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Among the possibly most intriguing aspects of quantum

entanglement is that it comes in “free” and “bound” in-

stances. Bound entangled states require entangled states

in preparation but, once realized, no free entanglement

and therefore no pure maximally entangled pairs can be

regained. Their existence hence certifies an intrinsic irre-

versibility of entanglement in nature and suggests a con-

nection with thermodynamics. In this work, we present

a first experimental unconditional preparation and detec-

tion of a bound entangled state of light. We consider

continuous-variable entanglement, use convex optimiza-

tion to identify regimes rendering its bound character well

certifiable, and realize an experiment that continuously

produced a distributed bound entangled state with an ex-

traordinary and unprecedented significance of more than

ten standard deviations away from both separability and

distillability. Our results show that the approach chosen

allows for the efficient and precise preparation of multi-

mode entangled states of light with various applications

in quantum information, quantum state engineering and

high precision metrology.

The preparation of complex multi-mode entangled states of

light distributed to two or more parties is a necessary start-

ing point for applications in quantum information processing

[1–5], quantum metrology [6–8] as well as for fundamental

physics research. An aggressively pursued example of the lat-

ter is the preparation of the bound instance of entanglement, a

type of entanglement that can only exist in higher-dimensional

or multi-mode quantum states [9]. Bound entanglement is

fundamentally interesting since, in contrast to “free” entan-

glement, it can not be distilled to form fewer copies of more

strongly entangled pure states [9] by any local device allowed

by the rules of quantum mechanics. This irreversible charac-

ter has triggered entire theoretical research programmes [10],

in particular by linking entanglement theory to a thermody-

namical picture, with this irreversibility reminiscent of—but

being inequivalent with—the second law of thermodynam-

ics [11, 12]. In order to investigate such connections both

new theoretical as well as experimental means of constructing

multi-mode states must be innovated.

In recent years, great progress in information process-

ing, metrology and fundamental research has actually been

achieved in the photon counting (discrete variable, DV)

regime using postselection [1–5]. States of light are the

optimal systems for entanglement distribution because they

propagate fast and can preserve their coherence over long

distances. Postselection means that the measurement out-

come of the detectors which characterizes the quantum state

is also used to select the state, conditioned on certain mea-

surement outcomes. In such an approach, conditional appli-

cations are possible, however, an unconditional application of

the states in downstream experiments is conceptually not pos-

sible. Another limitation that any postselected architecture

will eventually face is that without challenging prescriptions

of measurement, quantum memories and conditional feedfor-

ward, the preparation (post-selection) efficiency will exponen-

tially decay with an increasing number of modes. In paral-

lel to postselected architectures of light, unconditional plat-

forms for research in quantum information have been devel-

oped which build on the detection of position and momen-

tum like variables having a continuous spectrum and a Gaus-

sian statistics. In such platforms the preparation efficiency

of one mode is identical to the preparation efficiency of N
modes. In the past, this continuous variable (CV) platform

has been used to demonstrate the Einstein-Podolsky-Rosen

(EPR) paradox [13, 14] and unconditional quantum telepor-

tation [15, 16]. Recently, the CV platform has been extended

to investigate multimode entangled states [17–22]; however,

the significance of their nonclassical properties have typically

been smaller compared to their postselected counterparts.

In this work, we demonstrate the continuous unconditional

preparation of one of the rarest types of multi-mode entan-

gled states – bipartite bound entangled states – using the CV

platform. The property of bound entanglement is verified by

four downstream balanced homodyne detectors with a detec-

tion efficiency of almost unity. Alternatively, our setup can

make available bound entangled states for any downstream

application. The bound entanglement is generated with un-

precedented significance, i.e., with state preparation error bars

small with respect to the distance to the free entanglement

regime and with respect to the distance to the separability

regime. Our result is achieved by the convex optimization

of state preparation parameters, and by introducing the exper-

imental techniques of single-sideband quantum state control

and classical generation of hot squeezed states.

The first ever generation of bound entangled states was

claimed in 2009 [23]. This work used photon counting and

postselection, however, the data presented did not support this

claim, an issue which has been addressed in a comment, see

ref. [24]. In ref. [25] a DV nuclear magnetic resonance state

whose density matrix has a small contribution of bound en-

tanglement has been observed. Such a state has been called

a “pseudo-bound entangled state”. Very recently, the actual

first bound entangled states have been generated in two ex-

periments, both on the basis of discrete variables. In ref. [26]

bipartite bound entangled states of trapped ions have been ver-
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ified by the unconditional detection of resonance fluorescence.

In ref. [27] the first bound entangled states of light have been

generated, albeit of multipartite and not of bipartite nature.

Similar to ref. [23], photon counting and postselection have

been used. An unconditional application of the distributed en-

tanglement in a downstream experiment is hence not possible.

This is now made possible in our work, with a significance of

bound entanglement that has not been achieved using postse-

lection.

Our theoretical search for CV Gaussian bound entangled

states of light begins with three (non-pure) squeezed input

modes and a vacuum mode overlapped on four beam split-

ters acting as phase-gates. This yields several independent

parameters to be chosen that includes three pairs of quadra-

ture variances and the splitting ratios and the relative phases

of the phase-gates. Additional vacuum contributions due to

optical losses at different locations in the experiment have to

be considered as well. As it turns out, bound entanglement

is extremely rare in this multi-dimensional parameter space.

Hence, to theoretically identify suitable regimes for experi-

mental certification is a challenging task: Known examples of

CV bound entangled states, including those of ref. [28], will

have both free entangled and separable states very nearby. Op-

timal entanglement witnesses can be efficiently constructed

for Gaussian states [29], yet to maximize the distance of an

optimal hyperplane separating separable states to the bound-

ary of non-distillable states—hence maximizing robustness of

a preparation—is a non-convex difficult problem. What is

more, a reasonable compromise with the preparation com-

plexity has to be found, with a surprisingly simple feasible

scheme being shown in fig. 1.

We now present the measures required for verifying the

presence of bound entanglement. Since the studied states

are Gaussian they are fully described by their first—which

will not play a role here—and second moments, specified

by the covariance matrix of a state ρ̂ [30–32]. We define

a set of quadratures for each optical mode given by x̂j =

(âj + â†j)/2
1/2 and p̂j = −i(âj − â†j)/2

1/2 where âj , â
†
j are

the annihiliation and creation operators, respectively. Collect-

ing these 2n coordinates in a vector Ô = (x̂1, p̂1, . . . , x̂n, p̂n),

we can write the commutation relations as [Ôj , Ôk] = iσj,k,

where ~ = 1 and is a matrix σ often known as symplectic

matrix. The second moments are embodied in the 2n × 2n
covariance matrix

γj,k = 2Re tr
(

ρ̂(Ôj − dj)(Ôk − dk)
)

, (1)

with dj = tr(ρÔj), giving rise to a real-valued symmetric

matrix γ, see supplementary material.

Verification of bipartite bound entanglement requires show-

ing that the state is entangled (inseparable) with respect to a

bipartition of the modes and that the state remains positive

under partial transposition [9, 28] proving that the state is not

distillable.

The state is said to be entangled if physical covariance ma-

trices γA and γB exist of states in modes A and B, respec-

tively, so real matrices satisfying γA, γB ≥ −iσ, such that

[31, 32]

γ ≥ γA ⊕ γB . (2)

This idea suggests a natural entanglement measure [33] for

Gaussian states, defined as the solution of

E(γ) = 1− max
γA,γB

x (3)

γ ≥ γA ⊕ γB , γA, γB ≥ −ixσ.

E(γ) > 0 indeed implies that the state is entangled. The

above problem is known as a semi-definite program, a convex

optimization problem that can efficiently be solved.

Non-distillability can be tested by evaluating the par-

tial transposition of a state [34] which physically reflects

time reversal. For covariance matrices, partial transposi-

tion amounts to changing the sign of momentum coordinates

or by applying the operation γΓ = MγM , where M =
(1, 1, 1, 1, 1,−1, 1,−1), with a −1 in all momentum coordi-

nates belonging to B. A covariance matrix γ is said to be PPT

if its partial transpose is positive, i.e. is again a legitimate co-

variance matrix, or equivalently, γΓ + iσ ≥ 0. A measure as

to the quantitative extent a state is PPT can be taken to be the

minimum eigenvalue of this matrix,

P (γ) = min eig(γΓ + iσ). (4)

The continuity of the eigenvalues with respect to variations in

the matrix are enough to guarantee that the measure is mean-

ingful. A strictly positive value of P (γ) unambiguously certi-

fies that the state is not distillable.

Finally, we test whether the reconstructed covariance ma-

trix satisfies the Heisenberg uncertainty relation as this is a

test if the matrix corresponds to a physical state. (Unphysical

states might occur if the error bars of the quantum state prepa-

ration or the tomographic characterization are too large.) This

is performed by checking that the inequality

γ + iσ ≥ 0, (5)

is satisfied for the reconstructed state.

RESULTS

Based on our theoretical parameter search our final experi-

mental setup is realized as shown in fig. 1. In total three opti-

cal parameter amplifiers (OPAs), three phase-gates, consisting

of a beam splitter and a piezo mounted mirror, and a vacuum

mode are utilized as the base setup. The four homodyne detec-

tors are only necessary for the verification of bound entangle-

ment but not for its preparation. We set our OPAs to produce

the minimum and maximum vacuum noise normalized vari-

ances to be: (2.0, 3.46) from OPA1, (0.54, 5.16) from OPA2

and finally from OPA3 (0.63, 2.54). The phase-gates were set

to φ1 = 90◦, φ2 = 41◦ and φ3 = 140◦, respectively. The first

OPA produces a classically squeezed (thermal) state we re-

fer to as hot squeezing. It manifests a non-uniform stationary

noise distribution amongst its two quadratures without hav-

ing the smallest quadrature fall below the vacuum noise level.
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FIG. 1. Experimental setup: The experiment is composed of three

optical parametric amplifiers (OPA1−3), three actively controlled

piezo mounted mirrors forming phase-gates (PG1− 3) and four ho-

modyne detectors which are independent of the preparation. The

inset shows the construction of an OPA as a non-linear crystal inside

a resonator producing a spatial TEM00 mode. The bound entangled

state is obtained through the bipartite splitting such that Alice and

Bob each possess two of the four modes.

Hot squeezing is generated when, for example, two amplitude

squeezed modes of different squeezing factors are overlapped

on a 50/50 beam splitter with a relative phase of 90◦, thereby

producing a two-mode squeezed state, but then discarded one

of the output modes to complete the preparation. Without the

presence of hot squeezing, bound entanglement cannot be pre-

pared; it introduces quantum noise giving rise to the subtle

interplay of quantum and classical correlations close to the

boundary of bound entangled and separable quantum states.

We demonstrate that the same state can also be prepared in

a purely classical way by applying a local random displace-

ment on the phase quadrature of a vacuum mode while para-

metrically amplifying the state’s amplitude quadrature. The

stationary random phase modulation is produced by using an

EOM driven with the output from a homodyne detector mea-

suring shot noise. The amplitude modulation is generated by

operating OPA1 in fig. 1 in amplification mode, effectively

anti-squeezing the amplitude quadrature and deamplifying the

thermal noise phase quadrature of the input state. In principle

the random amplitude noise of the first input mode can also

be provided by a second homodyne detector and an amplitude

modulator, thereby replacing the parametric OPA1 device. It

is important to note that pseudo-random numbers could be in-

sufficient in this scheme since they could introduce artificial

correlations and a non-stationary noise into the final state.

In order to hit the tiny regions in parameter space where

bound entanglement does exist we introduce to our setup a

new technique for precisely controlling phase-gates at arbi-

trary angles. This method relies on an optical single-sideband
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FIG. 2. Experimental results: The state measured after 4 million sets

of raw quadrature data points yields the entanglement E and non-

distillability P indicated by the red cross. Other 104 points are ob-

tained by bootstrapping the original 4 million data points and show

that we are 16σ away from separability and 46σ away from distil-

lability. In the inset we depict the minimum eigenvalue of γ + iσ

of each of the 10
4 bootstrapped correlation matrices, showing that

they are significantly far away from the boundary of covariance ma-

trices allowed by the uncertainty principle. The fact that the involved

states are Gaussian up to the experimental accuracy reached, as can

be assessed by estimating higher cumulants.

scheme (see supplementary material) that can be used to ar-

bitrarily and independently set the working point of both a

phase-gate network and multiple homodyne detectors. This

scheme reduces setting the relative phase between interfering

modes to selecting the electronic demodulation phase used in

the control loop. A portion of the light leaving the phase-

gates, PG1-3 in fig. 1, is redirected to control photodetec-

tors. We are able to derive a strong error-signal by tapping

only 1µW of power corresponding to no more than 1% of the

signal mode’s optical power. For applications where delicate

quantum states must remain free from losses our method pro-

vides a means by which they can still be used for controlled

interference without significant vacuum contribution due to

loss.

The four balanced homodyne detectors are used for the full

tomographic reconstruction of the covariance matrix. The

results of the reconstruction are used to evaluate two char-

acteristics of the state; namely, its entanglement E eq. (4)

and its PPTness P eq. (4). In order to build the statistics of

these characteristics we first continuously recorded 4 million

data points from the amplitude and phase quadratures of each

mode. Using the bootstrapping method, we then randomly

sampled from the total 4 million points, with uniform distri-

bution, points that were different, and produced a series of

covariance matrices from which the entanglement, PPT and

physical properties were calculated. Our results are repre-
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sented in fig. 2 by the black points. The red cross corresponds

to the average state inferred from the total data set. The ab-

scissa of fig. 2 is the PPTness and the ordinate the entangle-

ment. By projecting the scatter plot onto the respective axes

we calculate a significance of 46σ away from being distill-

able, i.e., P (γ) < 0 and 16σ away from being separable, i.e.,

E(γ) ≤ 0. To demonstrate that the generated state is not close

to the boundary of state space (and to confirm its physicality)

eq. (5) is also depicted: This is shown in the inset as a his-

togram. The fact that it is more than 50σ away from being

unphysical can be seen as an indication of the fact that our

setup was stable over the entire measurement time and that

our measured data exhibited little statistical uncertainty.

DISCUSSION

Our results present the first unconditional preparation of

bound entangled states of a physical system characterized by

(continuous) position/momentum-like variables. With respect

to systems composed of light, we demonstrate the first un-

conditional preparation of bound entanglement, and achieve

an unprecedented significance of its features. Independent of

any postselection, our platforms allows for the distribution of

the entangled states. As other states of light our bound entan-

gled states can be distributed to remote parties, which might

be kilometers apart using optical fibers [35]. The decoher-

ence on bound entangled states due to photon loss and phase

noise [36] and the ineffectiveness of distillation schemes [37]

can be tested, as well as the applicability of thermodynamical

pictures of entanglement be studied experimentally.

Our results clearly exemplify the potential of the continu-

ous variable platform for the precise engineering of complex

multi-mode states of light. We underline that using this plat-

form the state preparation efficiency does not depend on the

number of entangled modes. That is to say, detecting, for ex-

ample, one squeezed mode with one homodyne detector has

exactly the same efficiency as detecting N squeezed states

with N homodyne detectors simultaneously. Furthermore, we

estimate our total quantum detection efficient to be between

90-95% being already considered in the preparation of bound

entanglement. Alternatively, this loss could be mapped di-

rectly onto the measured state by inclusion of neutral density

filters, and verification with perfect detectors would reveal the

same statistics as depicted in fig. 2.

We believe that the precise and unconditional preparation

of (bi-partite) bound entangled states of light demonstrated

uplifts the theoretical and experimental research on the link

between entanglement theory and statistical physics. From

a more general and also technological perspective, the high

efficiency and the high degree of control in multimode

quantum state preparation achieved certainly promotes the

application of the unconditional continuous variable platform

for the preparation of quantum states of light for fundamental

research as well as quantum metrology.

METHODS

Details of entanglement criteria

Explicitly, for n modes the symplectic matrix σ reads as

σ =

n
⊕

j=1

(

0 1
−1 0

)

. (6)

The Heisenberg uncertainty relation, expressed in terms of

the covariance matrix [30], is given by

γ + iσ ≥ 0. (7)

Such operator valued inequalities A ≥ B for Hermitian A
and B always refer to operator ordering, meaning that the real

eigenvalues of A − B are non-negative. The above measure

E for covariance matrices, eq. (4), indeed indicates entangle-

ment in states [33], and for two modes this is essentially noth-

ing but the familiar negativity [38–40].

In the above discussion we show that the spectrum of γ +
iσ is bounded from below by ε > 0, hence manifesting the

Heisenberg uncertainty principle. It is worth mentioning that

this also means that the smallest symplectic eigenvalue s1(γ)
of γ is bounded away from 1.

Identifying robust bound entangled states

The relative volume of bound entangled states compared to

all states is very small under every reasonable measure, and

any verification as pursued here necessarily requires a care-

ful analysis as to what parameter regime is most suitable. In

this subsection, we report techniques that have been used to

identify regimes of robust bound entangled states. We explore

the space of correlation matrices considering the most general

correlation matrix, modulo unitary local operations that do not

change the entanglement properties of the system:

In order to find more robust states, we look at all physical

covariance matrices, once the irrelevant parameters are taken

away. The most general such covariance matrix of 4 modes,

up to local unitaries that will not alter any entanglement prop-

erties, is of the form

γ =























λ1 0 0 0 λ5 0 λ9 λ10

0 λ1 0 0 0 λ6 λ11 λ12

0 0 λ2 0 λ13 λ14 λ7 0
0 0 0 λ2 λ15 λ16 0 λ8

λ5 0 λ13 λ15 λ3 0 0 0
0 λ6 λ14 λ16 0 λ3 0 0
λ9 λ11 λ7 0 0 0 λ4 0
λ10 λ12 0 λ8 0 0 0 λ4























. (8)

Once a state is obtained we now search for variations in which

both P (γ) and E(γ) increase. Thus, the state after a success-

ful variation will be “significantly bound entangled”. This

search was performed in a combination of using witnesses

[29], accompanied with Monte Carlo sampling and running
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a semi-definite problem in each step. The most suitable state,

as quantified by the biggest value of min{E(γ), P (γ)}, are

characterized by an entanglement value of E(γ) = 0.054 and

P (γ) = 0.132, giving an idea of the limiting values that one

can achieve.

However, experimentally it is too expensive to engineer a

state with an arbitrary correlation matrix. We thus construct a

circuit which, starting from a product of noisy Gaussian sin-

gle mode states, can produce bound entangled states, but is

simple enough to be producible in the lab with available tech-

nology. A (non unique) example of such a circuit is plotted in

fig. 1. The resulting scheme is a result of a variation within

the above parameterized family of circuits, maximizing the

statistical significance of being bound entangled by running

semi-definite problems in each step. Afterwards we filter the

results allowing only those which require achievable values of

squeezing at the input and which only require a single mode

with hot squeezing, as this is also a precious resource that, at

the moment, can only be input in a single mode. Within the

resulting states we choose the most robust according to the

aforementioned criteria.

Details of the experiment

The three OPAs used to produce the underlying quadrature

squeezing at sideband frequency of 6.4 MHz were constructed

from a type I non-critically phase-matched MgO:LiNbO
3

crystal inside a standing wave resonator, similar to the de-

sign that previously has been used in ref. [41]. They were

pumped with approximately 100 mW of green light at 532 nm

each resulting in a classical gain of about 5. The length of

the OPA cavity as well as the phase of the second harmonic

pump beam were controlled using radio-frequency modula-

tion/demodulation techniques.

Balanced homodyne detection was performed on each of

the four modes in order to reconstruct the 8×8 covariance ma-

trix. The optical local oscillator was filtered through a three

mirror ring cavity operated in high finesse mode resulting in

a linewidth of 55 kHz. The detector difference currents were

electronically mixed with a 6.4 MHz local oscillator and low-

pass filtered with a 400 kHz bandwidth. The dark noise sepa-

ration from shot noise was measured to be more than 10 dB for

each detector. The raw data was acquired using a 14 bit Na-

tional Instruments DAQ-card and in total eight measurement

settings including the shot noise measurement were required

in order to reconstruct the covariance matrix.

The hot squeezed states were generated by randomly phase

modulating the control beam used to set the length of the

OPA cavity at the squeezing sideband frequency, 6.4 MHz,

and locking the OPA cavity in amplification. This produces

phase squeezed states whose smallest quadrature can be con-

trolled by varying the strength of the random noise modulated

on the control field and whose amplitude quadrature is con-

trolled by the degree of classical gain.

The single-sideband was generated by overlapping the

output of a second laser operating at around 1064 nm with the

bright output of OPA1. The beams were phase-locked at a

beat frequency of 15 MHz resulting in a field that corresponds

to both a phase and amplitude modulation. The beat was

detected by directing approximately 1% of the phase-gate

outputs to photodetectors placed behind the phase-gates as

well as in each homodyne detector. The relative phase be-

tween the carriers at both the phase-gates and the homodyne

detectors could then be set to an arbitrary phase simply by

changing the demodulation phase of the electronic local

oscillator. We estimate a phase sensitivity at each phase-gate

to be approximately 2 deg.
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