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We establish a method of directly measuring and estimating nonclassicality—operationally defined in

terms of the distinguishability of a given state from one with a positive Wigner function. It allows us to

certify nonclassicality, based on possibly much fewer measurement settings than necessary for obtaining

complete tomographic knowledge, and is at the same time equipped with a full certificate. We find that

even from measuring two conjugate variables alone, one may infer the nonclassicality of quantum

mechanical modes. This method also provides a practical tool to eventually certify such features in

mechanical degrees of freedom in opto-mechanics. The proof of the result is based on Bochner’s theorem

characterizing classical and quantum characteristic functions and on semidefinite programming. In this

joint theoretical-experimental work we present data from experimental optical Fock state preparation.
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Where is the ‘‘boundary’’ between classical and quan-

tum physics? Unsurprisingly, acknowledging that quantum

mechanics is the fundamental theory from which classical

properties should emerge in one way or the other, instances

of this question have a long tradition in physics. Possibly

the most conservative and stringent criterion for nonclas-

sicality of a quantum state of bosonic modes is that the

Wigner function—the closest analogue to a classical

probability distribution in phase space—is negative, and

can hence no longer be interpreted as a classical probabil-

ity distribution [1–3]. From this, negativity of other quasi-

probability distributions, familiar in quantum optics, such

as the P-function [1,4] follows. In fact, a lot of experimen-

tal progress was made in recent years on preparing quan-

tum states of light modes that exhibit such nonclassical

features, when preparing number states, photon subtracted

states, or small Schrödinger cat states [5–8]. At the same

time, a lot of effort is being made of driving mesoscopic

mechanical degrees of freedom into quantum states even-

tually showing such nonclassical features [9]. All this

poses the question, needless to say, of how to best and

most accurately certify and measure such features.

In this work, (i) we demonstrate that, quite remarkably,

nonclassicality in the above sense can be detected from

mere measurements of two conjugate variables. For a

single mode, this amounts to position and momentum

detection, as can be routinely done by homodyne measure-

ments in optical systems. (ii) What is more, using such data

(or also data that are tomographically complete) one can

get a direct and rigorous lower bound to the probability of

operationally distinguishing this quantum state from one

with a positive Wigner function—including a full certifi-

cate. Such a bound uses information from possibly much

fewer measurement settings than needed for full quantum

state tomography. At the same time, quantum state

tomography using Radon transforms for quantum modes

is overburdened with problems of ill-conditioning.

The method introduced here, in contrast, is a direct

method giving rise to a certified bound which arises from

conditions all classical and quantum characteristic func-

tions have to satisfy as being grasped by the classical and

quantum Bochner’s theorem [10]. Hence, we ask: ‘‘What is

the smallest nonclassicality consistent with the data’’?

Intuitively speaking, the proof circles around the deviation

of a quantum characteristic function as the Fourier trans-

form of the Wigner function from a classical characteristic

function. This deviation can then be formulated in terms of

a semidefinite program—so a well-behaved convex opti-

mization problem—giving rise to certifiable bounds. The

same technique can also be applied to notions of entangle-

ment, and indeed, the rigor applied here reminds of apply-

ing quantitative entanglement witnesses [11,12]. What is

more, the criterion evaluation procedure is efficient. At

present, such techniques should be most applicable to sys-

tems in quantum optics, and we indeed implement this idea

in a quantum optical experiment preparing a field mode in a

nonclassical state. Yet, they should be expected to be

helpful when eventually certifying that a mesoscopic me-

chanical system has eventually reached quantum properties

[9], where ‘‘having achieved a nonclassical state’’, with

careful error analysis, will constitute an important

benchmark.

Measure of nonclassicality.—Nonclassicality is most

reasonably quantified in terms of the possibility of opera-

tionally distinguishing a given state from a state that one

would conceive as being classical. That is to say, the

meaningful notion of distinguishing a state from a classical

one is as follows.

Definition 1: (Measure of nonclassicality).—

Nonclassicality is measured in terms of the operational
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distinguishability of a given state from a state having a

positive Wigner function,

#ð$Þ ¼ min
!2C

k$!!k1; (1)

where C denotes the set of all quantum states with positive

Wigner function and k ' k1 is the trace norm.

This measure is indeed the operational definition of a

nonclassical state—as long as one accepts the negativity of

the Wigner function as the figure of merit of nonclassical-

ity. Needless to say, the operational distinguishability with

respect to other properties would also be quantified by

trace-distances, and naturally several quantities of such a

type can be found in the literature (see, e.g., Ref. [13] for a

similar notion of nonclassicality and Ref. [14] for a related

idea to quantify entanglement). It has the following natural

properties: It is (a) invariant under passive and active linear

transformations, and (b) nonincreasing under Gaussian

channels, and in fact under any operation that cannot

map a state with a positive Wigner function onto a negative

one. The latter property is an immediate consequence of

the trace norm being contractive under completely positive

maps. Moreover, since Gaussian states are positive this

measure of negativity gives a direct lower bound to the

non-Gaussianity of the same state—quantified again in

terms of the distance to the set of Gaussian states. Such a

notion of non-Gaussianity (see, e.g., Refs. [15]), just as the

negativity of the Wigner function as such, can be viewed as

quantifying a resource in quantum information processing.

Similar to entanglement measures being monotones under

local operations with classical communication, these mea-

sures are monotones under Gaussian operations. What is

more, the negativity of the Wigner function may also be

seen as quantifying the potential of violating a Bell in-

equality based on homodyning [16].

Characteristic functions and Bochner’s theorems.—We

consider physical systems of n bosonic modes, associated

with canonical coordinates R ¼ ðq1; . . . ; qn; p1; . . . ; pnÞ, of
‘‘position’’ and ‘‘momentum’’, or some quadratures. In the

center of the analysis will be quantum characteristic func-

tions [2,17], for nmodes as a function +: R2n ! C defined

as +ð,Þ ¼ tr½$Dð,Þ*, Dð,Þ ¼ ei,'0R, so as the expectation

value of the Weyl or displacement operator [18]. This

characteristic function is nothing but the Fourier transform

of the familiar Wigner function W: R2n ! R,

WðzÞ ¼ 1

ð23Þ2n
Z

+ð,Þe!i,'0zd,: (2)

A key tool will be the notion of 6 positivity [10]:

Definition 2: (6 positivity).—A function +: R2n ! C is

6-positive definite for 6 2 R if for every m 2 N and for

every set of real vectors T ¼ ð,1; ,2; . . . ; ,mÞ the m+m

matrix Mð6Þð+; TÞ is non-negative, Mð6Þð+; TÞ , 0, with

ðMð6Þð+; TÞÞk;l ¼ +ð,k ! ,lÞei6,k'0,l=2: (3)

Conversely, one can ask for a classification of all func-

tions that can be characteristic functions of a quantum

state, or some classical probability distribution. Such a

characterization is captured in the quantum and classical

Bochner’s theorems [10]. (i) Every characteristic function

of a quantum state must be 1-positive definite. (ii) Every

characteristic function of a quantum state with a positive

Wigner function must be at the same time 1-positive defi-

nite and 0-positive definite.

Measuring nonclassicality.—Data are naturally taken as

slices in phase space, resulting from measurements of

some linear combinations of the canonical coordinates,

as they would be obtained from a phase sensitive measure-

ment such as homodyning in quantum optics. One collects

data from measuring observables ukR for some collection

of uk 2 R2n with kukk ¼ 1. E.g., in the simplest case of

one mode one could measure only q and p or, if the state is

phase invariant, one could average over all the possible

directions. With repeated measurements one can estimate

the associated probability distributions Pk: R ! Rþ, re-
lated to slices of the characteristic functions by a simple

Fourier transform
R
PkðsÞei!sds ¼ +ð!0ukÞ. Actually, in

a real experiment one can build only a statistical histogram

rather than a continuous probability distribution. Hence,

measurements of values of the characteristic function must

be equipped with error bars [19]

>ð!Þ ¼ j!jhþ n=
ffiffiffiffi

N
p

; (4)

where 2h is the width of each bin of the histogram, N is the

number of measurements and n is the number of standard

deviations that one should consider depending on the

desired level of confidence [20]. This kind of measure-

ments can be performed also in optomechanical systems

where a particular quadrature of a mechanical oscillator

can be measured a posteriori by appropriately homodyning

a light mode coupled to it [21]. A different idea has

recently been proposed for directly pointwise measuring

the characteristic function of a mechanical mode coupled

to a two-level system [22]. In both cases the method that

we are going to describe can be easily applied. Restricted

measurements also arise in the context of bright beams

[23], where Mach-Zehnder interferometers have to replace

homodyning. In the study of states of macroscopic atomic

ensembles [24] similar issues arise.

Bounds to the nonclassicality from convex optimiza-

tion.—We assume that we estimate the values of the char-

acteristic function +ð *,jÞ ’ cj for a given set of points *,j,

j ¼ 1; . . . ; p, within a given error >j , 0 [20], so that

j+ð *,jÞ ! cjj 1 >j. Now pick a set of suitable test vectors

T ¼ ð,1; . . . ; ,mÞ, the differences ,j ! ,k of which at least

contain the data points *,1; . . . ; *,p. Based on this, we define

the following convex optimization problem as over +, x,

minimize x; (5)

such that

jReð+ð *,jÞÞ ! ReðcjÞj 1 >j; j ¼ 1; . . . ; p; (6)
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jImð+ð *,jÞÞ ! ImðcjÞj 1 >j; j ¼ 1; . . . ; p; (7)

Mð0Þð+; TÞ þ xm1 , 0; Mð1Þð+; TÞ , 0; (8)

where Mð0Þð+; TÞ and Mð1Þð+; TÞ are the Hermitian matri-

ces (3) associated with the 6 positivity, based on the test

points ,1; . . . ; ,m as being specified in Def. 2. The mini-

mization is in principle performed over all functions

+: R2n ! C such that +ð!,Þ ¼ +ð,Þ2, where +ð *,lÞ is

constrained by the data and Mð0=1Þð+; TÞ depend on the

test points. Since we take only a finite number of points of

+, yet, the above problem gives rise to a semidefinite

problem (SDP) [25]. This can be efficiently solved with

standard numerical algorithms. By means of the notion of

Lagrange duality, one readily gives analytical certifiable

bounds: Every solution for the dual problem will give a

proven lower bound to the primal problem [25], and hence

a lower bound to the measure of nonclassicality itself. The

entire procedure hence amounts to an arbitrarily tight

convex relaxation of the Bochner constraints. We can

now formulate the main result: Eq. (5) gives rise to a lower

bound for the nonclassicality: Given the data (and errors),

one can find good and robust bounds to the smallest non-

classicality that is consistent with the data.

Theorem 3: (Estimating nonclassicality).—The output x0

of Eq. (5) is a lower bound for the nonclassicality, #ð$Þ ,
x0. The proof proceeds by constructing a witness operator

F ¼ 1

m

Xm

k;l¼1

v2
kvlDð,k ! ,lÞ; (9)

where ,1; . . . ; ,m 2 R2n are the test vectors from

Bochner’s theorem used in the SDP and v is the normalized

eigenvector associated with the minimum eigenvalue of

Mð0Þð+0; TÞ, where +0 is the optimal solution for +. For a
given state $, this operator F has the following properties:

(i) F ¼ Fy, (ii) jtrðF!Þj 1 1 for all quantum states !.

(iii) trðF!Þ , 0 for all quantum states! 2 C. (4) If x0 , 0

is the optimal solution, then trðF$Þ 1 !x0. These proper-

ties will be proven to be valid in the Supplementary mate-

rial [19], involving some technicalities. They suggest that

F is actually a witness observable able to distinguish a

subset of nonclassical states from the convex set of classi-

cal states. Formally, from the variational definition of the

trace norm, we have the lower bound to be shown [26],

#ð$Þ ¼min
!2C

k$!!k1 ,min
!2C

trð!FÞ ! trðF$Þ , x0: (10)

An example: Schrödinger cat state.—As an example we

consider a quantum superposition of two coherent states,

so jc i 6 ðjFi þ j ! FiÞ with F ¼ 1:77. We assume to

measure only the probability distributions of position and

momentum [Fig. 1(a)]: P1ðqÞ ¼ jhqjc ij2 and P2ðpÞ ¼
jhpjc ij2, i.e., the data is collected from a mere pair of

canonical operators. This amount of information is of

course not sufficient for tomographically reconstructing

the state since it corresponds to just two orthogonal slices

of the characteristic function. In order to define the SDP we

consider a 25+ 25 square lattice centered at the origin of

the domain of the characteristic function, optimizing over

the values of + at the lattice points. Position and momen-

tum measurements define the constraints (6) and (7) for

only two slices of the lattice (assuming an error of

>j ¼ 10
!3 for each point). We generate 100 random test

vectors and we construct the associated 6-positivity con-

straints (8). The output of the SDP is x0 ’ 0:05> 0which is

a certified lower bound for the nonclassicality of the state.

Experimentally detecting nonclassicality.—Finally, to

certify the functioning of the idea in a quantum optical

context, we apply our method to experimental data. We

consider data from a heralded single-photon source based

on parametric down-conversion (cf. Ref. [8]). Here, an

optical parametric oscillator (OPO), pumped continuous-

wave and far below threshold, delivers the down-converted

photon pair at frequencies !8. The pair is separated using

an optical cavity; the transmitted photon !! is frequency

filtered by additional cavities before impinging an ava-

lanche photodiode (APD) giving the heralding event for

homodyne measurement of the reflected twin photon !þ.
On every event the homodyne current is sampled around

the heralding time and postprocessed into one quadrature

value using an appropriate mode function [27]. In total,

quadrature values from 180 000 events are accumulated

[Fig. 2(a)]. Data is phase randomized meaning that we

can use the same probability distribution for every phase

space direction, the phase being unavailable in the experi-

ment. Since our nonclassicality measure is convex, aver-

aging over phase space directions is an operation which

can only decrease the negativity of the state. This means

FIG. 1 (color online). (a) Position and momentum distributions

for an exact cat state. (b) Wigner function based on the SDP.

FIG. 2 (color online). (a) Raw measured quadrature distribu-

tion from the experiment. (b) Wigner function based on the

output of the SDP.
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that a lower bound to the nonclassicality of the phase

randomized state will be valid for the original state.

In order to apply our algorithm we use the measured data

to constrain all the points of the characteristic function on a

37+ 37 lattice. Error bars are estimated using Eq. (6) with

n ¼ 5 standard deviations. This means that the probability

that all the points of the lattice lie inside the error bars is

larger than 99.9%. The lower bound for the nonclassicality

coming out from the SDP (200 random test vectors) is x0 ’
0:0028, meaning that the Wigner function of the state

cannot be a positive probability distribution. The Wigner

function reconstructed from the optimal solution of the

SDP [Fig. 2(b)] is clearly negative even if we asked for

the most positive one consistent with measured data.

Extensions of this approach.—Needless to say, this ap-

proach can be extended in several ways. Indeed, the

method can readily be generalized to produce lower

bounds for entanglement measures [11] in the multimode

setting. Also, this idea can be applied to the situation when

not slices are measured, but points in phase space, such as

when using a detector-atom that is simultaneously coupled

to a cantilever [22]. It also constitutes an interesting per-

spective to apply the present ideas to certify deviations

from stabilizer states for spin systems (as those states

having a positive discrete Wigner function [28]).

Summary.—We have introduced a method to directly

measure the nonclassicality of quantum mechanical

modes, requiring less information than tomographic

knowledge, but at the same time in a certified fashion.

These ideas are further advocating the paradigm of ‘‘learn-

ing much from little’’—getting much certified information

from few measurements—complementing methods of wit-

nessing entanglement [11,12], ideas of compressed sensing

[29] or matrix-product based [30] approaches to quantum

state tomography, detector tomography [31], or the direct

estimation of Markovianity [32].
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