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Superradiance and Phase Multistability in Circuit Quantum Electrodynamics
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We show that it is possible to observe superradiance and phase multistability in superconducting
circuit quantum electrodynamics (QED) using state-of-the-art experiments. It is demonstrated
that superradiant microwave pulses can be observed for small numbers of qubits in the presence of
energy relaxation and non-uniform qubit-field coupling strengths. This paves the way for circuit
QED implementations of superradiant state readout and decoherence free subspace state encoding
in subradiant states. The system considered here also exhibits phase multistability at large field
driving amplitudes, which have possible applications in collective qubit measurement and quantum
feedback.

Superradiance is the collective spontaneous emission
from an ensemble of N highly correlated two level sys-
tems (qubits) coupled to one or more electrmagnetic field
modes [1]. The collective emission intensity, which scales
with ∝ N2, is of fundamental interest in quantum optics
and has been the subject of many theoretical and exper-
imental works [2–4]. With greater control over a range
of quantum systems, it is now possible to observe su-
perradiance in quantum dots [5], Bose Einstein conden-
sates [6] and nitrogen vacancy centers in diamond [7].
Furthermore superradiance and the related phenomena
of subradiance have quantum information based applica-
tions such as decoherence free subspace state encoding in
subradiant states [8] and superradiant state readout [9].

There are two major obstacles to observing superra-
diance from an ensemble of Nqubits: short qubit coher-
ence times and weak and inhomogeneous coupling to the
field. In practice, large ensembles are required to over-
come these obstacles as the peak intensity of the emit-
ted radiation scales quadratically with the ensemble size.
Superradiant phenomena are yet to be detected in small
ensembles due to weak non-uniform qubit-field coupling
rates and the high degree of control required to isolate
the system from environmental decoherence.

In this Letter we show that it is possible to observe
small ensemble superradiance in a superconducting cir-
cuit quantum electrodynamics (QED) system. Circuit-
QED is an ideal platform to observe small ensemble su-
perradiance due to small qubit dephasing, large qubit-
field coupling rate compared to the rate of qubit en-
ergy relaxation, and uniform qubit-field coupling rates
[10]. Another phenomenon that can be observed using
the same system, with the addition of coherent driving,
is phase multistability. Phase multistability describes
the phenomena where the qubit-resonator system in the
steady state is well approximated by a set of coupled,
driven and damped harmonic oscillators [11].

Here, we study several transmon qubits coupled to the
field of a transmission line resonator (TLR) (Fig. 1). In
the frame rotating at angular frequency ω the dynamics
of the system are described by the master equation,

FIG. 1: (Color online) Five transmon qubits (dark blue) cou-
pled to the quantized field of a TLR (sinusoids).
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where γs
j and γp

j are for the jth qubit the energy relax-
ation and dephasing rate respectively, κ is the resonator
decay rate, D[A]ρ = 2AρA† − A†Aρ − ρA†A and ~ = 1.
The qubit-resonator system evolves in the interaction pic-
ture under the Tavis-Cummings Hamiltonian [12],

H = ∆ra
†a+

N
∑

j=1

(

∆q,j

2
σz
j + gN,j(σ

−
j a† + aσ+

j )

)

, (2)

where, the jth qubit couples to the field at the rate gN,j,
∆q,j = ωq,j − ω is the detuning from the jth qubit tran-
sition frequency ωq,j and ∆r = ωr − ω is the detuning
from the resonator frequency ωr.
Superradiance: In order to obtain an analytic solu-

tion for the intensity of emitted photons from the TLR,
it is necessary to make several assumptions. First, we
assume that each qubit couples identically to the field
mode (gN,j ≈ ḡN) and has the same transition frequency
(ωq,j = ωq, ∆q = ωq − ω). This can be achieved by
optimizing qubit position and tuning the transition fre-
quency via independent flux lines to each qubit [10, 13].
Secondly, we assume that the field in the resonator decays
at a faster rate than the qubits, κ � ḡN � γs

j , γ
p
j . This
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bad-cavity limit ensures the superradiant pulse will es-
cape the resonator and not be re-absorbed by the qubits.
Lastly, as the qubit-field coupling rate, ḡN , is typically
two orders of magnitude larger than the energy relaxation
rate [10], it is assumed γs

j ≈ 0. In addition, the dephas-
ing rate for transmon qubits are negligible γp

j ≈ 0. The
validity of these assumptions will be tested against the
numerical solution of (1) in the latter part of this Letter.

As the resonator field decays on a time scale much
faster than that of the qubits we can adiabatically elimi-
nate the field. The master equation for the reduced den-
sity operator describing the qubits only is given by,

ρ̇q = −i[
∆q

2
Jz −∆r

ḡ2N
|Γ|2 J+J−, ρq] +

κ

2

ḡ2N
|Γ|2D[J−]ρq, (3)

where, Γ = κ/2 + i∆r, and it is assumed that the res-
onator is initially empty. The collective operators are
defined as, Ji =

∑N
j=1 σ

i
j , where i = {+,−, z}, and σi

j

denote the individual qubit Pauli matrices. Equation
(3) corresponds to the superradiance master equation
(SRME) that was derived for atomic ensembles, after a
suitable parameter substitution [2, 7, 14].

We now seek an expression for the intensity of photons
escaping the TLR, IN (t). Expanding (3) in the Dicke
basis [1], the probability that the system is in one of
the Dicke states |l,m〉 is, P (l,m, t) = 〈l,m|ρq(t)|l,m〉,
where, J2|l,m〉 = l(l + 1)|l,m〉, Jz|l,m〉 = 2m|l,m〉 and
N/2 ≥ l ≥ |m| ≥ 0. Using the SRME (3) the population
rates follow [15],

Ṗ (l,m, t) =
κḡ2N
|Γ|2 [(l −m)(l +m+ 1)P (l,m+ 1, t)

− (l +m)(l −m+ 1)P (l,m, t)]. (4)

Here, we consider the initial condition that all qubits are
excited, i.e., P (l,m, 0) = P (N/2, N/2, 0), although this
approach can easily be extended to take into account
other initial conditions [16]. As l is conserved by the
SRME we introduce the variable, n = l−m = 0, 1, ..., N ,
which corresponds to the number of photons emitted
from the resonator when the system is in the initial state
m = N/2. Equation (4) can now be rewritten,

Ṗ (n, τ) = (N − n+ 1)nP (n− 1, τ)

− (N − n)(n+ 1)P (n, τ). (5)

where we have rescaled the time τ = γt and γ =
κḡ2N/|Γ|2. To proceed, we Laplace transform (5), subject
to the full excitation initial condition, P (n, 0) = δn,0,

sQ(n, s)− δn,0 = (N − n+ 1)nQ(n− 1, s)

− (N − n)(n+ 1)Q(n, s), (6)

where, Q(n, s) is the Laplace transform of P (n, τ). From
(6) we find Q(0, s) = 1/(s+N). Continuing recursively
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Eq. (8)

FIG. 2: Intensity of radiation from the resonator for
N = 3, 4, 5 (in order of peak height lowest to high-
est). Parameters used are g3,j/2π = (83.7, 85.7, 85.1)
MHz [10], g4,j/2π = (69.4, 69.1, 68.6, 69.7) MHz, g5,j/2π =
(59.0, 59.4, 59.9, 60.9, 60.7) MHz, and (κ, γs

j , γ
p
j ,∆q,∆r)/2π =

(2000, 0.19, 0, 0, 0) MHz.

we find,

Q(n > 0, s) =
1

s+N

n
∏

i=1

(N − i+ 1)i

s+ (N − i)(i+ 1)
. (7)

Upon inverting the transform (7) we obtain the popula-
tions of the Dicke states, P (n, τ) [15]. The intensity of
photons emitted from the TLR can be found from the
Dicke state populations using, IN (τ) = ∂

∂τ

∑

n nP (n, τ).
The system is superradiant if the maximum intensity,
Imax
N , is greater than N , the initial intensity of N inde-
pendent qubits [7].
We now consider the experimentally relevant systems

of TLRs with N = 3, 4 or 5 qubits. To find the prob-
ability that the system is in one of the Dicke states,
|N/2, N/2 − n〉, we invert the transform (7) to obtain
P (n, t) and hence the intensities,

I3(τ) = 3e−3τ (12τ − 7) + 24e−4τ . (8a)

I4(τ) = (72τ + 96)e−6τ + 4e−4τ(36τ − 23), (8b)

I5(τ) =
5

3
[162e−9τ + 16e−8τ(24τ − 1)

+ e−5τ (240τ − 143)]. (8c)

As Imax
3 ≈ 3.2 > 3, Imax

4 ≈ 4.9 > 4, and, Imax
5 ≈ 6.9 >

5, these systems exhibit superradiance. In Fig. 2 the in-
tensity from the numerical solution of the original master
equation (1) is compared to equations (8a-c) for experi-
mentally feasible parameters. The approximate solutions
(8a-c) closely resemble the results from the original mas-
ter equation despite the assumptions, κ � ḡN � γs

j , γ
p
j ,
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gN,j ≈ ḡN and γs
j ≈ 0. The two solutions converge for

larger κ, identical qubit-field coupling rates, and γs
j ≈ 0.

For each system the superradiant peak is large enough to
be easily resolved using existing detection schemes [17].

The deviations from the numerical solution are a result
of the violation of the assumptions on κ, g and γs

j . Ini-
tially there are no photons escaping the TLR (IN (0) = 0)
as the field is in vacuum. As the qubits transfer energy
to the TLR, the finite decay rate κ traps the photons in
the resonator for a short period leading to the delay of
the superradiant pulse. Non-uniform coupling rates, ḡN ,
and energy relaxation, γs

j , lead to a slower decay rate due
to coupling to different co-operation numbers, l < N/2
[14]. Furthermore, energy relaxation reduces the number
of photons emitted in the resonator mode.

The above results demonstrate that it is possible to
observe small sample superradiance in a TLR in the
presence of energy relaxation and non-uniform coupling
strengths. Superradiance can also be observed for N > 5
qubits, provided κ � ḡN � γs

j and gN,j ≈ ḡN . For a
TLR with resonance frequency ωr, the length determines
the number of qubits as each is placed at field antin-
odes. As the coupling strength ḡN is inversely related to
the mode volume [18], the coupling is reduced for large
numbers of qubits. As ḡN → γs

j , losses due to energy re-
laxation and coupling to different co-operation numbers
will dominate the dynamics and superradiant effects will
become difficult to observe. Therefore the upper bound
on the number of qubits is governed by the ratio ḡN/γs

j .
Nevertheless, the proposal herein allows the experimen-
tal study of small sample superradiance and may have
applications in quantum information, including decoher-
ence free subspace state encoding using subradiant states
[8] and superradiant state readout [9].

Phase Multistability: Returning to (1) in the strong
coupling regime (ḡN > κ, γs

j , γ
p
j ) we consider the effect of

strong driving of the TLR, H → HE = H + iE(a† − a)
where, E is the drive amplitude and it is assumed ∆q =
∆r = 0. In this regime, the phenomenon of phase mul-
tistability can be observed; where in the steady state,
the combined qubit-TLR system is well approximated by
several coupled, driven and damped harmonic oscillators
[11]. In the single qubit case (g ≡ g1,1, γ

s ≡ γs
1) it is well

known that for 2E > g > κ > γs the system exhibits
phase bistability [19–21]. Phase bistability, observed in
cavity QED only recently [20], has been the basis for
several proposals including nanophotonic switching [20],
quantum feedback and qubit measurement [22]. How-
ever, phase multistability for N > 1 is yet to be observed.

Phase bistability can be described in the γs → 0
limit as follows: at large intra-cavity photon numbers,
n, the difference in energy between successive Jaynes-
Cummings (JC) manifolds |n,±〉 ↔ |n+ 1,±〉 is E±

n+1 −
E±

n ≈ ωr±g/2
√
n, where |n,±〉 = 1/

√
2(|n+1, g〉±|n, e〉).

Strong driving of the TLR at ωr will populate large n
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FIG. 3: The Q-function in Eq. (9) at x = 2E/κ with pa-
rameters (g, κ, γs)/2π = (85, 4, 0.19) MHz. Inset: The loca-
tion of the two peaks in the steady state Q-function for a
range of driving strengths E/2π = 45 − 200 MHz, increasing
from bottom to top. The following parameters were used:
(g, κ, γs)/2π = (85, 28.3, 0.19) MHz.

JC eigenstates and cause transitions along two separate
pathways, |n,±〉 ↔ |n + 1,±〉. The driving is detuned
from the transition frequency of each path by the man-
ifold dependent detuning, ±g/(2

√
n). Furthermore, the

steady state density matrix of the system can be approxi-
mated by a mixture of two uncoupled, damped harmonic
oscillators, which are driven off-resonantly [19, 21]. As
t → ∞ the coherent state amplitude of each oscillator
|α±

ss〉 is α±
ss = f(2Ef ± ig)/κ, where f =

√

1− (g/2E)2.
The two coherent states |α±

ss〉 can be detected by recon-
structing the Q-function after homodyne measurement of
the field.
To observe phase bistability experimentally, it is neces-

sary to resolve the two coherent states |α±
ss〉. For strong

driving this requires the ratio g/κ to be as large as pos-
sible. Also, as energy relaxation couples the two os-

cillators, |n + 1,±〉 γs

−→ ±1/
√
2(|n,+〉 + |n,−〉), it can

be shown [11] that phase bistability only occurs when
γs < 2κ. As circuit-QED systems can fulfil each of these
requirements, and do not suffer from problems associated
with moving atoms in cavity QED [20], circuit-QED is an
ideal system for the observation of phase bistability.
For large driving amplitude the steady state Q-

function can be found after appropriate transformations
of the density matrix [21],

Q(x+ iy) =
2e−(x−

2E

κ
)2

2
γs

κ πβ( γ
s

2κ ,
γs

2κ )

∫ 1

−1

e−( g

κ
z−y)2

(1 − z2)(1−
γs

2κ
)
dz, (9)

where, β(a, b) is the beta function. Simulations confirm
that (9) matches the numerical solution of the master
equation (1) for large E . A cross section of this func-
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tion is shown in Fig. 3 for realistic circuit-QED param-
eters. It is clear that |α±

ss〉 can be easily resolved using
homodyne measurement of the field [17, 20]. The inset in
Fig. 3 compares the peak locations α±

ss to those obtained
from numerical solution of (1) for a range of driving am-
plitudes. At small driving amplitudes the system is too
anharmonic to approximate as two harmonic oscillators.
However, for larger amplitudes the two solutions coin-
cide.
When there are N qubits in the resonator an analo-

gous phenomenon occurs: phase multistability [11]. Sim-
ilarly to the single qubit case, phase multistability re-
sults from the energy structure of Tavis-Cummings man-
ifolds at large excitation. For a given l, there are,
2l + 1, transitions between the Dicke states |n〉|l,m〉 ↔
|n+1〉|l,m〉. The difference in energy between successive
Tavis-Cummings manifolds at large intra-cavity photon

number is, E
(l,m)
n+1 − E

(l,m)
n ≈ ωr + mḡN/

√
n [11]. Pro-

ceeding as before, assuming γs
j → 0 and gN,j ≈ ḡN ,

strong resonant driving of the TLR leads to transitions
on 2l+1 separate ladders. The steady state density ma-
trix of the system can be approximated by a mixture of
2l+1 damped, uncoupled harmonic oscillators driven off
resonantly. Each harmonic oscillator has the coherent

state amplitude, α
(l,m)
ss = 2fm(Efm + imḡN)/κ, where

fm =
√

1− (mḡN/E)2.
Due to the small ratio of ḡN/κ and the inability to

couple several qubits identically to a common field mode,
phase multistability has not been experimentally demon-
strated. However, as the circuit-QED based system con-
sidered here can satisfy the aforementioned parameter
requirements, exploration of phase multistability is pos-
sible. Figure 4 shows the Q-function obtained by nu-
merical solution of (1) with HE for three qubits. The

peak positions α
(l,m)
ss coincide with the numerical solu-

tion to high precision. The center two peaks are larger
because the m = 1/2 transitions are driven closer to reso-
nance than the m = 3/2 transitions. Phase multistability
may have similar applications as phase bistability, i.e in
quantum feedback [22] and nanophotonic switching [20].
Moreover, it may be possible to use phase multistabil-
ity to perform a collective measurement of the system to
determine the collective spin, m [22].
In summary, we have demonstrated that two funda-

mental collective quantum optical phenomena, superra-
diance and phase multistability, can be observed in a
circuit-QED based system using existing experiments.
This in turn allows further study of the collective phe-
nomena. We note that these phenomena should also be
observable in other types of superconducting qubits.
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