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We show that excitations of interacting quantum particles in lattice models always propagate with a finite

speed of sound. Our argument is simple yet general and shows that by focusing on the physically relevant

observables one can generally expect a bounded speed of information propagation. The argument applies equally

to quantum spins, bosons such as in the Bose-Hubbard model, fermions, anyons, and general mixtures thereof,

on arbitrary lattices of any dimension. It also pertains to dissipative dynamics on the lattice, and generalizes to

the continuum for quantum fields. Our result can be seen as a meaningful analogue of the Lieb-Robinson bound

for strongly correlated models.

How fast can information propagate through a system of

interacting particles? The obvious answer seems: No faster

than the speed of light. While certainly correct, this is not

the answer one is usually looking for. For instance, in a clas-

sical solid, liquid, or gas, perturbations rather propagate at

the speed of sound, which is determined by the way the par-

ticles in the system locally interact with each other, without

any reference to relativistic effects. We would like to under-

stand whether a similar “speed of sound” exists for interact-

ing quantum systems, limiting the propagation speed of local-

ized excitations, i.e., (quasi-)particles. For interacting quan-

tum spin systems, such a maximal velocity, known as the

Lieb-Robinson bound [1–4], has indeed been shown. While

it seems appealing that there should always be such a bound,

systems of interacting bosons can show counterintuitive ef-

fects, in particular since the interpretation of excitations in

terms of particles is no longer fully justified; in fact, an exam-

ple of a non-relativistic system where bosons condense into a

dynamical state which steadily accelerates has recently been

constructed [5]. This example suggests the disturbing possi-

bility that our intuition is wrong, and only relativistic quantum

theory can provide a proper speed limit.

There are many important reasons, both theoretical and ex-

perimental, to investigate information propagation bounds in

interacting particle systems. It turns out that such bounds lead

directly to important, general results concerning the cluster-

ing of correlations in equilibrium states [2]. Lieb-Robinson

bounds facilitate the simulatability of strongly interacting

quantum systems—the mere existence of a Lieb-Robinson

bound for a quantum system can be used to develop general,

efficient, numerical procedures to simulate the dynamics of

lattice models [6]. From a more practical perspective, new ex-

periments allow one to explore the non-equilibrium dynamics

of ultracold strongly correlated quantum particles—bosonic,

fermionic, or mixtures thereof—in optical lattices with un-

precedented control [7, 8]. In such experiments, it is impor-

tant to understand how the particles move: For example, when

studying instances of anomalous expansion, it is far from clear

a priori whether it is possible to identify a meaningful speed

of sound at all.

t

FIG. 1. Schematic representation of the “light cone” of particles ini-

tially placed into a region R of a lattice (yellow circles) and then

propagating in time t in a way governed by an interacting quantum

model, outside of which the influence of these particles is exponen-

tially suppressed.

The original Lieb-Robinson bound already applies in a very

general setting, namely, to any low-dimensional quantum spin

system, and to any fermionic system confined to a lattice. It

is therefore tempting to extend the original argument to other

settings, in particular, to systems of interacting bosons; unfor-

tunately, all attempts to do so have run into insuperable diffi-

culties for systems with nonlinear interactions, including the

Bose-Hubbard model. The reason for the failure of the orig-

inal Lieb-Robinson argument is fundamentally connected to

the unboundedness of the creation operator for bosons: The

Lieb-Robinson velocity depends on the norm of the interac-

tion, which is unbounded for, e.g., bosons hopping on a lattice,

and examples without a speed limit can be constructed [5].

In this Letter, we show how these difficulties can be over-

come by considering the right question concerning the prop-

agation of information. Our approach allows us to determine

Lieb-Robinson type bounds for the maximal speed at which

information can propagate through systems of interacting par-

ticles in a very general scenario: In particular, it applies to

systems of interacting bosons, as well as to fermions, spins,

anyons, or mixtures thereof, both on lattices and in the con-

tinuum. Moreover, it can also be applied beyond Hamiltonian

evolution, such as to systems evolving under some local dis-

sipative dynamics.
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The type of system we have in mind is exemplified by the

Bose-Hubbard model, a model of bosons hopping on an arbi-

trary lattice G of any finite dimension and interacting via an

on-site repulsion,

ĤBH = −τ
∑

〈j,k〉

(b̂†j b̂k+h.c.)+
U

2

∑

j

n̂j(n̂j −1)−µ
∑

j

n̂j ,

(1)

where the first summation is over neighboring sites on the

lattice, b̂j is the boson annihilation operator for site j, and

n̂j = b̂†j b̂j is the number operator. The natural distance in

the lattice will be denoted by d(·, ·), e.g., d(j, k) = |j − k|
for a one-dimensional chain. While we will, for clarity, focus

our discussion on the Bose-Hubbard model, our arguments di-

rectly generalize to models of the form

Ĥ = −τ
S
∑

s=1

∑

〈j,k〉

(b̂†s,j b̂s,k +h.c.)+ f({n̂1,j , . . . , n̂S,j}j∈G) ,

(2)

where the b̂s,j are annihilation operators for bosons, fermions,

or even anyons of species s = 1, . . . , S at site j, and n̂s,j =

b̂†s,j b̂s,j ; the species could for instance refer to an internal spin

degree of freedom. The interaction between the particles is

characterized by f which can be an arbitrary function of the

local densities, and may involve higher moments of the par-

ticle number, or even non-local interactions. Moreover, our

argument also applies to time-dependent Hamiltonians of this

form, as long as the tunneling amplitude τ(·) is bounded.

The scenario we consider is described by the Bose-Hubbard

model on a lattice G, where in the initial state all sites are

empty (i.e., 〈n̂j〉 = 0) except for the sites in a region R which

can be in an arbitrary initial state with finite average particle

number. Note that the region R may very well encompass the

major part of the lattice. What we are interested in is how

fast these bosons will travel into the empty part G\R of the

lattice, as a function of the distance d(·, ·) on the underlying

graph. In particular, we would like to find a “speed of sound”

for the bosons, that is, a velocity v such that for any region S
in G\R with d(S,R) ≥ l [i.e.: d(s, r) ≥ l ∀s ∈ S, r ∈ R],

and for all times t for which vt < l, the expectation value

of any observable ÔS on S is equal to the expectation value

of the vacuum, up to a correction which decays exponentially

away from the light cone, eγ(vt−l).

To start, we consider the Bose-Hubbard model ĤBH and

focus on measurements of the local particle number operators

n̂j . This corresponds to looking for bosons at the initially

empty sites, and thus captures the most natural notion of par-

ticles propagating into a region. Let us denote the initial state

by ρ(0), which evolves according to

ρ̇(t) = −i[ĤBH, ρ(t)]

for t ≥ 0. As we are interested in the speed at which particles

in the Bose-Hubbard model propagate, let us try to understand

how the local particle densities

αj(t) = tr(n̂jρ(t)), j ∈ G ,

evolve under ĤBH. To this end, we derive a bound on the rate

at which αj(·) changes, which in turn leads to a bound on the

velocity at which particles can propagate through the system.

It holds that

α̇j(t) = −i tr
(

n̂j [ĤBH, ρ(t)]
)

= −i tr
(

[n̂j , ĤBH] ρ(t)
)

= 2τ
∑

〈j,k〉

Im
[

tr
(

b̂†k b̂jρ(t)
)

]

, (3)

where the summation runs over all sites k neighboring j,

d(j, k) = 1. Since we are only interested in an upper bound

on this rate of change, we now consider |α̇j(t)| and apply the

triangle inequality to obtain

|α̇j(t)| ≤ 2τ
∑

〈j,k〉

∣

∣tr(b̂†k b̂jρ(t))
∣

∣ . (4)

To bound this term we use the operator Cauchy-Schwarz in-

equality, viewing

tr(b̂†k b̂jρ(t)) = 〈b̂kρ1/2(t), b̂jρ1/2(t)〉

as a Hilbert-Schmidt scalar product of b̂jρ
1/2(t) and

b̂kρ
1/2(t), where ρ1/2(t) is the matrix square root of ρ(t).

This gives rise to

∣

∣tr(b̂†k b̂jρ(t))
∣

∣ ≤
(

tr(b̂†k b̂kρ(t))tr(b̂
†
j b̂jρ(t))

)1/2

.

Combining this with Eq. (4), we obtain a set of coupled dif-

ferential inequalities

|α̇j(t)| ≤ 2τ
∑

〈j,k〉

(αj(t)αk(t))
1/2

, (5)

which, using
√
xy ≤ (x+ y)/2, yields the linearized system

|α̇j(t)| ≤ τ

(

D αj(t) +
∑

〈j,k〉

αk(t)

)

,

where D is the maximal vertex degree of the interaction graph.

We are interested in the worst-case growth of αj(t) as t pro-

gresses. This will occur when we have equality in the above

expression (i.e., the derivative is as large as possible), and thus

a bound γk(t) ≥ αk(t) is given by the solution of the linear

system of differential equations

γ̇j(t) = τ

(

D γj(t) +
∑

〈j,k〉

γk(t)

)

which fulfills γj(0) = αj(0). This solution has the form

~γ(t) = eDτteτMt ~γ(0),

where M is the adjacency matrix of the lattice, i.e., Mj,k = 1
if d(j, k) = 1 and 0 otherwise, and ~γ := (γk)k∈L. This yields

an upper bound

~α(t) ≤ eDτteτMt ~α(0)
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for the expected particle number at time t for any site, for

~α := (αk)k∈L.

In order to understand how quickly particles propagate

from the initially occupied region R into a region S with

d(R,S) ≥ l, we need to consider the off-diagonal block of

eDτteτMt corresponding to those two regions. Thus, in order

to obtain a light cone with an exponential decay exp(vt − l)
outside it, we need to understand how rapidly the off-diagonal

elements of the banded matrix M grow under exponentiation

eτMt. This can be done by applying Theorem 6 from Ref. [9],

which yields for the (i, j)-th element of exp(τMt) the bound

[exp(τMt)]i,j ≤ Cev0t−d(i,j)

with velocity v0 = χ∆τ , where χ ≈ 3.59 is the solution of

χ lnχ = χ+1, ∆ = ‖M‖∞/2 depends on the lattice dimen-

sion, and C = 2χ2/(χ−1) ≈ 10. Together with the prefactor

exp(Dτt), this gives a Lieb-Robinson velocity v = v0 + Dτ
[10]. For the scenario of an empty lattice with particles ini-

tially placed in a region R, this implies that for any j with

d(j, R) ≥ l,

αj(t) ≤ Cevt−l
∑

k∈R

αk(0) = CN0 e
vt−l , (6)

i.e., up to an exponentially small tail, the particles propagate

with a speed no faster than v, independent of their initial state.

Here, N0 =
∑

k∈R αk(0) = 〈N̂〉 is the total number of parti-

cles in the system (i.e., the expectation value of the total par-

ticle number operator N̂ =
∑

j n̂j). Note that while this (un-

surprisingly) means that the strength of the signal observed

may depend on the number of bosons initially put into the

system, the maximum propagation speed v does not depend

on N0. In fact, for a purely harmonic one-dimensional model

for U = 0, the exact speed of sound is indeed linear in τ , so

the above bound is tight up to a small constant prefactor.

Having understood how to obtain a bound on the propa-

gation speed of particles, we now turn to more general ob-

servables. First, let us show how we can bound the higher

moments of the particle number operator. For p ≥ 1,

α
(p)
j (t) = tr

(

n̂p
jρ(t)

)

=
∑

N

tr
(

n̂j n̂
p−1
j PNρ(t)PN

)

≤
∑

N

tr
(

n̂jN
p−1PNρ(t)PN

)

(7)

(6)

≤
∑

N

Np−1
(

CNevt−l
)

tr(ρ(t))

= C 〈N̂p〉 evt−l ,

where PN projects onto the subspace with a total of N par-

ticles, and we have used that Eq. (6) applies to each sub-

space with fixed particle number independently as the Hamil-

tonian commutes with PN . Here, 〈N̂p〉 denotes the (time-

independent) expectation value of the p-th moment of the total

particle number operator. This proves a Lieb-Robinson bound

for the higher moments of the particle number operator.

Let us now turn our attention towards arbitrary local ob-

servables Âj . Any such observable can be written as Âj =
∑

p,q cp,q(b̂
†
j)

pb̂qj , and we have thus that

∣

∣tr(Âjρ(t))
∣

∣ ≤
∑

p,q

|cp,q|
∣

∣tr[(b̂†j)
pb̂qjρ(t)]

∣

∣ (8)

≤
∑

p,q

|cp,q|
(

tr
[

(b̂†j)
pb̂pjρ(t)

]

tr
[

(b̂†j)
q b̂qjρ(t)

]

)1/2

.

In turn, for p > 0,

tr
[

(b̂†j)
pb̂pjρ(t)

]

= tr
[

n̂j(n̂j − 1) · · · (n̂j − p+ 1)ρ(t)
]

=

p
∑

r=1

dr,pα
(r)
j (t) ≤ C̃pe

vt−l (9)

by virtue of Eq. (6), for some constant C̃p. If p = 0, we

trivially have tr[ρ(t)] = 1. Together, this yields a bound

∣

∣tr(Âjρ(t))
∣

∣ ≤ C ′evt−l

if c0,q = cp,0 = 0 for all p and q, and

∣

∣tr(Âjρ(t))
∣

∣ ≤ C ′e(vt−l)/2

otherwise, where we have assumed that
∑ |cp,q| is finite, and

used that w.l.o.g. c0,0 = 0. In both cases, this means that

outside the light cone given by vt = l, tr(Âjρ(t)) decays ex-

ponentially; however, the decay is on double the length scale

in the latter case.

Finally, observables acting on more than one site can be

bounded analogously to the local case: Any two-site operator

acting on sites j, k can be written as the sum of terms ÂjÂk,

and

∣

∣tr(ÂjÂkρ(t))
∣

∣ ≤
(

tr(Â†
jÂjρ(t))tr(ÂkÂ

†
kρ(t))

)1/2

.

The terms on the r.h.s. are local observables which can be

bounded as before by exp(vt − l), yielding the same expo-

nential bound for two-site—and recursively for many-site—

observables. (Note that there exist cases where terms which

are bounded by exp[(vt − l)/2] only appear, and in addition

one of the Â’s above could be the identity. Thus, bounds of

the form exp((vt− l)/κ) can occur, where κ can grow expo-

nentially in the block size. This, however, still implies that the

signal is exponentially small outside the light cone.)

While we have illustrated our arguments for the Bose-

Hubbard model, they generalize straightforwardly to the more

general class of models described by Eq. (2). First, it is clear

that we can replace the on-site replusion and chemical po-

tential in the Bose-Hubbard model by any type of interac-

tion (even a non-local one) which only depends on the par-

ticle numbers, since any such term vanishes in the commu-

tator [n̂j , Ĥ] in Eq. (3). Second, for systems that contain

several types of bosons the same arguments apply: Such sys-

tems can be modelled using multiple copies of the original
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graph, each of which supports the hopping of one individ-

ual boson species, and one obtains independent differential

inequalities for the particle densities αj,s(t) = tr[n̂j,sρ(t)]
for each species.

Beyond general bosonic models, our arguments also apply

to fermions and mixtures of bosons and fermions [11], and in

fact even to anyonic systems. Again, in a first step one can

decouple the individual species of particles (which mutually

commute) to hop on independent graphs. Then, it is easy to

check that our arguments work independently of the statistics

of the particles, since [n̂j , Ĥ] in Eq. (3) evaluates to the same

expression in terms of the fermionic (anyonic) creation and

annihilation operators. Even better, fermionic and anyonic

systems yield stronger bounds for the higher moments, and

thus for the scenario of general local observables: In Eq. (7),

n̂p−1
j can be bounded by 1 instead of N̂p−1, which yields a

bound α
(p)
j (t) ≤ CN0 e

vt−l on the higher moments. Corre-

sponding results also follow for spin systems, as these can be

described as hardcore bosons.

Our arguments work not only for unitary theories, but also

for certain types of dissipative (Markovian) models, extend-

ing [12] to bosonic systems. For instance, in the practically

relevant case of a bosonic system with particle losses, we have

that

ρ̇(t) = −i [ĤBH, ρ]− λ
∑

j

(

{b̂†j b̂j , ρ(t)} − 2b̂jρ(t)b̂
†
j

)

.

Therefore,

α̇j(t) = −i tr([n̂j , ĤBH]ρ(t))− λ tr
(

n̂jρ(t)
)

,

which shows that the contribution from the dissipative term to

α̇j is negative; thus, tighter differential inequalities and thus

a lower speed of sound than in the Hamiltonian case can be

obtained.

To conclude, we have proven that there is a speed limit for

the propagation of information in a system of interacting par-

ticles. This result is particularly relevant for the case of bosons

on a lattice, as bosonic systems cannot be assessed using the

established techniques of Lieb-Robinson bounds due to the

unboundedness of the bosonic hopping operator. Our argu-

ment applies equally to bosonic, fermionic, anyonic, and spin

systems, as well as mixtures thereof, with arbitrary interaction

terms between the particles, and can be generalized to also ad-

dress systems with dissipation.

The key point that allowed us to make statements about the

propagation of information in bosonic systems beyond Lieb-

Robinson bounds was first to focus on a subset of observables

relevant to detecting the propagation of particles, namely the

number of particles present at each site, and second to de-

vise a closed system of inequalities bounding the evolution of

their expectation values. This allowed us to reduce the prob-

lem of characterizing the full dynamics of the system, which

takes place in a superexponentially large Fock space, to sim-

ply keeping track of the dynamics of a relatively small num-

ber of parameters. This considerably reduced the complexity

of the problem and gave rise to an exactly solvable worst-case

bound.

The idea of studying information propagation by restricting

to a specific set of observables and investigating the result-

ing worst-case differential equation can also be applied to the

study of continous systems. This can be done either by tak-

ing an appropriate continuum limit of a lattice model, or by

directly considering a corresponding differential equation for

the particle density which is continuous in space.
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