Dj!1

Z þ1

!1
d3k

$k

2
e!i ~k ~DgAð ~kÞgBð! ~kÞ

¼ 0:

In consequence, for j ~Dj ! 1 the left-hand side of the

criterion (3) reduces to the product hQ̂2
AihP̂2

Ai. Because of

CCR imposed on the collective operators (8), the

Heisenberg uncertainty relation guarantees that this prod-

uct is always greater or equal 1
4
, so in the limit of infinite

separation the modes become separable. However, we

obtain much stronger result by utilizing Eqs. (11). Let us

write the product hQ̂2
AihP̂2

Ai as a double integral symme-

trized over the integration variables

hQ̂2
AihP̂2

Ai ¼
1

4

ZZ þ1

!1
d3kd3q

1

2

"
$q

$k

þ$k

$q

#

jgAð ~kÞgAð ~qÞj2

>
1

4
:

The last inequality is a direct consequence of the normal-

ization of the profiles [conditions (8)], the fact that ð$q

$k
þ

$k

$q
Þ 2 2 for all ~k, ~q 2 R3 and that the latter saturates only

on the hyperplane j ~kj ¼ j ~qj, which has zero Lebesgue

measure.

Summarizing, we have shown that limj ~Dj!1ðhQ̂2
Ai !

jhQ̂AQ̂BijÞ 0 ðhP̂2
Ai ! jhP̂AP̂BijÞ> 1

4
, which is equivalent to

9Dcrit<1 such that ðhQ̂2
Ai! jhQ̂AQ̂BijÞ 0 ðhP̂2

Ai! jhP̂AP̂BijÞ

2 1

4
8j ~Dj>Dcrit: (12)

This is, however, exactly the separability condition (3). So

(12) states that, given a pair of orthonormal functions

gAð ~xÞ, gBð ~xÞ which satisfy (10) and A3, there existsDcrit <

1 such that once j ~xA ! ~xBj * j ~Dj>Dcrit, the modes de-

fined by gAð ~x! ~xAÞ, gBð ~x! ~xBÞ are separable.
It is interesting, although not very relevant from the

physical point of view, that this result is not restricted to

functions with compact support, as this property has no

specific role in the proof (only orthonormality is needed).

For example, it holds for any pair of orthonormal test

functions (element of Schwartz space: rapidly decreasing

functions) satisfying A3.

C. Measurement of the collective observables

A significant difference between our and other related

works lies in the treatment of the detector. We define it only

in terms of the observables that it measures. In this para-

graph we propose a model by which a system interacting

with the field can be used to implement the desired mea-

surements of the collective observables. We will follow the

method discussed in [29]. In order to measure each of the

operators we thus need a different interaction. In general,

however, to either of the effective modes A, B we couple

another bosonic mode—a detector. Then, under the cou-

pling of the suitable degrees of freedom of the subsystem

and the detector, measurements made on the latter reveal

the value of the corresponding observable.

Let us consider a universal situation when observable Ŵ
is measured on mode i, with i ¼ A, B. The Hilbert space

H di of the joint system comprised of the subsystem i (with
Hilbert space denoted by H i) and its detector (with

Hilbert space H d) is a tensor product H di ¼
H i :H d. We introduce the phase space observables for

the detector Q̂d, P̂d, which satisfy canonical commutation

relations ½Q̂d; P̂d, ¼ i. In other words, we consider the

detector’s state space to be isomorphic to the Hilbert space

of a one-dimensional particle. An interaction Hamiltonian,
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which allows a measurement of the operator Ŵ, takes the

form

Ĥ W
I
:¼ HŴP̂d; (13)

where H is a time independent coupling constant for

this particular interaction. As bases of the Hilbert spaces

H i, H d we take the sets of eigenvectors of Ŵ, Q̂d,

namely fjwigw2R, fjqdigqd2R such that Ŵjwi ¼ wjwi and
Q̂djqdi ¼ qdjqdi. (We consider here observable Ŵ with

continuous spectrum because we are primary interested in

measuring the collective observables, however the frame-

work considered below applies also to operators with dis-

crete spectrum.) The state of the subsystem i is mixed. In

the chosen basis it can be written as

Ĵ i ¼
ZZ þ1

!1
dwdzJiðw; zÞjwihzj: (14)

The initial state of the detector is, in an idealized situation,

a pure eigenstate jqdi of Q̂d. Therefore, prior to the inter-

action, the joint state Ĵ0 of the two systems is

Ĵ 0 ¼
ZZ þ1

!1
dwdzJiðw; zÞjwihzj : jqdihqdj: (15)

If the time scale of the measurement process is much

smaller then that of the free evolution of the field and the

detector, the time evolution of the density matrix Ĵ0 is

given by the Hamiltonian (13):

Ĵ t ¼ e!iĤW
I tĴ0e

iĤW
I t: (16)

Making use of the fact that the momentum operator is a

generator of spatial translations (see e.g. [30]) we notice

that

e!iĤW
I tjwi : jqdi ¼ jwi : jqd þ Htwi; (17)

so finally

Ĵt ¼
"
1

Ht

#
2 Z þ1

!1
dwdzJi

"
w! qd
Ht

;
z! qd
Ht

#

4
--------

w! qd
Ht

./
z! qd
Ht

--------
:jwihzj: (18)

Performing measurements on the detector’s degrees of

freedom, we can reconstruct the values of the observable

Ŵ in the state of subsystem i given by (14). It is straight-

forward to derive that the probability amplitude for the

detector to be at time t in some eigenstate jai of Q̂d is

proportional to Jiða!qd
Ht

; a!qd
Ht

Þ, which is in turn the proba-

bility amplitude of subsystem i being in state j a!qd
Ht

i. A
more realistic treatment would involve assuming for the

initial state of the detector not an eigenstate of Q̂d but

rather a superposition
Rþ1
!1 dqdfðqdÞjqdi [e.g. for a coher-

ent initial state fðqÞwould be a Gaussian packet]. In such a
case the amplitude for the detector to be at time t in the

state jai is proportional to Rþ1
!1 dqdJiða!qd

Ht
; a!qd

Ht
ÞjfðqdÞj2.

In the above example the considered subsystem was

coupled to the detector’s degree of freedom which corre-

sponds to the operator P̂d. This choice is of course arbi-

trary, i.e. equivalently well the other degree of freedom,

corresponding to Q̂d, may be utilized to perform the mea-

surement. In such a case the interaction takes form Ĥ0W
I :¼

LŴQ̂d, where L is again a time independent coupling

constant. As a basis of the Hilbert space H d we take the

set of eigenvectors of P̂d and, as the initial state of the

detector, we consider the eigenstate of P̂d. Following all

the previous steps with these changes in mind, we obtain

that measuring this detector’s state in the momentum basis,

again, enables to reconstruct the value of the observable Ŵ
on the state of subsystem i.
Although we couple each mode with an (effective) one-

dimensional particle, different degrees of freedom of the

measured modes are involved in measurements of conju-

gate collective observables. So, in the outlined scheme the

interactions are relatively simple but the detectors serve

solely as devices to reconstruct the values of collective

operators in the two-mode state considered. On the other

hand, if the vacuum entanglement is actually transferred to

the detectors (as in [15]), by the price of a very fine tuned,

time dependent interaction, it is possible to detect entan-

glement for arbitrary separations.5

IV. RESULTS FROM DISCRETE SYSTEMS

The result of the previous section says that no matter

what are the shapes of the detection profiles, collective

operators too distant from each other must be separable,

but it does not give any indication about the possibility of

finding entanglement by measurements in regions suffi-

ciently close together. It is not trivial to tackle this problem

directly, as the possible detection profiles form an infinite

dimensional space and many of them will still define

separable modes; it is therefore instructive to study a

discretized version of the system, where numerical analysis

can be performed. The numerics will give important in-

sights into the shape of the profiles that can show entangle-

ment and, furthermore, it will give evidence of the

existence of a critical distance independent of the specific

profile, thus strengthening the results of Sec. III, and

provide an estimation for it. Here only the one-dimensional

case will be considered.

A. Continuum limit

A one-dimensional bosonic field can be formally ob-

tained as the continuum limit of a chain of coupled har-

monic oscillators. This is especially useful for us, as the

discrete system can be better analyzed; in particular, the

freedom in the choice of profiles reduces to an optimization

5If the detector model is described by a natural interaction, it is
not possible to detect entanglement with its use [31].
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problem of functions of a finite number of degrees of

freedom.

Let us briefly review the relation between the harmonic

chain and the continuous field (see, e.g., [32]). The KG

Hamiltonian

Ĥ KG ¼ 1

2

Z

dxðm28̂ðxÞ2 þ +̂ðxÞ2 þ ðr8̂ðxÞÞ2Þ (19)

can be written as the limit for 6x ! 0 of

Ĥ dis ¼
1

2
6x

X

j

"

m28̂2
j þ +̂2

j þ
1

6x2
ð8̂j ! 8̂j!1Þ2

#

¼ 1

2

X

j

"

6xm28̂2
j þ6x+̂2

j þ
1

6x
ð8̂j ! 8̂j!1Þ2

#

;

(20)

where the discretized field operators are defined as 8̂j :¼
8̂ðj6xÞ, +̂j :¼ +̂ðj6xÞ, with j integer and 6x being the

spacing between successive points.

The expression (20) can be put in correspondence with a

chain of N harmonically coupled oscillators, with conju-

gate observables satisfying ½ 9̂qj; 9̂pk, ¼ i:jk and Hamil-

tonian

Ĥ ¼ 1

2

XN

j¼1

"

M!2 9̂q2j þ
9̂p2
j

M
þM(2ð 9̂qj ! 9̂qj!1Þ2

#

; (21)

where M is the mass of each individual oscillator, ! its

proper frequency and ( the coupling frequency. Periodic

boundary conditions 9̂q0 ¼ 9̂qN are assumed.

If we set (20) equal to (21), we obtain

6xm28̂2
j ¼ M!2 9̂q2j ; 6x+̂2

j ¼
9̂p2
j

M
;

1

6x
ð8̂j ! 8̂j!1Þ2 ¼ M(2ð 9̂qj ! 9̂qj!1Þ2;

from which we derive

8̂ j ¼
ffiffiffiffiffiffiffi

M

6x

s

!

m
9̂qj; +̂j ¼

ffiffiffiffiffiffiffi

6x

M

s

9̂pj; m6x ¼ !

(
:

(22)

In order to define a correct continuum limit, the scaling of

the parameters in (21) with 6x must obey (22) with m
fixed.

In order to simplify the analysis, we can rewrite (21) in

the following form:

Ĥ ¼ E0

2

XN

j¼1

ðq̂2j þ p̂2
j ! Hq̂jq̂j!1Þ; (23)

where E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2(2 þ!2
p

, H ¼ 2(2=ð2(2 þ!2Þ and we

introduced the dimensionless variables q̂j ¼ C 9̂qj, p̂j ¼
9̂pj=C, with C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M!ð1þ 2(2=!2Þ1=2
q

. In this form, the

system is characterized by a single dimensionless parame-

ter, the coupling constant H, which, by construction, is

constrained to values 0<H< 1. In this case, the contin-

uum limit is obtained by setting

H ¼ 1

1þ 1
2
6x2m2

(24)

and letting 6x ! 0, with m constant.

If we want to describe a region of size L using (23) as a

discrete version of a Klein-Gordon field, we have to con-

sider in the chain a block with a number of sites

n ¼ L

6x
¼ Lm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H

2! 2H

r

:

As n has to be an integer, for some values of H, L andm the

expression above is not well defined. It can therefore be

more convenient, especially for carrying out numerical

computations, to express H as a function of n and the

physical length:

H ¼ 1

1þ 1
2
ðmL
n
Þ2 : (25)

This relation fixes the physical size of a region. By increas-

ing n and having the coupling constant scaling as in (25),

one approaches in the limit a region of size L of a KG field

with mass m. It is worth stressing that it is not the number

of points n that determines the size of a region, rather, this

needs to be fixed through the relation (25). Increasing n
only provides a more refined description of the system.

B. Collective entanglement and optimal profiles

The discrete version of the collective operators (7) can

be defined for a block A of n sites in a chain:

Q̂ A :¼
Xn

j¼1

fjq̂jþl; P̂A :¼
Xn

j¼1

fjp̂jþl; (26)

where lþ 1 is the position of the first site of A and fj is the

detection profile, determining how much each site in the

chain contributes to the collective observables (note that

the indices of the profiles always run in the range

f1; . . . ; ng, regardless of the position of the block in the

chain). If the profile satisfies the normalization condition

Xn

j¼1

f2j ¼ 1; (27)

then the collective operators have canonical commutation

relations ½Q̂A; P̂A, ¼ i and the subsystem they define is a

bosonic mode.

Two detectors placed in two regions A and B, described
by detection profiles fj and gj, respectively, effectively

detect two bosonic modes. If the global state is Gaussian

(as is the case for the vacuum state) then also the reduced

state over the two modes is so, as was discussed in Sec. III;
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we can therefore apply Simon’s criterion (2) to establish

whether the two modes are entangled or not. If " is the

corresponding entanglement measure, " > 0 meaning en-

tanglement and " 8 0 separability, we can ask for which

profiles fj, gj " is maximized when all the parameters are

fixed. If two profiles exist such that "max > 0, then we can

conclude that it is in principle possible to see entangle-

ment, while "max 8 0 proves separability for all possible

collective operators.

Let us study systematically the case where the two

regions A and B have the same length L. We want to

know if, for a given separation D between A and B, it is
possible in principle to find entanglement and what are the

shapes of the profiles that maximize the entanglement

measure. We will set from now on the mass of the field

to m ¼ 1, so that all the lengths will be expressed in units

of Compton wavelength Ac ¼ 1
m
. Note that m is the only

dimensional parameter in (19), so it defines the natural

scale of the system. Using the discretized field, we can

approach the problem numerically: we first fix the size L of

the regions, the number of sites (i.e. oscillators) in each

block n and the number of sites d separating the two

blocks. The physical separation D is then given by6

D ¼ d

n
L (28)

(see Fig. 1) and H is determined by the relation (25).

We consider a system of infinite total length, which

means N
n
= 1. We verified numerically that this limit is

already well approximated for N ¼ 10ð2nþ dÞ. With all

the parameters fixed, the entanglement measure " is a

function of the 2n real variables ffj; gjgnj¼1 and we can

then find the numerical extremum with both f and g
subject to the constraint (27). The first numerical evidence

is that the optimal profiles are always mirroring, that is to

say, " is always maximized by functions satisfying gj ¼
fnþ1!j; this allows us to reduce the problem to a max-

imization over n variables. Furthermore, this symmetry

ensures that hQ̂2
Ai ¼ hQ̂2

Bi, hP̂2
Ai ¼ hP̂2

Bi (condition A3

above), so that we can use the simplified entanglement

measure (4). Notice, that the obvious choice of a rectan-

gular profile (a ‘‘top-hat’’ function) is far from optimal.

Moreover, such a profile would not work in the continuum

limit, as it gives diverging correlations.

We proceed in the following way: first we fix the physi-

cal region size L, then, for a given value of d, we look for

the critical block size ncritðdÞ such that the blocks are

entangled (" > 0) for n 2 ncritðdÞ and separable (" 8 0)
for n < ncritðdÞ. Then we change d and study the functional

dependence between ncrit and d; as d ! 1 we approach

the continuum limit. Assuming that ncritðdÞ is always finite
(as it turns out, it is), we can expect three possible situ-

ations:

(1) d
ncritðdÞ ! 1 for d ! 1.

This would mean that, in the limit, regions of size L
arbitrarily distant from each other can be entangled

[remember that L is the fixed physical length, while

D is given by (28)].

(2) d
ncritðdÞ ! 0 for d ! 1.

In this case, the physical distanceD below which we

can see entanglement would vanish for the given

region size L, so no entanglement could be seen

between separated regions.

(3) d
ncritðdÞ ! CðLÞ for d ! 1, 0<CðLÞ<1.

In this last case, there exists a distance DðLÞ ¼
CðLÞL above which regions of size L are always

separable, but below which they can be entangled if

the appropriate profile is chosen.

As we are going to see, the data give strong numerical

indication in favor of the third case.

Let us consider in detail, as an illustrating example, the

results for L ¼
ffiffiffi

2
p

(the specific value is only chosen for

numerical convenience). For fixed values of the separation

between the blocks d and of the number of sites in each

block n, we search for the optimal profile that maximizes

the entanglement parameter (4). We do so for d fixed and

increasing values of n, until we find " > 0. We repeat the

procedure for d ¼ 1; . . . ; 16, so that finally we have, for

each d, the smallest block size ncritðdÞ such that the pa-

rameter " (maximized over all profiles) is positive. The

inverse coupling constant scales with n as H!1 ¼ 1þ 1
n2

[as required by (25)]. The results are shown in Table I.

One can see that the relation between ncrit and d is

approximately linear, corroborating hypothesis 3 above.

In Fig. 2 three optimal profiles are plotted, from which it

can be clearly seen how the same shape is reproduced

n=5 d=3

L
D

A B

FIG. 1. Two blocks of a harmonic chain A and B. In this

example, each block consists of n ¼ 5 oscillators and the blocks

are separated by d ¼ 3 oscillators. The physical length L of the

blocks and their separation D are related by D ¼ d
n
L.

TABLE I. Minimal block size ncrit that allows entanglement

for fixed physical size of the regions L ¼
ffiffiffi

2
p

as a function of the

number d of oscillators separating the two regions.

d ¼ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ncritðdÞ ¼ 2 8 14 20 25 31 37 43 48 54 60 65 71 77 83 88

6With the definition of the profiles that we use here, parameter
D defined in the last section gives exactly the distance between
the near ends of the regions. This choice is obviously the most
suitable for the analysis.
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while increasing the number of points, as it is expected

when approaching the continuum limit. We can conjecture

that the continuous curve appearing in the limit n ! 1
would correspond to the optimal profile in the continuum.

It is possible to extract the limiting value CðLÞ ¼
limd!1

d
ncritðdÞ by linear interpolation of the data in

Table I. We obtain CðL ¼
ffiffiffi

2
p

Þ ¼ 0:17. From this, using

relation (28), we can calculate the physical distance below

which regions of size
ffiffiffi

2
p

can be entangled: D ¼ CðLÞL ¼
0:25 (expressed in units of the Compton wavelength).

The same calculation can be repeated for different re-

gion sizes L. The linear behavior is confirmed for all the

cases, as can be seen in the examples plotted in Fig. 3.

Once the linear dependence of ncrit on d is established, it

is possible to calculate for each value of L the coefficient

CðLÞ. As can be seen from Fig. 4, it is reasonable to infer

that 1
CðLÞ has an asymptote for L ! 1, namelyCðLÞ > c

L
; in

the figure the plot of 1
CðLÞ is compared with a handmade

asymptote with c ¼ 1. This result implies that, as the

region sizes become arbitrarily large, the distance above

which they are separable converges to a finite valueDcrit ¼
limL!1DðLÞ ¼ limL!1CðLÞL> 1. The numerical results

are stronger than our general proof from the preceding

section as they imply the existence of a critical distance

above which collective modes are separable for any choice

of the detection profiles, while the analytical approach

assures only that for any pair of profiles there exists a

critical distance for finding entanglement between the

corresponding collective modes. It is remarkable that our

calculation indicates that this distance is of the order of the

Compton wavelength.

V. RESULTS FOR THE MASSIVE KLEIN-GORDON

FIELD

Asymmetric triangular profiles

We will follow the intuition on the optimal profiles

obtained from the linear harmonic chain. The most pro-

found feature of the optimal functions found in that case is

their asymmetry (see Fig. 2) and the fact that they are

mirror images of one another: gAðxÞ ¼ gBð!xÞ. Thus, as
a first approximation, to define the subsystems we use

2 4 6 8
j

0.1

0.2

0.3

0.4

f j

a

10 20 30 40
j

0.05

0.10

0.15

0.20

f j

b

20 40 60 80
j

0.02

0.04

0.06

0.08

0.10

0.12

0.14

f j

c

FIG. 2 (color online). Three optimal (maximizing the entanglement measure ") profiles for fixed physical size of the regions L ¼
ffiffiffi

2
p

. The number ncrit of oscillators in one block is the smallest that allows entanglement for the given number d of oscillators between

the two blocks. For plot (a) d ¼ 2, ncrit ¼ 8, for (b) d ¼ 8, ncrit ¼ 43 and for (c) d ¼ 16, ncrit ¼ 88. The plotted profiles are for the left
block; the profiles for the block on the right have the same shape, mirrored.

2 4 6 8 10
L

2

4

6

8

10

12

14

1

C L

FIG. 4 (color online). Dependence of the coefficient CðLÞ on
the region size L. In the graph 1

CðLÞ is compared with a linear law.

0 5 10 15
d

50

100

150

ncrit d

L2

2
1

L2

2
10

L2

2
50

FIG. 3. Dependence of the critical number ncritðdÞ of sites

within the blocks on the number d of sites between the blocks

for different region sizes L. The critical value ncritðdÞ is defined
as the minimal number of sites that gives entanglement of the

corresponding collective operators. For each L a linear law is

evident, the linear coefficient is defined as 1=CðLÞ.
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functions in the shape of asymmetric triangles. We restrict

our numerical analysis to the one-dimensional case, how-

ever it is obvious that it may be extended to more dimen-

sions. We parametrize each of the triangular profiles with

the length of their support LA=B and the position of the tip

sA=B 2 ð0; 1Þ, where sA=B ¼ 1
2
gives a symmetric triangle.

The property of mirroring results in both profiles having

the same support size and tip position related by sB ¼ 1!
sA, so that normalized profiles are given by

gAðxÞ * gðs; L; xÞ :¼

8
>>>><

>>>>:

ffiffiffi
3
L

q "

xþL
sL

#

for x 2 ð!L;!Lð1! sÞ,;
ffiffiffi
3
L

q "

!x
ð1!sÞL

#

for x 2 ð!Lð1! sÞ; 0Þ;
0 otherwise:

gBðxÞ * gðs; L;!xÞ: (29)

These functions not only satisfy condition (10) but also

assumption A3. The latter is evident once we realize that

Fourier transforms of the profiles are related by complex

conjugation, gAðkÞ ¼ 9gBðkÞ, which is a direct consequence
of the fact that the triangles are mirror images of one

another. Notice that the profiles are chosen in such a

way, that parameter D ¼ xB ! xA is equal to the distance

between their supports, D ¼ 0 meaning neighboring

triangles.

Moreover, again, we set field’s mass m to 1 so that

quantities of the length dimension are measured in

Compton wavelengths. This finally makes the degree of

entanglement (4) depend only on three parameters: tip

position s, size of the profiles’ supports L and their distance

D. An exemplary setting is shown in the Fig. 5, which in

our scheme corresponds to the situation where two bosonic

modes defined by the profiles are associated with the

regions of length 4 separated by interval of length 2 in

Compton wavelength units.

With this choice of profiles, entanglement is found

numerically for a certain range of parameters. Here we

present a summary of our results. First of all, for separation

D larger thanDcrit ? 0:3 the modes become separable—no

entanglement can be found for any choice of the remaining

two parameters. From our analysis of the linear harmonic

chain, the critical distance was estimated to be of order 1. It

was, however, done for optimal profiles to which triangles

are just an approximation. For each separation D<Dcrit

entanglement appears, once the size of the supports L
exceeds some minimal value LminðDÞ. This minimal length

increases with D. The existence of the critical distance is

manifested by LminðDÞ ! 1 for D ! Dcrit; see Fig. 6.

For given separation D, we can maximize the entangle-

ment measure (4) over the size of the supports L and tip

position s. In this way we obtain the maximal available

entanglement as a function of the subsystems’ separationD
(Fig. 7). For D ! Dcrit entanglement goes to zero. From

the logarithmic plot we infer that in the intermediate range

of separation parameter values, the entanglement measure

" optimized over the two remaining parameters (L and s)
decreases exponentially with the distance D.

In Fig. 8 we show the dependence of the optimal (max-

imizing entanglement) values of the size of the supports

Lopt and tip position sopt. Qualitatively, the behavior of Lopt

and Lmin is the same. Lopt is of the order of the Compton

wavelength in the intermediate region of the separation

parameter values. More interesting is the dependence of

the optimal tip position sopt on the separation D. It reaches

its minimal value sopt ? 0:84 forD ? 0:2. Both forD ! 0

and D ! Dcrit the optimal tip position goes to 1. The

difference between Lopt and Lmin just confirms the result

6 4 2 2 4 6
x

0.2

0.4

0.6

0.8

gA x , gB x

FIG. 5. Two mirroring triangular profiles for the support’s size

L ¼ 4, tip position s ¼ 0:75 and distance between the supports

D ¼ 2.

0.05 0.10 0.15 0.20 0.25
D

50
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200

Lmin

0.05 0.15 0.25
D

1

10

100

Log Lmin

FIG. 6 (color online). Minimal length of the profiles’ support

Lmin, for which entanglement appears, plotted as a function of

their separation D. Inset: logarithmic plot of the same depen-

dence.
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of [18], that entanglement may emerge by going to larger

blocks.

For the sake of completeness we include the plots of

entanglement as a function of the size of the profiles’

supports for separation D ¼ 0:2 [Fig. 9(a)] and D ¼ 0:1
[Fig. 9(b)]. To obtain each point of the plots, we optimized

over the tip position.

The larger the values of the separation are and the farther

the size of the profiles’ supports is from its optimal value

(for given separation), the more sensitive our entanglement

measure is to changes of the tip position. In other words: as

the separation D increases, " becomes more and more

peaked over optimal values of L and s parameters. We

exemplify this in Fig. 10, where entanglement is plotted for

separationD ¼ 0 [Fig. 10(a)] andD ¼ 0:15 [Fig. 10(b)] as
a function of the tip position for a few values of the size of

the triangles’ supports.

At the beginning of this section, we stressed that the

important feature of the profiles defining entangled modes

is their asymmetry. Naturally, there arises the question to

which extent this property is crucial. Is asymmetry neces-

sary to obtain entanglement? In general the answer is

0.05 0.10 0.15 0.20 0.25
D
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0.15

0.20

0.25

max

a

0.05 0.10 0.15 0.20 0.25
D

10 5

10 4

0.001

0.01

0.1

Log max

b

FIG. 7 (color online). (a) Degree of entanglement " maximized over the size of the profiles’ support L and the tip position s as a

function of the separation D, i.e. maximal available entanglement max["] as a function of the separation of the profiles D.

(b): Logarithmic plot of the same dependence.
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FIG. 8 (color online). Optimal and minimal length of the profiles’ supports, plot (a), and optimal position of the triangles’ tip, plot

(b), as functions of the separation D of the profiles’ support. By optimal values of parameters we understand such that maximize our

entanglement measure ".
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FIG. 9 (color online). Entanglement as a function of the size of the profiles’ support L for given separation of the profiles, D ¼ 0:2
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position s.
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negative, however, as shown in Fig. 11(a), the maximal

amount of entanglement available in the case of symmetric

profiles is more than 1 order of magnitude smaller than in

general situation (i.e. when we can vary position of the tip

of the triangles). Moreover, symmetrical modes become

separable when the distance between their supports ex-

ceeds a value about 0.01 which is also more than an order

of magnitude smaller than the critical distance estimated in

the general, asymmetric, case (Dcrit ? 0:3). In Fig. 11(b)

we plotted the dependence of the optimal size of symmet-

ric profiles as a function their separation. There are also

included points from the Fig. 8(a), i.e. optimal lengths of

the more general profiles for given separation. The optimal

lengths of the symmetric profiles and of the general ones

are, unlike the degree of entanglement, comparable. This

result shows that the asymmetry of the profiles is indeed

important for maximizing the degree of entanglement for

given distance between the subsystems.

We also stress that the exact shape of the triangle is

not necessary. Since the space of compactly supported,

smooth functions is dense in LpðR3Þ for p 2 1, all the
integrals in the expression for " obtained with the

triangles may be approximated to arbitrary precision with

smooth functions satisfying all demanded constraints.

Also an explicit ‘‘smoothing’’ is possible with the use of

a series of Gaussian functions faðxÞ ¼ 1
a
ffiffiffi
+

p e!ðx2=a2Þ. They

approach the Dirac delta in the weak limit i.e.

lima!0þ
R1
!1 faðxÞgðxÞdx ¼ gð0Þ. Convolving triangles

with the function f~aðxÞ for ~a sufficiently close to 0, we

obtain a smooth profile that, again, approximates the en-

tanglement measure " calculated with triangular profiles

up to arbitrary precision. The price is that canonical com-

mutation relations are also satisfied approximately—as

Gaussians are not compactly supported, so are the final

smoothened ‘‘triangles.’’

Finally, we would like to point out that the joint state of

the two regions, which we here consider, is in principle

mixed, so it may no longer be useful e.g. for quantum

communication. As proved in [33], for Gaussian two-

mode systems entanglement (i.e. " > 0) is equivalent to

distillability of the state. However, it is impossible to distill

entanglement utilizing two identical, symmetrical copies

of a two-mode Gaussian state at a time and performing

Gaussianity preserving operations supported by classical

communication [34] (non-Gaussian operations would be

required). Entanglement distillation (or purification) is a

transformation that consists of local operations and classi-

cal communication bringing several copies of a mixed
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FIG. 11 (color online). Results for the symmetrical triangles, i.e. profiles (29) with s ¼ 1
2
. Plot (a): for given separation D, we

maximize " over the size of the supports L keeping s ¼ 1
2
. In this way, we obtain the maximal available entanglement for symmetrical

profiles as a function of the separation. Plot (b): optimal lengths of the symmetric and general profiles. By optimal we understand those

that maximize the degree of entanglement ".
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entangled state into (approximately) pure entangled states

which can further be utilized for quantum communication

and quantum computation. (See Sec. III for a justification

that the state we define with the detection profiles is indeed

Gaussian.)

VI. CONCLUSION

In this paper, we investigated entanglement between two

regions of a scalar Klein-Gordon field in the vacuum state.

By spatially integrating over field operators (and conjugate

momenta) with two real, compactly supported functions

we defined two pairs of collective phase space operators

representing two bosonic modes, i.e.—subsystems corre-

sponding to the regions given by the supports of the

functions. Reducing the vacuum of a scalar field to these

particular modes, we studied entanglement between them

with the use of an entanglement measure for two-mode

continuous variables states (based on [17]).

For every two functions satisfying the aforementioned

constraints (see Sec. III), it is proved that the correspond-

ing subsystems are separable if the distance between them

(i.e. between the supports of the functions) is larger than

some finite value. From a numerical analysis of the dis-

cretized Klein-Gordon field we obtained strong indication

that all considered modes become separable for separations

larger than 1 Compton wavelength. We also gave an ex-

plicit example of a pair of functions (asymmetric triangles)

that define entangled modes and investigated numerically

the amount of entanglement in the corresponding system.

The approach presented here aimed to take into account

limitations that real experiments put on the properties that

can be measured. From this point of view, our definition of

observables is a reasonable first approximation towards a

fully realistic treatment of the problem of vacuum entan-

glement as it assumes that only localized collective opera-

tors can be observed (since we cannot resolve field

operators in single space-time points). Also an interaction

has been proposed that could implement the desired

measurements.

According to our numerical analysis of the discretized

field, in half spaces separated by more than a Compton

wavelength we cannot find any entangled modes defined

with the considered functions. In [14], a violation of Bell’s

inequalities in the vacuum is in principle possible at arbi-

trary separations. Although our result cannot be directly

compared with works on Bell’s inequality violations (be-

cause our observables are Gaussian and on a Gaussian state

such operators cannot show violation of Bell’s inequalities

[35]), wewould like to point that the algebra of observables

considered in [14] is much richer than ours. This implies

that the operators needed for this violation (in the large

separation regime) must be of a more intricate form than

proposed here (e.g. involving higher powers of the field

operators). On the other hand, as the authors of [14] com-

ment, if the distanceD between the regions probed is much

larger than a few Compton wavelengths of the lightest

particle in the theory then the maximal Bell violation in

the vacuum will necessarily be too small to be observed.7

This shows that even with a wide range of allowed observ-

ables vacuum entanglement, if at all accessible, should be

tested at small distances (of the order of the field’s

Compton wavelength).8 Our result asserts that, once we

can probe close enough regions, to access vacuum entan-

glement we can restrict our measurements only to very

simple observables, namely, field (and conjugate momen-

tum) operators averaged over spatial regions. Such observ-

ables are usually considered as simplest to implement, at

least in optics.

There are several possible generalizations of the pre-

sented approach. First of all, each phase space operator

ðQ̂A=B; P̂A=BÞ may be defined via a different profile and the

restrictions given by assumptions A1–A3 may be aban-

doned. Both these situations are not covered by our con-

siderations. Further, we may allow for more general

observables than field operators averaged over spatial re-

gions, as e.g. in [14] or by considering space-time regions.

Also investigating entanglement between excitations of

local Hamiltonians (i.e. restricted to some space region)

in the global vacuum state may be an interesting line of

research.

Our results have importance for investigating whether

the vacuum of a quantum field has any operational meaning

and if it may be accessed as an entanglement resource.

Moreover, the method here presented is directly applicable

to other than vacuum bounded energy states and also to

systems described within nonrelativistic quantum field

theory. The most extreme example of the latter (if the

range of the correlations is considered), the BEC state,

will be studied elsewhere.
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7In their approach, the parameter describing the maximal
violation of Bell’s inequalities with operators from two local
algebras, assigned to space-time regions separated by D, decays
exponentially with mD (where m stands for the mass of the
lightest particle in the theory).

8The fact that entanglement is only a short distance property of
the vacuum is further confirmed by the fact that it is possible to
transform the vacuum into a separable state by means of a
nonlocal unitary involving only points at a Compton wavelength
distance [36].
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