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We establish a link between unitary relaxation dynamics after a quench in closed many-body systems

and the entanglement in the energy eigenbasis. We find that even if reduced states equilibrate, they can

have memory on the initial conditions even in certain models that are far from integrable. We show that in

such situations the equilibrium states are still described by a maximum entropy or generalized Gibbs

ensemble, regardless of whether a model is integrable or not, thereby contributing to a recent debate. In

addition, we discuss individual aspects of the thermalization process, comment on the role of Anderson

localization, and collect and compare different notions of integrability.
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The question of how quantum many-body systems in

nonequilibrium eventually equilibrate and assume proper-

ties resembling the ones familiar from statistical mechan-

ics has—quite unsurprisingly—a very long tradition [1].

In closed systems not all observables can equilibrate.

However, it is generally expected that in sufficiently

complicated quantum many-body systems at least some

physically relevant quantities should seemingly relax to

equilibrium values. Recently this old question has received

an enormous amount of attention and there have been

significant new insights [2–18].

This renewed attention is partly driven by new mathe-

matical methods becoming available, partly by novel nu-

merical techniques, and in part by experiments that make it

possible to probe coherent nonequilibrium dynamics under

the controlled conditions offered by cold atoms in optical

lattices [19]. Theoretically, the question of how quantum

many-body systems relax locally has been investigated in

the light of the ‘‘eigenstate thermalization hypothesis’’

(ETH) [2,3], quantum central limit theorems [4],

Anderson localization [7], dynamical instances of concen-

tration of measure arguments or ideas of relaxation via

dephasing [8–13,16], and numerically using time-

dependent density-matrix renormalization group [20].

Despite this enormous effort, major questions remain

open and the existing results do not yet draw a coherent

picture. What seems to have become consensus, however,

is that the following expectation holds true: Nonintegrable

systems thermalize.

In this Letter we show that generally this is not quite

true. We do so by establishing a link between the entangle-

ment in the eigenbasis of a quantum many-body system

with what could be called the thermalization potential of

the system. We will investigate situations in which systems

equilibrate, in the sense that all local observables will be

close to some equilibrium value at most times, but those

values turn out to depend on the details of the initial state.

This general rigorous statement is exemplified numerically

by studying a small natural nonintegrable XYZ-type spin

chain model. In previous approaches (e.g., in Ref. [21]),

similar complementing observations have been made by

simulating the model’s time evolution explicitly. However,

such simulations can only trace the system’s behavior for a

finite amount of time. Our analytic results have applica-

tions far beyond this particular model: they yield general

conditions for the absence of thermalization. This gives a

natural counterpart of the ETH, and it relates the thermal-

ization of isolated quantum systems to the presence of

entanglement in the energy eigenbasis.

Setup and notation.—Whenever using terms and con-

cepts borrowed from classical statistical mechanics, such

as ergodicity, equilibration, thermalization, initial state

independence, and integrability, we aim at being careful

and precise. We work in the pure state quantum statistical

mechanics model with a system and bath setup with a

global pure state and unitary time evolution [4,8–12]. We

are mostly interested in the case where the full system is

composed of many interacting small systems and the sub-

system corresponds to a small subset of sites and the bath is

simply the remainder. In such systems the individual sub-

systems act as baths for each other and the collective

dynamics can lead to self-thermalization of the whole

system. To be specific, we will consider arbitrary quantum

systems equipped with a Hilbert space H of finite dimen-

sion d that can be divided into at least two parts, i.e.,H ¼
H S #H B, which we will call the subsystem S and the

bath B, and which are described by Hilbert spaces of

dimensions dS=B ¼ dimðH S=BÞ. We assume that at every

time t the joint system is in a pure state c t ¼ jc tihc tj,
evolving unitarily. The reduced states on subsystem and

bath are denoted using superscript letters, such as c S ¼
TrB½c *. We denote the Hamiltonian of the full system byH
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and its eigenvectors and eigenvalues by jEki and Ek, k ¼
1; . . . ; d (regardless of degeneracies).

Thermalization.—Thermalization is a complicated

process. For it to happen a system must exhibit certain

properties, each of which captures a specific aspect of

thermalization [9,11].

(1) Equilibration: The tendency to evolve towards equi-

librium is a key assumption in classical statistical physics

and part of the second law of thermodynamics. In contrast

to that, in the framework of pure state quantum statistical

mechanics, equilibration for almost all times can instead be

proven to be a consequence of unitary time evolution [9].

(2) Subsystem initial state independence: The equilib-

rium state of a small subsystem should be independent of

the initial state of that subsystem. This aspect of thermal-

ization will be the main subject of the present work.

(3) Diagonal form of the subsystem equilibrium state:

The equilibrium state of a small subsystem should be

(close to) diagonal in the energy eigenbasis of its self-

Hamiltonian [8].

(4) Bath state independence: It is expected that the

equilibrium expectation values of local observables on a

small subsystem are almost independent of the details of

the initial state of the rest of the system, but rather only

depend on its macroscopic properties, such as the energy

density.

(5) Gibbs state: Ultimately, one would like to recover the

standard assumption of classical statistical physics that

the equilibrium state is of (or at least close to) a Gibbs

state!S + e!/HS with an inverse temperature/ and a self-

Hamiltonian HS. As in conventional statistical physics,

this can only be expected to be true if the coupling is

weak but nonperturbative and the bath has a spectrum

that gets exponentially dense for higher energies [14,15].

Integrability.—In classical mechanics integrability is a

well-defined concept [22]. In quantum mechanics, despite

the common use of the term ‘‘integrable,’’ the situation

is much less clear [24], and different criteria are being

applied in the literature. The most common notions of

integrability are the following: (A) There exist n indepen-

dent (local) conserved mutually commuting linearly inde-

pendent operators, where n is the number of degrees

of freedom (see, e.g., Ref. [23]). In contrast to the

classical situation [22], this does not necessarily imply

that the system is ‘‘exactly solvable.’’ (B) Identical with

criterion (A), but with linear independence replaced by

algebraic independence [23]. (C) The system is integrable

by the Bethe ansatz [23]. (D) The system exhibits

nondiffractive scattering [23]. (E) The quantum many-

body system is exactly solvable in any way. Of course,

this criterion is subject to the ambiguity of a lack of

imagination of solving a given model.

Equilibration.—Quantum mechanics of closed systems

is time reversal invariant and thus equilibration in the usual

sense is impossible. Therefore we use an extended notion

of equilibration and say that an observable A equilibrates if

its expectation value Tr½Ac t* is close to some value for

almost all times t. Of particular interest are local observ-

ables, i.e., observables that are sums of terms that each act

only on small subsystems. Saying that all observables on

some subsystem S equilibrate is equivalent to saying that

the state c S
t of the subsystem equilibrates, by which we

mean that there exists a state 2S such that c S
t is almost

always physically indistinguishable from 2S, in the sense

that their trace distance Dðc S
t ; 2

SÞ ¼ 1
2
kc S

t ! 2Sk1 ¼

max0-A-ITr½Ac
S
t * ! Tr½A2S* is small for almost all

times t. If the expectation value Tr½Ac t* of an observable

A equilibrates in the sense defined above, then it must

equilibrate towards its time average Tr½Ac t* ¼ Tr½A ,c t*.
This is an obvious but important observation. A good

understanding of the properties of the time averaged state

! ¼ ,c t ¼ lim
3!1

1

3

Z 3

0
c tdt (1)

is thus key to understanding equilibrium properties.

Generalized Gibbs ensemble.—Every Hamiltonian H
defines a set of conserved observables. In the nondegener-

ate case they are exactly the linear combinations of

projectors onto the eigenstates of H; in the degenerate

case they are the observables with support on the blocks

corresponding to the degenerate subspaces. Clearly, the

time average ! ¼ ,c t of the state c 0 itself is given by

! ¼ Pðc 0Þ, where Pðc 0Þ ¼
P

j6jc 06j, where 6j ¼
P

k2Ij
jEkihEkj are the projections onto (possibly degener-

ate) eigenspaces, Ek ¼ El for k; l 2 Ij. Every state 2 that

gives the same values for all conserved observables as c 0

satisfies Pðc 0Þ ¼ Pð2Þ, and! ¼ Pðc 0Þ is the state having
maximum entropy among all such states. This follows

directly from the pinching inequality (Theorem V.2.1 in

Ref. [25]) since the von Neumann entropy is Schur con-

cave. All equilibrium expectation values can be calculated

from the maximum entropy state !. This is a quantum

version of Jaynes’ principle and was recently conjectured

as generalized Gibbs ensemble in Ref. [18].

Moreover, under the assumption of nondegenerate en-

ergy gaps it can be rigorously proven under which con-

ditions equilibration (but not necessarily thermalization)

happens [9,13]. The certificate quantifying the quality

of equilibration is the effective dimension of the time

averaged state deffð!Þ ¼ 1=Tr½!2*, which, for quenches

to nondegenerate Hamiltonians, is identical to the inverse

of the time average of the Loschmidt echo and the inverse

participation ratio of the initial state [26]. The main result

of Ref. [9] is

Dðc S
t ; !

SÞ -
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2S
deffð!Þ

s

¼ Ceqðc 0Þ; (2)

and we call Ceqðc 0Þ the equilibration coefficient of the

initial state c 0 as it bounds the equilibration radius.

Main result.—In systems that behave thermodynami-

cally the equilibrium expectation values of local observ-

ables on small subsystems should be independent of the

initial state of the subsystem. A previous positive result in
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this direction was made in Ref. [9] (see also Refs. [11,12]).

Here we follow a converse approach and proof a sufficient

condition for the absence of initial state independence.

A quantity that will play an important role in our main

result is the effective entanglement in the eigenbasis, given

for a nondegenerate H by

Rðc 0Þ ¼
X

k

jckj
2DðTrBjEkihEkj; c

S
0Þ; (3)

with ck ¼ hEkjc 0i. This quantity is small, if most energy

eigenstates either resemble locally the system’s initial

state c S
0 or are globally almost orthogonal to c 0. As will

become apparent later, this is, in particular, the case if the

reductions of the jEkihEkj are close to a basis for S. This
can be interpreted as a natural counterpart of the ETH [2]:

If ‘‘most’’ energy eigenstates have reduced states close to

some 2S, then the system will relax locally to 2S.

We will now show that a small value of R implies that

initial state independence is not satisfied. Remarkably,

this is not a matter of time scales: It will not only take a

long time to relax, but one will rather encounter a

memory for almost all times.

Theorem 1 (Nonthermalization). The physical distin-

guishability of the two local time averaged states !Sð1Þ and

!Sð2Þ of two pure initial product states c
ðiÞ
0 ¼ c

SðiÞ
0 #=BðiÞ

0 ,

i 2 f1; 2g evolving under a nondegenerate Hamiltonian H
is large in the sense that

D ð!Sð1Þ; !Sð2ÞÞ 3 Dðc Sð1Þ
0 ; c Sð2Þ

0 Þ ! Rðc ð1Þ
0 Þ ! Rðc ð2Þ

0 Þ:

In the degenerate case, the quantity R has to be replaced by

Rðc 0Þ ¼
X

k

hc 0j6kjc 0iD

&
TrBð6kc 06kÞ

hc 0j6kjc 0i
; c S

0

'

:

That is to say, subsystems remain distinguishable if they

are initially well distinguishable and one has little effective

entanglement in the eigenbasis. Note also that the environ-

ment states =Bð1Þ
0 and =Bð2Þ

0 can be taken to be identical.

Proof. If the Hamiltonian H is nondegenerate, !SðiÞ ¼
P

kjc
ðiÞ
k j2TrBjEkihEkj, and thus

Dðc S
0 ; !

SÞ ¼
1

2

(
(
(
(
(
c S

0 !
X

k

jckj
2TrBjEkihEkj

(
(
(
(
(
1

-
X

k

jckj
2
1

2
kc S

0 ! TrBjEkihEkjk1 ¼ Rðc 0Þ:

The desired result then follows from Dðc Sð1Þ
0 ; c Sð2Þ

0 Þ -

Dðc Sð1Þ
0 ; !Sð1ÞÞ þDð!Sð1Þ; !Sð2ÞÞ þDð!Sð2Þ; c Sð2Þ

0 Þ. In

the degenerate case, the same argument can be followed

for the projectors 6k onto the respective eigenspaces. j

The intuition that R will be small when the jEki have
certain properties can be made rigorous in the case where

the TrBjEkihEkj are close to a basis of S. In this case we can
show that there exist many initial states for the bath that

lead to a small R and a large effective dimension at the

same time, thus causing ‘‘equilibration without thermal-

ization.’’ This is shown using Haar-measure averages, from

which the existence follows [27].

Theorem 2 (Entanglement in eigenbasis). For every

orthonormal basis fjiig for S and every initial product state

with c S
0 ¼ jiihij for some i and with Haar random initial

bath part =B
0 , the effective entanglement in the eigenbasis

for nondegenerate H is on average upper bounded by

E =B
0
Rðc S

0 #=B
0 Þ - 2?dS;

where ? ¼ maxk?k with ?k ¼ miniDðTrBjEkihEkj; jiihijÞ
being the geometric measure of entanglement of the

eigenstate jEki with respect to the basis fjiig.
Proof. Note that Tr½TrBjEkihEkjc

S
0* - 1!DðTrBjEki

hEkj; c
S
0Þ

2 and thus all nonzero jckj
2 in Eq. (3) can be upper

bounded by

Tr½jEkihEkjðc
S
0 #=B

0 Þ*

Tr½TrBjEkihEkjc
S
0*

ð1!DðTrBjEkihEkj; c
S
0Þ

2Þ:

As ð1!DðTrBjEkihEkj; c
S
0Þ

2ÞDðTrBjEkihEkj; c
S
0Þ - 2?,

Rðc 0Þ - 2?
X

k

Tr½jEkihEkjðc
S
0 #=B

0 Þ*

Tr½TrBjEkihEkjc
S
0*

:

Averaging over all pure states=B
0 gives the mean 1=dB and

the sum in the last line is thus upper bounded by dS. j

Note that Theorem 2 implies that whenever a basis fjiig
exists for which ? is small, then for every i there exist

many bath states=B
0 such that Rðjiihij #=B

0 Þ - 2?dS [27].
Furthermore, almost all of them will lead to a high effec-

tive dimension [9,12]. Obviously the argument can be

further strengthened by maximizing ? only over a subspace

that contains most of the probability weight of c 0: This

allows some of the ?k to be large, as long as the corre-

sponding jckj
2 are small.

Application to a nonintegrable model.—The model we

consider is a spin-1=2 XYZ chain with n sites with random

coupling and on-site field. The Hamiltonian is

H ¼ H0 þH1 ¼
Xn

i¼1

hiA
Z
i þ

Xn!1

i¼1

~bi 5 ~ANN
i ; (4)

where ~ANN
i ¼ ðAX

i A
X
iþ1; A

Y
i A

Y
iþ1; A

Z
i A

Z
iþ1Þ

T in terms of the

Pauli matrices at site i, and hi and the components of ~bi are
independent normal distributed random variables with zero

mean and standard deviations A0 and A1, respectively. The

model is closely related to the one studied in Ref. [7]. With

unit probability the Hamiltonian is nondegenerate and has

nondegenerate gaps. We investigate the equilibration prop-

erties of the eigenstates ofH0 after a quench toH via exact

diagonalization for A1 ¼ 0:4A0. Hence the integrability

breaking term H1 is far from being a small perturbation

and H is nonintegrable in the sense of all of the aforemen-

tioned definitions of integrability. According to the widely

accepted belief [3,20,21], one would therefore expect to

find thermalization. However, the numerics suggests that

after the quench all local observables equilibrate, but retain

memory on the initial conditions, and thus initial state

independence is violated. This conclusion is reached not

by keeping track of time evolution, but rather by checking
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the conditions of Theorem 1 (see Fig. 1). It is a challenge

to construct nonintegrable models without disorder that

violate initial state independence.

Summary and conclusions.—We have established

rigorous results that identified a lack of entanglement in

the energy eigenbasis as the reason for an ‘‘equilibration

without thermalization’’ phenomenon: all local observables

equilibrate but retain memory on their initial values for

infinitely long time. By considering a particular model we

exemplify that such approximately conserved quantities

can exist even in nonintegrable models. Such models may

not saturate Lieb-Robinson bounds; i.e., there probably is

no ballistic propagation of information. Certainly, interest-

ing physical candidates for such models are to be found in

disordered systems: The Anderson model, for example, has

eigenfunctions that are exponentially localized with high

probability [28]. It is the hope that this work stimulates

further research on this connection.
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FIG. 1 (color online). The subsystem is taken to be the first site

S ¼ 1 in the spin chain of n sites, other choices give qualitatively

the same results. For each of the product eigenvectors jE0
ki of H0

we compare the equilibration properties of c
ð1Þ
0 ¼ jE0

ki with that

of c
ð2Þ
0 ¼ AX

S jE
0
ki (i.e., the same state but with the first spin

flipped) under the dynamics of H with A1 ¼ 0:4A0. Panels (a),

(b) display averages over eigenstates. (a) Average geometric

measure of entanglement Eð?kÞ with respect to the H0 eigenbasis

and average distance of the reduced time averaged states

EðDð!Sð1Þ; !Sð2ÞÞÞ. (b) Average effective dimension and equili-

bration coefficient [see Eq. (2)]. Panels (c),(d) show quantities

optimized over eigenstates. (c) Maximum distinguishability

maxk4ðjE
ð0Þ
k iÞ, where 4ðjEð0Þ

k iÞ ¼ Dð!Sð1Þ; !Sð2ÞÞ ! Ceqðc
ð1Þ
0 Þ!

Ceqðc
ð2Þ
0 Þ (4> 0 ensures distinguishability for almost all times.

See the inset for an artist’s impression). (d) Effective dimension

and equilibration coefficient of the state maximizing 4ðjEð0Þ
k iÞ.

All quantities have been averaged over 100 samples from the

random Hamiltonian ensemble (4). The error bars represent

the standard deviation. deff increases rapidly with n; hence,

equilibration gets better, while the time averaged states on S
remain well distinguishable. Remarkably the observable that

best distinguishes the equilibrium states is AZ
S . We find ‘‘equili-

bration without thermalization’’ for a very natural observable.
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