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Quantum metrology with entangled coherent states
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We present an improved phase estimation scheme employing entangled coherent states and demon-
strate that the states give the smallest variance in the phase parameter in comparison to NOON,
BAT and “optimal” states under perfect and lossy conditions. As these advantages emerge for very
modest particle numbers, the optical version of entangled coherent state metrology is achievable
with current technology.
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As full quantum computing based on very large quan-
tum resources remains on the technological horizon
for now, there is significant current interest in quan-
tum technologies that offer genuine quantum advantage
with much more modest quantum resources. Quan-
tum metrology is one field where such technologies can
emerge. Non-classical states of light can offer enhanced
imaging or spatial resolution, non-classical states of me-
chanical systems could offer enhanced displacement res-
olution, non-classical states of spins could enable en-
hanced field resolution and entangled atoms could pro-
vide the ultimate accuracy for clocks. Since it became
known that optical quantum states can beat the classi-
cal diffraction/shot-noise limit [1], in recent years quan-
tum metrology has been widely investigated in partner-
ship with the rapid-developing field of quantum informa-
tion [2]. For example, the precision limits of quantum
phase measurements are given by the Cramer-Rao lower
limit bounded by quantum Fisher information [3]. In the
ideal quantum information version of metrology, a max-
imally entangled state is viewed as the best resource for
quantum metrology, i.e. the optimal phase uncertainty
of the NOON state reaches to the Heisenberg limit and
it is thus considered for many applications (e.g. Bell’s
inequality tests, quantum communication and quantum
computing) [4]. However, current quantum technologies
have a long way to go to the manipulation of many-qubit
entanglement for these applications and of course all real-
istic quantum technologies will be subject to loss and de-
coherence. Therefore, quantum metrology utilising very
modest entangled resources and with robustness against
loss could be accessible for these applications in the much
nearer future [5], revealing a fundamental difference be-
tween classical and quantum physics in both theory and
practice.

A major research question in quantum metrology is
how to implement entangled NOON states with large
particle numbers (called high NOON states). Many
successful demonstrations have shown the potential for
quantum-enhanced metrology using small NOON states
[6, 7]. However, it remains a challenge to obtain a practi-

cal high NOON state in linear (or even non-linear) optics.
Even if high NOON states become achievable, a critical
consideration is that these states are extremely fragile
to particle loss because the resultant mixed state loses
phase information rapidly. Thus other quantum states
have been studied for improved robustness against par-
ticle loss [8, 9]. Further recent developments have shown
the potential advantages of non-linearities [10] and the
importance of the query complexity for quantum metrol-
ogy [11], concluding that the same phase operation is
required for the appropriate resource count in different
states.

In this Letter, we report that the superposition of
macroscopic coherent states have an improved sensitivity
of phase estimation when compared to that for NOON
states, in the region of very modest photon or particle
numbers. Taking into account the same average par-
ticle number, the entangled coherent state (ECS) over-
comes the Heisenberg limit provided by a NOON state in
the case of no particle loss, with this advantaged main-
tained over other quantum states (e.g., NOON, BAT [9],
and uncorrelated states) in the case of particle loss. So
even though simple coherent states |α〉 are known as the
most “classical-like” quantum states [12], superpositions
thereof are very useful and robust for quantum metrol-
ogy [13]. This phenomenon can be understood as fol-
lows. For pure states, the ECS can be understood as
a superposition of NOON states with different photon
numbers, thus the larger photon-number NOON states
make a contribution to a better sensitivity than the av-
erage photon-number NOON state in the ECS. For mixed
states, the resultant state given by photon loss does not
depend on the number of particles lost but its loss rate—
thus this state still contains some phase information even
in the large loss rate. In order to demonstrate this per-
haps surprising phenomenon, we suggest an implementa-
tion scheme using parity measurement for relatively small
ECSs which are feasible with current optical technology
[14].

We choose to compare the phase uncertainty of var-
ious quantum states with and without loss, using the



2

widely- accepted approach of quantum Fisher informa-
tion [3]. The interferometric set-up generally consists of
four steps. The first is the preparation step where the
input state |ψin

K 〉12 is prepared in modes 1 and 2. Then,
a unitary operation U in mode 2 is applied, given by

U(φ, k) = eiφ(a
†
2
a2)

k

(1)

for phase φ, order parameter of non-linearity k, and cre-
ation operator a†i in mode i. In this Letter we assume
k = 1 implying that the operation U(φ, 1) is a conven-
tional phase shifter U(φ) (although future studies will ex-
tend this to other k values). The outcome state is called
|ψout

K 〉12 = (11 ⊗ U(φ))|ψin
K 〉12. For the case of particle

loss, we add two variable beam-splitters (BSs) with loss
modes 3 and 4 located after the phase operation. After
the BSs, the mixed state ρK12 (given by tracing out the
loss modes 3 and 4) is finally measured for the estimation
of phase uncertainty. A change of transmission rate T in
the BSs characterises the robustness of phase estimation
for the input state against the loss. The phase optimiza-
tion given by the quantum Cramér-Rao bound [3] for the
outcome states |ψout

K 〉 is described by

δφK ≥ 1
√

FQ
K

. (2)

For a pure state, quantum Fisher information is given by

FQ
K = 4

[

〈ψ′
K |ψ′

K〉 − |〈ψ′
K |ψout

K 〉|2
]

(3)

for |ψ′
K〉 = ∂|ψout

K 〉/∂φ [9, 15]. If the outcome state is
the mixed state ρK12, the quantum Fisher information is
given by

FQ
K =

∑

i,j

2

λi + λj
|〈λi|(∂ρK12(φ)/∂φ)|λj〉|2, (4)

where λi (|λi〉) are the eigenvalues (eigenvectors) of ρK12.

Here we focus on three important input states as |ψin
K 〉

(K = N,B,C) corresponding to NOON |ψin
N 〉, BAT |ψin

B 〉
[16], and ECS [17] given by

|ψin
Cα

〉12 = e−
|α|2

2 Nα

∞
∑

n=0

αn

n!

[

(a†1)
n + (a†2)

n
]

|0〉1|0〉2,

= Nα

[

|α〉1|0〉2 + |0〉1|α〉2
]

, (5)

where |0〉i and |α〉i are respectively Fock vacuum
and coherent states in spatial mode i and (Nα =

1/
√

2(1 + e−|α|2) ) [12]. Note that |ψin
C 〉 can be under-

stood as a superposition of NOON states [17] and the
phase operation is imprinted in the outcome state given
by

|ψout
Cα

〉12 = Nα

[

|α〉1|0〉2 + |0〉1|αeiφ〉2
]

. (6)

Considering first the situation with no loss, the opti-
mal phase estimation of the pure states is analytically
achievable. For the NOON and BAT states, it is equal
to δφN ≥ 1/N and δφB ≥ 1/

√

N(N/2 + 1), respectively,
and for the ECS

δφC ≥ 1

2αNα

√

(α2 + 1)− (Nα)2α2
. (7)

Taking into account equivalent resource counts for the
states [18], we consider the same average photon number
for mode 1 given by

〈nK〉 = 〈ψin
K |a†1a1|ψin

K 〉 = N

2
= N 2

α · |α|2. (8)

Then, the phase uncertainty for the ECS can be com-
pared with respect to N for the NOON and BAT states
as shown in Fig. 2. When N becomes large, δφC ≈ δφN
which indicates that the ECS becomes approximately
equivalent to the NOON state, being dominated by the
NOON amplitude at N = |α|2. However, interestingly,
δφN is significantly bigger than δφC for small N because
|ψin

C 〉 contains a superposition of NOON states including
N values exceeding |α|2. Furthermore, for small α, the
two terms in Eq. (5) are not orthogonal (and only tend
to being so in the large α limit). These superposition
properties enable an advantage for the coherent states at
small |α|2. For a more detailed example, taking N = 4
for the NOON and BAT states 〈nN4

〉 = 〈nB4
〉 = 2 and

α = 2.0 for the ECS (which gives a slightly lower resource
count 〈nC2

〉 = 1.964), the values of the optimal phase es-
timation are equal to δφN4

= 0.25, δφB4
≈ 0.289, and

δφC2
≈ 0.205. This indicates that even with a slight re-

source disadvantage 〈nC2
〉 < 〈nN4

〉 = 〈nB4
〉, there is still

FIG. 1: It shows an interferometric setup for the ECS. Two
input states (|SCSα〉 and |α〉 are applied to the first BS and
become the ECS. After a phase shifter U(φ) in a mode, the
parity measurement is performed at the measurement stage.
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a phase estimation advantage δφC2
< δφN4

< δφB4
(see

Fig. 2 around at N = 4). This is all very well in the
zero loss regime; however, the more important question
is on the robustness of the phase uncertainty advantage
in the realistic scenario of particle loss. In order to ob-
tain quantum Fisher information for a mixed state due
to particle loss, calculation eigenvalues and eigenvectors
is required.

From the previous works [9], the optimal phase esti-
mations for ρN4

12 and ρB4

12 are already known (see Fig. 3).
Thus, we only need to focus on obtaining the phase es-
timation of the ECS |ψout

C2
〉. After two BSs with trans-

mission rate T , the total state is written by |ΨC2
〉1234 =

BST
1,3BS

T
2,4|ψout

C2
〉|0〉3|0〉4. Tracing out modes 3 and 4 we

obtain the mixed state ρC2

12 =
∑∞

n,m=0 Pnm ρnm where
Pnm = 1234〈ΨC2

|nm〉34〈nm|ΨC2
〉1234 is a probability of

detecting photons n in mode 3 and m in mode 4. Be-
cause any number of particle loss in mode 3 (4) makes a
collapsed state |2

√
T 〉1 (|2

√
T eiφ〉2) in a single mode (at

least either n = 0 or m = 0), the mixed state can be
written in only two components given by

ρC2

12 = P00 ρ00 +

( ∞
∑

n=1

P0n

)

ρL, (9)

where

P00 =
e4T + 1

e4 + 1
, (10)

0 1 2 3 4 5 N0.0

0.2
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∆Φ

FIG. 2: The optimal phase estimations for NOON, BAT, and
ECSs with no particle loss are depicted in black solid and
blue dashed and red dotted lines (〈n〉 = N/2 = N 2

α · |α|2).
Curves for NOON and BAT states are shown as continuous
for comparison, but are clearly only defined at the appropri-
ate integers N according to Eq. (8). For small N , δφN is
significantly bigger than δφC while δφN ≈ δφC for large N .
The cross point between δN and δB at N = 2 (α ≈ 1.489)
indicates that the NOON and BAT states are identical. The
green and red long dashed lines show the optimal phase esti-
mation of the state given by Eq. (6) in Ref. [19] and Eq. (14),
respectively.

P0n = Pn0 =
4n(1 − T )n

n!
(N2)

2 e4T−4, (11)

ρ00 = |S00〉12〈S00| and

ρL = ρn0 + ρ0n = |Sn0〉12〈Sn0|+ |S0n〉12〈S0n| (12)

given by |S00〉12 = N2
√
T

(

|2
√
T 〉1|0〉2 + |0〉1|2

√
T eiφ〉2

)

,

|Sn0〉12 = |2
√
T 〉1|0〉2, and |S0n〉12 = |0〉1|2

√
T eiφ〉2.

Note that this is a mixture of a small ECS |S00〉12 (for
no loss) and another mixed state ρL (for particle loss),
which is a function of T but (in the end) not a function
of particle loss n.

To calculate quantum Fisher information for the mixed
state ρC2

12 , we truncate at n = 15, which gives a maxi-
mum error of approximately 10−5. The mixed state in
Eq. (9) is then approximately equal to ρ̃C2

12 = P00 ρ̃00 +
(

∑15
n=1 P0n

)

ρ̃L where ρ̃ij = |S̃ij〉12〈S̃ij |, ρ̃L = ρ̃n0+ ρ̃0n.

Using eigenvalues and eigenvectors of the truncated den-
sity matrix ρ̃C2

12 , we obtain the optimal phase estimation
of ρ̃C2

12 depicted in Fig. 3. The optimal phase estimation
of the entangled coherent state clearly improves on that
of NOON, BAT, and uncorrelated states under conditions
of loss, for essentailly the whole range of T . For T ≈ 1,
the value of the entangled coherent state follows that of
the NOON state because |S̃00〉12 is the dominant factor
of ρ̃C2

12 with large probability (see the inset in Fig. 3).
However, it merges to that of the uncorrelated state at
T � 1 because ρ̃L makes a major contribution in ρ̃C2

12 and
is slightly better than the uncorrelated state due to phase
coherence in |S̃0n〉12. We further remark on comparison
with optimal states [15]. Due to the concavity of Fisher
information, the engineering of optimal input states for a
known lossy rate has been considered (so-called “optimal
states”) [15]. These states effectively provide a smooth

0.0 0.2 0.4 0.6 0.8 1.0 T0.0

0.5

1.0

1.5
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2.5
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FIG. 3: The graphs show the phase uncertainty with respect
to particle loss (T : transmisstion rate of the BSs) for four
states (N = 4 and α = 2). The black solid, blue dashed,
and green dash-dotted lines indicate the NOON, BAT, and
uncorrelated states. The red dotted line for the ECS shows
the starting point of φC2

≈ 0.205 at T = 1.
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interpolation between NOON at high T and uncorrelated
at low T , and so ECSs also offer advantage over these
states.

Having demonstrated that moderate-size ECSs offer
advantage with phase estimation, we also need to con-
sider how such states could be implemented in order to
realise this advantage. In principle this is achievable
with current technology. There are basically four stages:
1) Generation of a Schrödinger-cat state |SCSα〉 =

Nα(|α〉 + |−α〉) for Nα = 1/
√

2(1 + e−2|α|2). 2) When

BS
1/2
1,2 is applied with a coherent state |α〉1 and the

Schrödinger-cat state |SCSα〉2, the resultant state be-
comes |ψin

C
α′
〉 = Nα′

(

|α′〉1|0〉2 + |0〉1|α′〉2
)

where α′ =√
2α. Thus, the state |SCS√

2〉 is required for the in-

put state |ψin
C2

〉. According to experimental reports [14],
|SCSα〉 with α ≈ 1.5 are already feasible in optics. 3)
A typical phase shifter in mode 2 is applied and the out-
come state is equal to |ψout

C
α′
〉. 4) Parity measurement is

finally applied in mode 2 [20]. The measurement is given
by the expectation value

〈Π2〉 =
2 + e−|α|2 cosφ

(

e−i|α|2 sinφ + ei|α|
2 sinφ

)

2 + 2e|α|2
(13)

for Π2 = eiπb
†
2
b2 . Thus, the phase variance provided by

the performance of parity measurement is given by

∆φPM =

[

1− 〈Π2〉2
(∂〈Π2〉/∂φ)2

]

1

2

. (14)

As shown in the red long dashed line in Fig. 2, the parity
measurement on the ECS does not saturate the optimal
phase estimation given by the quantum Fisher informa-
tion for this state. However, it still beats the Heisenberg
limit provided by the NOON state—and with an experi-
mentally feasible final measurement stage.

In summary, we have evaluated analytically and nu-
merically the phase uncertainty of the ECS and showed
that the state can beat the Heisenberg limit given by
NOON and other states possessing the same mean par-
ticle number, for the realistic scenarios of small parti-
cle number and loss. In current optical technology, it
is already feasible to obtain a travelling Schrödinger-cat
state which is a key ingredient for the ECS. Although
a final parity measurement would not saturate our de-
rived phase uncertainty bound, such a realistic mea-
surement approach could still demonstrate an advantage
over NOON and other states with current technology.
Mixing squeezed and coherent states and non-linearity
of the phase operation [10] have been recently studied
[21]. Study of the effects of squeezing variables in the
Schrödinger-cat state and investigation of non-linear ef-
fects in the phase operation therefore form very interest-
ing future research avenues.
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discussions. We acknowledge financial support from the
European Commission of the European Union under the
FP7 Integrated Project Q-ESSENCE.
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