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A general method for the study of the entanglement evolution of graph states under the action of Pauli maps

was recently proposed in Cavalcanti et al. [Phys. Rev. Lett. 103, 030502 (2009)]. This method is based on

lower and upper bounds to the entanglement of the entire state as a function only of the state of a (typically)

considerably smaller subsystem undergoing an effective noise process related to the original map. This provides

a huge decrease in the size of the matrices involved in the calculation of entanglement in these systems. In the

present paper we elaborate on this method in detail and generalize it to other natural situations not described

by Pauli maps. Specifically, for Pauli maps we introduce an explicit formula for the characterization of the

resulting effective noise. Beyond Pauli maps, we show that the same ideas can be applied to the case of thermal

reservoirs at arbitrary temperature. In the latter case, we discuss how to optimize the bounds as a function of the

noise strength. We illustrate our ideas with explicit exemplary results for several different graphs and particular

decoherence processes. The limitations of the method are also discussed.
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I. INTRODUCTION

Graph states [1] constitute an important family of genuine

multiparticle-entangled states with several applications in

quantum information. The most popular example of these are

arguably the cluster states, which have been identified as a

crucial resource for universal one-way measurement-based

quantum computation [2,3]. Other members of this family

were also proven to be potential resources for interesting

tasks, as code words for quantum error correction [4], to

implement secure quantum communication [5], or to simulate

some aspects of the entanglement distribution of random

states [6]. Moreover, graph states encompass the celebrated

Greenberger-Horne-Zeilinger (GHZ) states [7], whose impor-

tance ranges from fundamental to applied issues. GHZ states

can—for large-dimensional systems—be considered as simple

models of the gedanken Schrödinger-cat states, are crucial for

quantum communication protocols [8], and find applications in

quantum metrology [9] and high-precision spectroscopy [10].

All these reasons explain the great deal of effort made both to

theoretically understand [1] the properties of, and to generate

and coherently manipulate, graph states in the laboratory [11].

For the same reasons, it is crucial to unravel the dynamics

of graph states in realistic scenarios, where the system is

unavoidably exposed to interactions with its environment

and/or experimental imperfections. Previous studies on the

robustness of graph-state entanglement in the presence of

decoherence showed that the disentanglement times (i.e., the

time for which the state becomes separable) increases with the

system size [12,13]. However, the disentanglement time on its

own is known not to provide in general a faithful figure ofmerit

of the entanglement robustness; although the disentanglement

time can grow with the number N of particles, the amount

of entanglement in a given time can decay exponentially with
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N [14]. The full dynamical evolution must then be monitored

to draw any conclusions on the entanglement robustness.

A big obstacle must be overcome in the study of the

entanglement robustness in general mixed states; the di-

rect quantification of entanglement involves optimizations

requiring computational resources that increase exponentially

with N . The problem thus becomes in practice intractable

even for relatively small system sizes, not to mention the

direct assessment of entanglement during the entire noisy

dynamics. All in all, some progress has been achieved in the

latter direction for some very particular cases: For arbitrarily

large linear-cluster states under collective dephasing, it is

possible to calculate the exact value of the geometric measure

of entanglement throughout the evolution [15]. In addition,

bounds to the relative entropy and the global robustness of

entanglement for two-colorable graph states [1] of any size

under local dephasing were obtained in Ref. [16].

In a conceptually different approach, a framework to obtain

families of lower and upper bounds to the entanglement evolu-

tion of graph—and graph-diagonal—states under decoherence

was introduced in Ref. [17]. The bounds are obtained via a cal-

culation that involves only the boundary subsystem, composed

of the qubits lying at the boundary of the multipartition under

scrutiny. This, very often, reduces considerably the size of

the matrices involved in the calculation of entanglement. No

optimization on the full system’s parameter space is required

throughout. Another remarkable feature of the method is

that it is not limited to a particular entanglement quantifier

but applies to all convex (bi-or multipartite) entanglement

measures that do not increase under local operations and

classical communication (LOCC). The latter are indeed two

rather natural and general requirements [18,19].

In the case of open-dynamic processes described by Pauli

maps, the lower and upper bounds coincide and the method

thus allows one to calculate the exact entanglement of the

noisy evolving state. Pauli maps encompass popular models

of (independent or collective) noise, as depolarization, phase
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flip, bit flip, and bit-phase flip errors, and are defined below.

Moreover, one of the varieties of lower bounds is of extremely

simple calculation and—despite less tight—depends only on

the connectivity of the graph and not on its total size. The latter

is a very advantageous property in situations where one wishes

to assess the resistance of entanglement with growing system

size. For example, the versatility of the formalism has very

recently been demonstrated in Ref. [20], where it was applied

to demonstrate the robustness of thermal bound entanglement

in macroscopic many-body systems of spin-1/2 particles.

In the present paper, we elaborate on the details of the

formalism introduced in [17]. For Pauli maps, we give an

explicit formula for the characterization of the effective noise

involved in the calculation of the bounds. Furthermore, we

extend the method to the case where each qubit is subject to

the action of independent thermal baths at arbitrary tempera-

ture. This is a crucial, realistic type of dynamic process that

is not described by Pauli maps. In all cases, we exhaustively

compare the different bounds with several concrete examples.

Finally, we discuss the main advantages and limitations of our

method in comparison with other approaches.

The article is organized as follows:

(1) Sec. II: Here we define the notation, introduce defini-

tions, and review basic concepts required in the following

sections. In particular, graph and graph-diagonal states are

defined in Sec. II A and the noise models considered are

presented in Sec. II B.

(2) Sec. III: A detailed description of the proposed frame-

work is given in the context of fully general noises. Families

of lower and upper bounds for the entanglement evolution

in the particular multipartition of interest in terms of the

entanglement of the boundary subsystem alone under an

effective noise are provided.

(3) Sec. IV: The developed machinery is applied to the

case of noises described by arbitrary Pauli maps and by

diffusion and dissipation with independent thermal reservoirs

at any temperature. Exact results for the entanglement decay

are obtained for Pauli maps, whereas optimized bounds are

provided in the other cases.

(4) Sec. V:We first discuss how themethod can be extended

to other initial states or decoherence processes. In particular,

how nontight lower bounds for the entanglement evolution of

any initial state subjected to any decoherence process can be

obtained. Then we comment on the limitations of the method.

(5) Sec. VI: We conclude the paper with a summary of the

results and their physical implications.

II. BASIC CONCEPTS

In this section, we define graph and graph-diagonal states,

and introduce the basics of open-system dynamics and the

particular noise models used later.

A. Graph and graph-diagonal states

Qubit graph states are multiqubit quantum states defined

from mathematical graphs through the rule described in the

following. First, a mathematical graph G(V,C) ≡ {V,C} is
defined by a set V of N vertices, or nodes, and a set C, of
connections, or edges, connecting each node i to some other j .

FIG. 1. (Color online) Mathematical graph associated with a

given physical graph state. An exemplary bipartition divides the

system into two subparts: the yellow and white regions. The edges

in black are the boundary-crossing edges X and the nodes (also in

black) connected by them are the boundary nodes Y . Together they
compose the boundary subgraph G(Y,X ). The remaining vertices,
painted in orange, constitute the nonboundary subsystem.

An example of such a graph is illustrated in Fig. 1. Each vertex

i ∈ V represents a qubit in the associated physical system,

and each edge {i,j} ∈ C represents a unitary maximally

entangling controlled-Z (CZ) gate, CZij = |0i0j 〉〈0i0j | +
|0i1j 〉〈0i1j | + |1i0j 〉〈1i0j | − |1i1j 〉〈1i1j |, between the qubits
i and j connected through the corresponding edge. The

N -qubit graph state |G(V,C)0〉 corresponding to graph G(V,C)

is then operationally defined as follows:

(i) Initialize every qubit i in the superposition |+i〉 =
1√
2
(|0i〉 + |1i〉), so that the joint state is in the product state

|g(V)0〉 ≡
⊗

i∈V |+i〉.
(ii) Then, for every connection {i,j} ∈ C apply the gate

CZij to |g(V)0〉. That is,
∣

∣G(V,C)0

〉

=
⊗

{i,j}∈C

CZij

∣

∣g(V)0

〉

. (1)

Graph state (1) can also be defined in an alternative,

nonoperational fashion. Associated to each node i ∈ V of a
given graph G(V,C) we define the operator,

Si ≡ Xi

⊗

j∈Ni

Zj , (2)

with Xi and Zj the usual Pauli operators acting, respectively,

on qubits i and j , and where Ni denotes the set of neighbors

of i, directly connected to it by an edge {i,j}. Operator (2)
possesses eigenvalues 1 and −1. It is the ith generator of the

stabilizer group and is often called for short the stabilizer

operator. All N stabilizer operators commute and share,

therefore, a common basis of eigenstates. Graph state |G(V,C)0〉
in turn has the peculiarity of being the unique common

eigenstate of eigenvalue +1 [1]. In other words,

Si

∣

∣G(V,C)0

〉

=
∣

∣G(V,C)0

〉

∀ i ∈ V.

The other 2N − 1 common eigenstates |G(V,C)ν〉 are in turn
related to (1) by a local unitary operation:

∣

∣G(V,C)ν

〉

=
⊗

i∈V

Zi
νi
∣

∣G(V,C)0

〉

≡ Zν
∣

∣G(V,C)0

〉

, (3)
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such that Si |G(V,C)ν〉 = (−1)νi |G(V,C)ν〉, where ν is a multi-

index representing the binary string ν ≡ ν1 · · · νN , with νi =
0 or 1 ∀ i ∈ V , and where the shorthand notation Zν ≡
⊗

i∈V Zi
νi has been introduced. Therefore, states (3) possess

all exactly the same entanglement properties and, togetherwith

|G(V,C)0〉, define a complete orthonormal basis ofH, called the
graph-state basis of H (corresponding to the graph G(V,C)).

Any state ρ diagonal in such a basis is called a graph-diagonal

state:

ρGD =
∑

ν

Pν

∣

∣G(V,C)ν

〉 〈

G(V,C)ν

∣

∣, (4)

where Pν is any probability distribution. Interestingly, for any

graph, any arbitrary N -qubit state can always be depolarized

by some separable map (defined below) into the form (4)

without changing its diagonal elements in the considered graph

basis [21].

Two simple identities following from definition (2) will be

crucial for our purposes. For every eigenstate |G(V,C)ν〉 of Si ,

with eigenvalues si ν = 1 or −1,

Xi

∣

∣G(V,C)ν

〉

= Si ⊗
⊗

j∈Ni

Zj

∣

∣G(V,C)ν

〉

= si ν

⊗

j∈Ni

Zj

∣

∣G(V,C)ν

〉

,

(5)

where definition (2) was used, and

Yi

∣

∣G(V,C)ν

〉

= (−i)Zi .Si ⊗
⊗

j∈Ni

Zj

∣

∣G(V,C)ν

〉

= si ν(−i)Zi ⊗
⊗

j∈Ni

Zj

∣

∣G(V,C)ν

〉

. (6)

So, when applied to any pure graph—or mixed graph-

diagonal—state, the following operator equivalences hold up

to a global phase:

Xi ↔
⊗

j∈Ni

Zj , (7a)

Yi ↔ Zi ⊗
⊗

j∈Ni

Zj . (7b)

B. Open-system dynamics

As we mentioned in Sec. I, our ultimate goal is to study

the behavior of graph-state entanglement in realistic dynamic

scenarios where the system evolves during a time interval t

according to a generic physical process, which can include

decoherence. This process can always be represented by a

completely positive trace-preserving map 3, that maps any

initial state ρ to the evolved one after a time t , ρt ≡ 3(ρ). In

turn, for every such 3, there always exists a maximum of D2

[D = dim(H)] operatorsKµ such that the map is expressed in

the Kraus form [22]:

ρt ≡ 3(ρ) =
∑

µ

KµρK†
µ. (8)

Operators Kµ are called the Kraus operators, and decompose

the identity operator 1 of H in the following manner:
∑

µ K†
µKµ = 1. Conversely, the Kraus representation encap-

sulates all possible physical dynamics of the system. That

is, any map expressible as in (8) is automatically completely

positive and trace preserving. For our case of interest (N -qubit

systems), index µ runs from 0 to (2N )
2 − 1 = 4N − 1. For

later convenience, we will represent it in base 4, decomposing

it as the following multi-index: µ ≡ µ1 · · · µN , with µi = 0,

1, 2, or 3 ∀ i ∈ V .
We call 3 a separable map with respect to some multi-

partition of the system if each and all of its Kraus operators

factorize as tensor products of local operators each one with

support on only one of the subparts. For example, if we split

the qubits associated with the graph shown in Fig. 1 into a set

Y of boundary qubits (in black) and its complement Y ≡ V/Y
of nonboundary qubits (in green), 3 is separable with respect

to this partitioning if Kµ ≡ KYµ ⊗ KYµ
, with KYµ and KYµ

operators acting nontrivially only on the Hilbert spaces of the

boundary and nonboundary qubits, respectively.

In turn, we call 3 an independent map with respect to

some multipartition of the system if it can be factorized as

the composition (tensor product) of individual maps acting

independently on each subpart. Otherwise, we say that 3 is

a collective map. Examples of fully independent maps are

those in which each qubit i is independently subject to its own

local noise channel Ei . By the term independent map without

explicit mention to any respective multipartition we will refer

throughout to fully independent maps. In this case, the global

map 3 factorizes completely:

3(ρ) = E1 ⊗ E2 ⊗ · · · ⊗ EN (ρ). (9)

It is important to notice that all independent maps are

necessarily separable but a general separable map does not

need to be factorable as in (9) and can therefore be both, either

individual or collective.

1. Pauli maps

A crucial family of fully separable maps is that of the Pauli

maps, for which every Kraus operator is proportional to a

product of individual Pauli and identity operators acting on

each qubit. That is, Kµ ≡
√

P(µ1,...µN ) σ1µ1 ⊗ · · · ⊗ σN µN
≡

√

Pµ σµ, with σi0 = 1i (the identity operator on qubit i),

σi1 = Xi , σi2 = Yi , and σi3 = Zi , and P(µ1,...µN ) ≡ Pµ any

probability distribution. Popular instances are the (collective or

independent) depolarization and dephasing (also called phase

damping, or phase-flip) maps, and the (individual) bit-flip and

bit-phase-flip channels [22]. For example, the independent

depolarizing (D) channel describes the situation in which

the qubit remains untouched with probability 1− p, or is

depolarized—meaning that it is taken to the maximally mixed

state (white noise)—with probability p. It is characterized

by the fully factorable probability Pµ = p1µ1 × · · · pN µN
,

with pi0 = 1− p and pi1 = pi2 = pi3 = p/3, ∀ i ∈ V . The
independent phase-damping (PD) channel in turn induces

the complete loss of quantum coherence with probability

p, but without any energy (population) exchange. It is also

given by a fully factorable probability with pi0 = 1− p/2,

pi1 = 0 = pi2, and pi3 = p/2, ∀ i ∈ V .
For later convenience, we finally recall that each

Pauli operator σiµi
can be written in the following way:

Ti (ui ,vi ) ≡ Z
vi

i .X
ui

i , with ui and vi = 0, or 1. Indeed, notice

that σi2vi+|vi+ui |2 = Ti (ui ,vi ) (up to an irrelevant phase factor

for ui = 1 = vi), where “| |2” stands for modulo 2. In
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this representation, called the chord representation [23],

the Kraus decomposition of the previously considered

general Pauli map has the following Kraus operators:

KC (U,V ) ≡
√

PC(u1,v1,...uN ,vN ) T1(u1,v1) ⊗ · · · ⊗ TN (uN ,vN ) ≡
√

PC(U,V ) T(U,V ), where U ≡ (u1, . . . uN ) and V ≡
(v1, . . . vN ). The probability PC(U,V ) ≡ PC(u1,v1,...uN ,vN )

in turn is related to the original Pµ by PC(u1,v1,...uN ,vN ) ≡
P(2v1+|v1+u1|2,...,2vN +|vN+uN |2)).

2. Independent thermal baths

An important example of a non-Pauli, independent map

is the generalized amplitude-damping channel (GAD) [22].

It represents energy diffusion and dissipation with a thermal

bath into which each qubit is individually immersed. Its Kraus

representation is

Kiµi=0 ≡
√

n + 1
2n + 1

(|0i〉〈0i | +
√

1− p|1i〉〈1i |), (10a)

Kiµi=1 ≡
√

n + 1
2n + 1

p|0i〉〈1i |, (10b)

Kiµi=2 ≡
√

n

2n + 1
(
√

1− p|0i〉〈0i | + |1i〉〈1i |), (10c)

and

Kiµi=3 ≡
√

n

2n + 1
p|1i〉〈0i |. (10d)

Here n is the average number of quanta in the thermal bath,

p ≡ p(t) ≡ 1− e− 1
2
γ (2n+1)t is the probability of the qubit

exchanging a quantum with the bath after a time t , and γ is the

zero-temperature dissipation rate. Channel GAD is actually

the extension to finite temperature of the purely dissipative

amplitude damping (AD) channel, which is obtained from

GAD in the zero-temperature limit n = 0. In the opposite

extreme, the purely diffusive case is obtained from GAD in

the composite limit n → ∞, γ → 0, and nγ = 0, where 0

is the diffusion constant. Note that in the purely diffusive

limit, channel GAD becomes a Pauli channel, with defining

individual probabilities pi0 = 1
2
(1− p/2+

√
1− p), pi1 =

p

4
= pi2, and pi3 = 1

2
(1− p/2−

√
1− p), ∀ i ∈ V .

Finally, the probability p in channels D, PD, and GAD

above can be interpreted as a convenient parametrization of

time, where p = 0 refers to the initial time 0 and p = 1 refers

to the asymptotic limit t → ∞.

III. EVOLUTION OF GRAPH-STATE ENTANGLEMENT

UNDER GENERIC NOISE

Asmentioned before, the direct calculation of the entangle-

ment in arbitrary mixed states is a task exponentially hard in

the system’s size [19]. In this section, we elaborate in detail a

formalism that dramatically simplifies this task for graph—or

graph-diagonal—states undergoing a noisy evolution in a fully

general context. Along the way, we also describe carefully

which requirements an arbitrary noisy map has to satisfy so

that the formalism can be applied.

A. The general idea

Consider a system initially in graph state (1) that evolves

during a time t according to the general map (8) toward the

evolved state,

ρt ≡ 3
(∣

∣G(V,C)0

〉)

=
∑

µ

Kµ

∣

∣G(V,C)0

〉 〈

G(V,C)0

∣

∣K†
µ. (11)

We would like to follow the entanglement E(ρt ) of ρt during

its entire evolution. Here, E is any convex entanglement

monotone [18,19] that quantifies the entanglement content

in some given multipartition of the system. An example of

such multipartition is displayed in Fig. 1, where the associated

graph is split into two subsets, painted, respectively, in yellow

and white in the figure. The edges that connect vertices

at different subsets are called the boundary-crossing edges

and are painted in black in the figure. We call the set of

all the boundary-crossing edges X ⊆ C, and its complement
X ≡ C/X the set of all non-boundary-crossing edges. All the

qubits associated with vertices connected by any edge in X
constitute the set Y ⊆ V of boundary qubits (or boundary

subsystem), and its complement Y ≡ V/Y is the nonboundary
qubit set. We refer to G(Y,X ) as the boundary subgraph.

We can use this classification and the operational defini-

tion (1) to write the initial graph state as

∣

∣G(V,C)0

〉

=
⊗

{i,j}∈X

CZij

∣

∣G(Y,X )0

〉

⊗
∣

∣g(Y)0

〉

, (12)

where |g(Y)0〉 ≡
⊗

i∈Y |+i〉. In other words, we explicitly fac-
tor all the CZ gates corresponding to non-boundary-crossing

edges out.

Consider now the application of some Kraus op-

erator Kµ of a general map on graph state (12):

Kµ

⊗

{i,j}∈X CZij |G(Y,X )0〉 ⊗ |g(Y)0〉. The latter can always be
written as

⊗

{i,j}∈X CZij K̃µ|G(Y,X )0〉 ⊗ |g(Y)0〉, with

K̃µ =
⊗

{i,j}∈X

CZij Kµ

⊗

{i ′,j ′}∈X

CZi ′j ′ , ∀ µ. (13)

Now, consider every map3 such that transformation rule (13)

yields, for each µ, modified Kraus operators of the form,

K̃µ = K̃Yγ ⊗ K̃Yω, (14)

where K̃Yγ and K̃Yω are normalized modified Kraus operators

acting nontrivially only on the boundary and nonbound-

ary qubits, respectively. In the last, γ = {µi, i ∈ Y} and
ω = {µi, i ∈ Y} are multi-indices labeling, respectively, the
alternatives for the boundary and nonboundary subsystems,

being µi in turn the individual base-4 indices introduced after

Eq. (8). The modified map 3̃, composed of Kraus operators

K̃µ is then clearly biseparable with respect to the bipartition

“boundary/nonboundary”. For all such maps the calculation of

E(ρt ) can be drastically simplified, as we see in what follows.

In these cases, the evolved state (11) can be written as

ρt ≡ 3
(∣

∣G(V,C)0

〉)

=
⊗

{i,j}∈X

CZij ρ̃t

⊗

{k,l}∈X

CZkl, (15)
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with

ρ̃t = 3̃
(∣

∣G(Y,X )0

〉

⊗
∣

∣g(Y)0

〉)

=
∑

µ

K̃Yγ (µ)

∣

∣G(Y,X )0

〉 〈

G(Y,X )0

∣

∣K̃
†
Yγ (µ)

⊗ K̃Yω(µ)

∣

∣g(Y)0

〉 〈

g(Y)0

∣

∣K̃
†

Yω(µ)

=
∑

ω

K̃Yω

∣

∣g(Y)0

〉 〈

g(Y)0

∣

∣K̃
†

Yω

⊗
∑

γ

K̃Y(γ |ω)
∣

∣G(Y,X )0

〉 〈

G(Y,X )0

∣

∣K̃
†
Y(γ |ω), (16)

where K̃Y(γ |ω) is the γ th modified Kraus operator on the

boundary subsystem given that K̃Yω has been applied to the

nonboundary one. Recall that both γ ≡ γ (µ) and ω ≡ ω(µ)

come from the same single multi-index µ and are therefore

in general not independent on one another. In the second

equality of (16) we have chosen to treat ω as an independent

variable for the summation and make γ explicitly depend on

ω. This can always be done and will be convenient for our

purposes.

The crucial observation now is that the CZ operators

explicitly factored out in the evolved state (15) correspond to

non-boundary-crossing edges. Thus, they act as local unitary

operations with respect to the multipartition of interest. For

this reason, and since local unitary operations do not change

the entanglement content of any state, the equivalence,

E(ρt ) = E(ρ̃t ), (17)

holds.

In the forthcoming subsections we see how, by exploiting

this equivalence in different noise scenarios, the computational

effort required for a reliable estimation (and in some cases, an

exact calculation) of E(ρt ) can be considerably reduced. The

main idea behind this reduction lies on the fact that, whereas in

general state (11) the entanglement can be distributed among

all particles in the graph, in state (16) the boundary and

nonboundary subsystems are explicitly in a separable state. All

the entanglement in the multipartition of interest is therefore

localized exclusively in the boundary subgraph. The situation

is graphically represented in Fig. 2, where the same graph

as in Fig. 1 is plotted but with all its non-boundary-crossing

edges erased.

FIG. 2. (Color online) Same graph as in Fig. 1 but where all

non-boundary-crossing edges have been erased, representing the fact

that the boundary and nonboundary subsystems are fully unentangled.

The entanglement in the whole system is obtained via a calculation

involving only the smaller boundary subsystem.

More precisely, the general approach consists of obtaining

lower and upper bounds on E(ρt ) by bounding the entangle-

ment of state (16) from above and below as explained in what

follows.

1. Lower bounds to the entanglement evolution

The property of LOCC monotonicity of E, which means

that the average entanglement cannot grow during an LOCC

process [18], allows us to derive lower bounds on E(ρ̃t ). The

ones we consider can be obtained by the following generic

procedure:

(i) After bringing the studied state into the form (16),

apply some local general measurement M = {Mω}, with
measurement elements Mω, on the non-boundary subsystem

Y;
(ii) for each measurement outcome ω trace out the mea-

sured nonboundary subsystem;

(iii) and, finally, calculate the mean entanglement in the

resulting state of the boundary subsystem Y , averaged over
all outcomes ω.

Since this procedure constitutes an LOCC with respect to the

multipartition under scrutiny, the latter average entanglement

can only be smaller than, or equal to, that of the initial state,

that is,

E(ρt ) = E(ρ̃t ) >
∑

ω

PωE

(

∑

ω′

1

Pω

〈

g(Y)0

∣

∣K̃
†

Yω′M
†
ω.MωK̃Yω′

∣

∣g(Y)0

〉

∑

γ

K̃Y(γ |ω′)

∣

∣G(Y,X )0

〉 〈

G(Y,X )0

∣

∣K̃
†
Y(γ |ω′)

)

, (18)

with Pω ≡
∑

ω′〈g(Y)0|K̃
†

Yω′M
†
ω.MωK̃Yω′ |g(Y)0〉 being the

probability of outcome ω.

Notice that if the states {K̃Yω′ |g(Y)0〉} of the nonboundary
subsystem happen to be orthogonal, then there exists

an optimal measurement M = {Mω ≡
K̃Yω |g(Y)0〉〈g(Y)0|K̃

†

Yω

〈g(Y)0|K̃
†

Yω
K̃Yω |g(Y)0〉

}
that can distinguish them unambiguously, so

that 〈g(Y)0|K̃
†

Yω′M
†
ω.MωK̃Yω′ |g(Y)0〉 = δω,ω′ × 〈g(Y)0|K̃

†

Yω

K̃Yω|g(Y)0〉 and Pω = 〈g(Y)0|K̃
†

Yω
K̃Yω|g(Y)0〉. In these cases

an optimal lower bound is achieved as

E(ρt ) >
∑

ω

PωE

(

∑

γ

K̃Y(γ |ω)
∣

∣G(Y,X )0

〉 〈

G(Y,X )0

∣

∣K̃
†
Y(γ |ω)

)

.

(19)
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Full distinguishability of the states in the nonboundary sub-

system allows to reduce the mixing in the remaining boundary

subsystem. In other words, the measurement outcomeωworks

as a perfect flag that marks which subensemble of states of the

boundary subsystem, from all those present in mixture (16),

corresponds indeed to the obtained outcome.

In the opposite extreme, when states {K̃Yω′ |g(Y)0〉} are
all equal, no flagging information can be obtained via any

measurement. In this case, the resulting bound is always

equal to that obtained had we not made any measurement

at all, but just directly taken the partial trace over Y
from (16):

E(ρt ) > E

(

1

2|Y|

∑

ω,γ

K̃Y(γ |ω)
∣

∣G(Y,X )0

〉 〈

G(Y,X )0

∣

∣K̃
†
Y(γ |ω)

)

,

(20)

where |Y| stands for the number of nonboundary qubits and
full mixing over variable ω takes place now.

Henceforth, we refer to lower bound (20) as the lowest

lower bound (LLB). As its name suggests, its tightness is far

from the optimal one given by (19). However, as we will see

in the forthcoming subsections, due to the partial tracing, it

typically does not depend on the total system’s size but just on

that of the boundary subsystem.

This constitutes an appealing, useful property, for it allows

one to draw generic conclusions about the robustness of

entanglement in certain partitions of graph states, irrespective

of their number of constituent particles (see examples in

Sec. IVB).

2. Upper bounds to the entanglement evolution

On the other hand, we consider upper-bounds on E(ρt )

based on the property of convexity of E, which essentially

means that the entanglement of the convex sum is lower than,

or equal to, the convex sum of the entanglements [18,19].

From (16), the latter implies that

E(ρt ) = E(ρ̃t ) 6
∑

ω

PωE

(

1

Pω

K̃Yω

∣

∣g(Y)0

〉 〈

g(Y)0

∣

∣K̃
†

Yω

⊗
∑

γ

K̃Y(γ |ω)
∣

∣G(Y,X )0

〉 〈

G(Y,X )0

∣

∣K̃
†
Y(γ |ω)

)

, (21)

where, once again, Pω = 〈g(Y)0|K̃
†

Yω
K̃Yω|g(Y)0〉. In each term

of the last summation the boundary and nonboundary subsys-

tems inside the brackets are in a product state. Therefore, as for

what the multipartition of interest concerns, the nonboundary

subsystem works as a locally added ancilla (in a state
1

Pω
K̃Yω|g(Y)0〉〈g(Y)0|K̃

†

Yω
) and consequently does not have any

influence on the amount of entanglement. This leads to the

generic upper bound,

E(ρt ) 6
∑

ω

PωE

(

∑

γ

K̃Y(γ |ω)
∣

∣G(Y,X )0

〉 〈

G(Y,X )0

∣

∣K̃
†
Y(γ |ω)

)

.

(22)

3. Exact entanglement

Notice that the upper bound (22) and the optimal lower

bound (19) coincide. This means that, in the previously

mentioned case when states {K̃Yω|g(Y)0〉} are orthogonal, these
coincident bounds yield actually the exact value of E(ρt ):

E(ρt ) =
∑

ω

PωE

(

∑

γ

K̃Y(γ |ω)
∣

∣G(Y,X )0

〉 〈

G(Y,X )0

∣

∣K̃
†
Y(γ |ω)

)

.

(23)

Expression (23) is still not an analytic closed formula

for the exact entanglement of ρt , but reduces its calculation

to that of the average entanglement over an ensemble of

states of the boundary subsystem alone. More in detail, a

brute-force calculation of E(ρt ) would require, in general,

a convex optimization over the entire 22N − 1 real-parameter
space. Through Eq. (23), in turn, such a calculation is reduced

to that of the average entanglement over a sample of 2|Y|

states (one for each ω) of |Y| qubits, being |Y| the number of
boundary qubits. The latter involves at most 2|Y| independent
optimizations over a 22|Y|−1 real-parameter space. This,
from the point of view of computational memory required,

accounts for a reduction of resources by a factor of O(22|Y|).
Alternatively, when computational memory is not a major

restriction, for example, if large classical-computer clusters

are at hand, one can take advantage of the fact that the |Y|
required optimizations in (23) are independent and therefore

the calculation comes readily perfectly suited for parallel

computing.

In the cases where states {K̃Yω|g(Y)0〉} are not orthogonal
and the upper and lower bounds do not coincide, expres-

sions (22) and (18) still yield highly nontrivial upper and lower

bounds, respectively, as we discuss in Sec. IVB.

Finally, it is important to stress that all the bounds

derived here are general in the sense that they hold for any

function fulfilling the fundamental properties of convexity

and monotonicity under LOCC processes. This class includes

genuinemultipartite entanglement measures, as well as several

quantities designed to quantify the usefulness of quantum

states in the fulfillment of some given task for quantum-

information processing or communication [19].

IV. GRAPH STATES UNDER PAULI MAPS

OR THERMAL RESERVOIRS

In the present section we apply the ideas of the previous

section to some important concrete examples of noise pro-

cesses. This shows how the method is helpful in the entan-

glement calculation for systems in natural, dynamic physical

scenarios. We first discuss the case of Pauli maps and then the

generalized amplitude damping channel (thermal reservoir).

Explicit calculations for noisy graph states composed of up to

14 qubits are presented as examples.

A. Pauli maps on graph states

Pauli maps defined in Sec. II B provide the most important

and general subfamily of noise types for which expression (23)
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for the exact entanglement of the evolved state applies. In

this case, every Xi or Yi Pauli matrix in the map’s Kraus

operators is systematically substituted by products of Zi and

1i according to rules (7). The resulting map 3̃ defined in this

way automatically commutes with any CZ gate and is fully

separable, so that condition (14) is trivially satisfied. Since for

every qubit in the system four orthogonal single qubit operators

are mapped into products of just two, several different Kraus

operators of the original map contribute to the same Kraus

operator of the modified one. This allows us to simplify the

notation going from indices µi , which run over four possible

values each, to modified indices µ̃i having only two different

alternatives. In fact, the original operatorsKµ give rise to only

2N modified ones of the form,

K̃µ̃ =
√

P̃µ̃Z
µ̃1
1 ⊗ Z

µ̃2
2 ⊗ · · · ⊗ Z

µ̃N

N ≡
√

P̃µ̃Zµ̃, (24)

where multi-index µ̃ stands for the binary string µ̃ =
µ̃1 · · · µ̃N , with µi = 0 or 1, ∀i ∈ V . Probability P̃µ̃ is given

simply by the summation of all Pµ in the original Pauli map

over all the different events µ for which σµ yields—via rules

(7)—the same modified operator Zµ̃ in (24).

To compute the latter modified probability we move to the

chord notation [23],mentioned at the end of Sec. II B 1. Indeed,

under transformation (7), we have that Ti (ui ,vi ) → Z
vi 1

i ⊗
⊗

j∈Ni
Z

ui

j , so that T(U,V ) ≡ T1(u1,v1) ⊗ · · · TN (uN ,vN ) →

Z
v1+

∑

j∈N1
uj

1 ⊗ · · · ⊗ Z
vN +

∑

j∈NN
uj

N . The latter coincides with

Zµ̃ every time µ̃i = |vi +
∑

j∈Ni
uj |2, ∀ i ∈ V . Thus, in this

representation, the modified probability P̃Cµ̃ is obtained from

the defining probability PC(U,V ) in the original map by the

explicit formula,

P̃Cµ̃ ≡
∑

U

PC(u1,|µ̃1−
∑

j∈N1
uj |2,...,uN ,|µ̃1−

∑

j∈NN
uj |2). (25)

The modified Kraus operators (24) in turn are fully

separable; thus, as said, they trivially satisfy factorization

condition (14). We can express them as K̃µ̃ = K̃Y γ̃ ⊗ K̃Yω̃,

with

K̃Y γ̃ ≡ K̃Y(γ̃ |ω̃) =
√

P̃(γ̃ |ω̃)Z
γ̃ and K̃Yω̃ =

√

P̃ω̃Zω̃. (26)

The new multi-indices are γ̃ = {µ̃i, i ∈ Y} and ω̃ = {µ̃i, i ∈
Y}, and the corresponding probabilities satisfy P̃(γ̃ |ω̃)P̃ω̃ ≡ P̃µ̃.

The states {K̃Yω̃′ |g(Y)0〉 =
√

P̃ω̃′Zω̃′ |+i〉 =
√

P̃ω̃′
⊗

i∈Y
1√
2
(|0i〉 + (−1)µ̃i |1i〉) ≡

√

P̃ω̃′ |g(Y)ω̃′〉} are trivially checked to
be all orthogonal. Thus, they provide perfect flags that mark

each subensemble in the boundary subsystem’s ensemble.

The perfect flags are revealed by local measurements on the

nonboundary qubits in the product basis {|g(Y)ω̃〉}. Therefore,
for Pauli maps the exact entanglementE(ρt ) can be calculated

by expression (23), which, in terms of binary indices γ̃ and ω̃,

and using graph-state relationship (3), can be finally expressed

as

E(ρt ) =
∑

ω̃

P̃ω̃E





∑

γ̃

P̃(γ̃ |ω̃)
∣

∣G(Y,X )γ̃

〉 〈

G(Y,X )γ̃

∣

∣



 , (27)

In Fig. 3 we have plotted the bipartite entanglement of the

exemplary bipartition of one qubit versus the rest shown in its

14 qubits

12 qubits

p

N
e
g
a
ti
v
it
y

FIG. 3. (Color online) Negativity versus p for 14-qubit (green

triangles) and 12-qubit (pink solid curve) cluster states undergoing

independent depolarizing noise, and for the bipartition shown in inset.

Parameter p can be thought as a parametrization of time (see text).

inset for 14- and 12-qubit graph states evolving under individ-

ual depolarization. Thismap, as said before, is characterized by

the one-qubit Kraus operators
√
1− p1,

√
p/3X,

√
p/3Y , and√

p/3Z. The parameterp (0 6 p 6 1) refers to the probability

that depolarization has occurred: for p = 0 the state is left

untouched and for p = 1 it is completely depolarized. Once

more, p can be also set as a parametrization of time: p = 0

referring to the initial time (when nothing has occurred) and

p = 1 referring to the asymptotic time t → ∞ (when the

system reaches its final steady state).

As the quantifier of entanglement, we choose the nega-

tivity [24], defined as twice the absolute value of the sum

of the negative eigenvalues of the density matrix partially

transposed with respect to the considered bipartition. It is a

convex entanglementmonotone that in general fails to quantify

entanglement of some entangled states—those ones with

positive partial transposition (PPT)—in dimensions higher

than six [19]. However, since its calculation does not require

optimizations but just matrix diagonalizations, it is very

well-suited for a simple illustration of our ideas.

We emphasize that, for the 14-qubit graph used in Fig. 3,

a brute-force calculation would involve diagonalizing a 214 ×
214 = 16 384× 16 384 density matrix for each value of p,

whereas with the assistance of expression (27) E(ρp) is

calculated via diagonalization of at most 211 23 × 23 = 8× 8
dimensional matrices only.

B. Independent thermal reservoirs on graph states

In the case of Pauli maps the entanglement lower and upper

bounds coincide, and deliver the exact entanglement. However,

this is not the case for general, non-Pauli, noise channels. The

upper bound is given, as usual, by convexity. The lower bounds

must be optimized by appropriately choosing the LOCC

operations. Here, we investigate and optimize measurement

strategies for channel GAD, defined in Sec. II B 2.

Observe that the Kraus operators defined in Eq. (10)

satisfy the following: Ki0 and Ki2 commute with any CZ

operator, while for every j ∈ V different from i it holds
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p

N
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g
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y

FIG. 4. (Color online) Negativity versus p for a four-qubit linear

cluster subjected to the amplitude damping channel and for the

partition displayed in the inset. Solid (upper) black curve, exact

entanglement; solid (lower) blue curve, lowest lower bound LLB

(obtained by tracing out the flags); dashed-dotted blue curve, upper

bound (obtained by convexity); dotted red curve, LB(0) (obtained by

measuring the flags in the Z basis); dashed brown curve, LB(π/4)

(obtained by measuring the flags in the X basis).

that (Ki1 ⊗ 1j ) · CZij = CZij · (Ki1 ⊗ Zj ) and (Ki3 ⊗ 1j ) ·
CZij = CZij · (Ki3 ⊗ Zj ). Based on this, one can perform the

factorization in equation (13) and apply this way the formalism

described in Sec. III A.

In what follows we focus on two main limits of channel

GADdiscussed in Sec. II B 2: the purely dissipative limitn = 0

(amplitude damping), and the purely diffusive limit n → ∞,
γ → 0, and nγ = 0.

1. Graph states under zero-temperature dissipation

We consider a four-qubit linear (one-dimensional) cluster

state subjected to the AD map and study the decay of

entanglement in the partition consisting of the first qubit versus

the rest shown in the inset of Fig. 4. Along with the exact

calculation of entanglement via brute-force diagonalization

of the partially transposed matrices, the lowest lower bound

LLB (20), obtained by tracing out the flags, and the upper

bound (22), obtained from convexity, are plotted. In addition,

the tightness of the lower bounds (18) obtained by the

flag measurements can be scanned as a function of the

measurement bases.

Based on observations about the behavior of the system

under the ADmap we can guess good measurement strategies.

For example, examination of the initial state reveals that at

p = 0 each of the nonboundary qubits is in one of the states of

the basis {|+〉,|−〉}; whereas at p = 1, in one of the states of

{|0〉,|1〉}. We call the lower bound obtained from (18) through
measurements in the basis {|+〉,|−〉} LB(π/4), and the one

obtained from (18) through measurements in {|0〉,|1〉} LB(0).
The latter bounds are the two additional curves plotted in Fig. 4.

We observe that LB(0) provides only a slight improvement

over the LLB, whereas LB(π/4) appears to give a significant

one. This raises the obvious question of how to optimize the

choice of measurement basis at each instant p in the evolution.

p = 0.1

p = 0.3

p = 0.5

p=0.01

θ

N
e
g
a
ti
v
it
y

FIG. 5. (Color online) Lower bound LB(θ ) to the negativity as

a function of the angle θ in the measurement basis, for the same

situation as in Fig. 4, and for fixed values of p. Each value p =
0.01,0.1,0.3,0.5 has two curves associated with it. The horizontal

(gray) straight line represents the exact entanglement at each p, while

the blue (black) curve represents the bound LB(θ ) at this p. The red

line (vertical) corresponds to θ = π

4
(i.e., measurements in the basis

{|+〉,|−〉}).

As an illustrationwe consider lower bounds LB(θ ) obtained

from (18) through orthogonal measurements composed of pro-

jectors |θ+〉 = cos θ |0〉 + sin θ |1〉 and |θ−〉 = − sin θ |0〉 +
cos θ |1〉, and look for the angle θ that gives us approximately

the largest value of LB(θ ). This is certainly not themost general

measurement scenario onemay consider, but it gives one a hint

on how to increase the tightness of the bounds.

Figures 5 and 6 illustrate this idea. At fixed values of p, we

have varied angle θ in the range [0,π/2]. The entanglement

given by LB(θ ) for each value of θ is compared with the

exact entanglement at the given p. In physical terms, we are

taking snapshots of the evolution of the system’s entanglement

at discrete time instants. The value of θ at each instant p

that maximizes LB(θ ) represents the optimal measurement

p = 0.9

θ

N
e
g
a
ti
v
it
y

FIG. 6. (Color online) Same as Fig. 5 for p = 0.9.
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basis at that particular instant. As is clearly seen in Fig. 5,

for small values of p angles around θ = π
4
give the closest

approximations to the exact entanglement, in consistence

with the significant improvement of LB(π/4) over the LLB

observed in Fig. 4. For large values of p though, the best

approximations tend to be given by the angles away from

θ = π
4
, as can be observed in Fig. 6. It must still be kept

in mind that none of these closest approximations equals the

exact entanglement of the state.

2. Graph states under infinite-temperature diffusion

Wenowconsider the purely diffusive case of theGADchan-

nel, where each qubit is in contact with an independent bath

of infinite temperature. In Fig. 7 we display the entanglement

evolution in a similar way as in Fig. 4. Since in the purely

diffusive limit channel GAD becomes a Pauli map, as was

mentioned in the end of Sec. II B 2, bound LB(π/4) yields the

exact entanglement. LB(0) on the other hand coincides with

the lowest lower bound LLB. The fact that in this case LB(θ )

reaches the exact entanglement at θ = π
4
can also be seen in a

clearer way in Fig. 8.

In Fig. 7 the upper bound (22) is plotted aswell. Since in this

case the channel is a Pauli channel, one would expect the upper

bound to coincide with the exact entanglement as well. The

fact that this does not occur is because, even though the noise

itself is describable as a Pauli map, the plotted upper bound

has been calculated using the original Kraus decomposition of

Eq. (10), which is not in a Pauli-map form. For every given

particular Kraus decomposition of a superoperator, the naive

application of convexity always yields UB through Eq. (22),

but this needs not the tightest, for the Kraus decomposition of a

superoperator is in general not unique. This observation leads

to a whole family of upper bounds for a given map. In the same

p

N
e
g
a
ti
v
it
y

FIG. 7. (Color online) Negativity versus p for a four-qubit linear

cluster for the bipartition shown in the inset, subjected to the

generalized amplitude damping channel in the diffusive limitn → ∞.
The central curve corresponds to both the exact entanglement (solid

black) and LB(π/4) (dashed brown), which coincide exactly. The

lower curve corresponds to both LBB (solid blue) and LB(0) (dotted

red), which also coincide exactly. The upper curve is the upper

bound (22) (dot-dashed blue).

p = 0.1

p = 0.3

p = 0.5

p=0.01

N
e
g
a
ti
v
it
y

θ

FIG. 8. (Color online) Lower bound LB(θ ) to the negativity

as a function of the angle θ in the measurement basis, for the

same situation as in Fig. 7, and for fixed values of p. Each value

p = 0.01,0.1,0.3,0.5 has two curves associated with it. Again, the

horizontal (gray) straight line represents the exact entanglement at

each p, while the blue (black) curve represents the bounds LB(θ ) at

thisp. The red line (vertical) corresponds to θ = π

4
(i.e., measurement

in the basis {|+〉,|−〉}).

spirit as with the lower bounds, one could in principle optimize

the obtained UBs over all possible Kraus representations of the

map.

V. EXTENSIONS AND LIMITATIONS

The framework developed here is not restricted to graph

states. The crucial ingredient in our formalism is to factor

out all the entangling operations that act as local unitary

transformations with respect to the considered partition, and to

redefine the Kraus operators acting on the state, reducing the

entanglement evaluation problem to the boundary subsystem

alone. Given an entangled state and a prescription for its

construction in terms of entangling operations, useful bounds

and exact expressions for the entanglement can be readily

obtained. As an example, a GHZ-like state |ψ〉 = α|0〉⊗N +
β|1〉⊗N can be operationally constructed by the sequential

application of the maximally entangling operation controlled-

NOT (CNOT)ij = |0i0j 〉〈0i0j | + |0i1j 〉〈0i1j | + |1i0j 〉〈1i1j | +
|1i1j 〉〈1i0j | to the product state (α|0〉 + β|1〉)⊗ |0〉 ⊗ · · · ⊗
|0〉 such that |ψ〉 =

⊗N−1
i=1 CNOTi,i+1(α|0〉 + β|1〉)⊗ |0〉 ⊗

· · · ⊗ |0〉. Using our techniques and the permutation symmetry
of the state it can be seen that, for GHZ-like states undergoing

the previously discussed noise processes, the entanglement

evaluation in any bipartition can be reduced to that of a two-

qubit system. It is also important tomention that the techniques

presented here can also be straightforwardly extended to

higher-dimensional graph states [25].

In addition, it is important to mention that all bounds

developed so far can in fact also be exploited to follow the

entanglement evolution when the system’s initial state is a

mixed graph-diagonal state. This is simply due to the fact that
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any graph-diagonal state as (4) can be thought of as a Pauli

map 3GD acting on a pure graph state:

ρGD =
∑

ν

Pν

∣

∣G(V,C)ν

〉 〈

G(V,C)ν

∣

∣

=
∑

ν

PνZ
ν
∣

∣G(V,C)0

〉 〈

G(V,C)0

∣

∣Zν = 3GD

(∣

∣G(V,C)0

〉)

.

(28)

Thus, the entanglement at any time t in a system initially in

a mixed graph-diagonal state ρGD, and evolving under some

map 3, is equivalent to that of an initial pure graph state

|G(V,C)0〉 whose evolution is ruled by the composed map 3 ◦
3GD, where 3GD is defined in (28). When 3 is itself a Pauli

map, then3 ◦ 3GD is also a Pauli map and the expression (27)

for the exact entanglement can be applied. For the cases where

3 is not a Pauli map but the relations (13) are satisfied by its

Kraus operators, the relations (13) will also be satisfied by the

composed map3 ◦ 3GD, so that all other bounds derived here

also hold.

Furthermore, as briefly mentioned before, any arbitrary

state can be depolarized by some separable map toward a

graph-diagonal state without changing the diagonal elements

in the considered graph basis [21]. The latter, since the entan-

glement of almost all states cannot increase under separable

maps [26], implies that all the lower bounds presented here

also provide lower bounds to the decay of the entanglement

that, though in general far from tight, apply to almost any

arbitrary initial state subject to any decoherence process.

The gain in computational effort provided by themachinery

presented here diminishes with the ratio between the number

of particles in the boundary subsystem and the total number

of particles. For example, for multipartitions such that the

boundary system is the total system itself, or for entanglement

quantifiers that do not refer to any multipartition at all,

our method yields no gain. An example of the latter are

the entanglement measures that treat all parties in a system

indistinguishably, some of which, as was mentioned in Sec. I,

have been studied in Refs. [15,16]. These methods naturally

complement with ours to offer a rather general and versatile

toolbox for the study of the open-system dynamics of graph-

state entanglement.

VI. CONCLUSIONS

We have studied in detail a general method for computing

the entanglement of graph and graph-diagonal states undergo-

ing decoherence, introduced in Ref. [17]. This method allows

one to drastically reduce the effort to compute the entangle-

ment evolution of graph states in several physical scenarios.

We have given an explicit formula for the construction of the

effective noise involved in the calculation for Pauli maps and

extended the formalism to the case of independent baths at

arbitrary temperature. Furthermore, we have elaborated the

formalism to construct nontrivial lower and upper bounds to

the entanglement decay where exact results cannot be obtained

from the formalism itself.

Finally, we would like to add that the necessary require-

ments on the noise channels for the method to apply do not

prevent us from obtaining general results for a wide variety of

realistic decoherence processes. Furthermore, the conditions

required on the entanglement measures are satisfied by most

quantifiers.
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