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The tensor rank (also known as generalized Schmidt rank) of multipartite pure states plays an important

role in the study of entanglement classifications and transformations. We employ powerful tools from the

theory of homogeneous polynomials to investigate the tensor rank of symmetric states such as the

tripartite state jW3i ¼ 1
ffiffi

3
p ðj100i þ j010i þ j001iÞ and its N-partite generalization jWNi. Previous tensor

rank estimates are dramatically improved and we show that (i) three copies of jW3i have a rank of either

15 or 16, (ii) two copies of jWNi have a rank of 3N ( 2, and (iii) n copies of jWNi have a rank of OðNÞ. A
remarkable consequence of these results is that certain multipartite transformations, impossible even

probabilistically, can become possible when performed in multiple-copy bunches or when assisted by

some catalyzing state. This effect is impossible for bipartite pure states.
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Multipartite entanglement has attracted increasing atten-

tion due to its intriguing properties and potential applications

in both quantum information processing and condensedmat-

ter physics [1,2]. A central question in the subject concerns

the convertibility between different multipartite entangled

states by using local operations and classical communica-

tions (LOCC). If such a protocol is only stochastic

(i.e., occurs with a nonzero probability) then we say that

the two states are convertiblevia stochasticLOCC(SLOCC);

when the transformation is reversible, the two states are

called SLOCC equivalent. In bipartite systems, SLOCC

convertibility is characterized by the Schmidt rank of the

state: bipartite jc i is SLOCC convertible to j%i if and only if
the Schmidt rank of jc i is no smaller than that of j%i.

A generalization of the Schmidt rank in multipartite

systems and also relevant to SLOCC transformations is

the tensor rank. Formally, for states in N-partite quantum

systems, each of which is described by a d-dimensional

Hilbert spaceH i (i ¼ 1; . . . ; N), the tensor rank rkðc Þ of a
state jc i 2 N

N
)¼1H ), defined as the smallest number of

product states fNN
)¼1 j%)

i igi¼1...rkðc Þ whose linear span

contains jc i. The tensor rank has been extensively studied
in algebraic complexity theory [3,4], and while it is easy to

compute for N ¼ 2 (Schmidt rank), even for N ¼ 3, de-
termining the rank of a state is NP hard [5]. This is one

reason why SLOCC convertibility in multipartite systems

is so challenging.

Despite this general difficulty, the analysis becomes less

formidable when certain classes of states are considered

such as symmetric states, i.e., those invariant under any

permutation of its parties. Recently, symmetric states have

received much attention in the study of entanglement mea-

sures [6,7] and bound entanglement [8]. Furthermore, the

entanglement transformation properties of symmetric states

have been investigated [9] and experimental procedures

have been designed which use symmetric states in generat-

ing families ofmultiqubit SLOCCequivalent states [10,11].

There is a natural correspondence between symmetric

tensors and symmetric polynomials where the theory of

homogeneous polynomials can be used to study the latter.

As we will explore in greater detail, every homogenous

polynomial possesses a quantity called the polynomial rank

which is closely related to the tensor rank. The relationship

between the two ranks allows for known results on the

polynomial rank to be used directly on tensor rank estima-

tions [12]. This method will prove to be quite powerful.

It is easy to see that the tensor rank is anSLOCCmonotone:

if jc i can be transformed into j%i via SLOCC, then rkðc Þ ,
rkð%Þ. In general the converse is not true [13]; however,

for any state SLOCC equivalent to the d-level N-partite

Greenberger-Horne-Zeilinger (GHZ) state jGHZd
Ni ¼

1
ffiffi

d
p

P

d
i¼1 jii-N , tensor rank does decide convertibility [14].

Observation 1.—A GHZ-equivalent state jc GHZi can be

SLOCC transformed into j%i iff rkðc GHZÞ , rkð%Þ. h

Two related types of phenomena studied in entanglement

theory are multicopy and entanglement-assisted entangle-

ment transformations. Given a source state jc i and a target
state j%i, if there is an integer k such that the transformation

of jc i-k to j%i-k can be achieved by LOCC, then we say

that jc i can be transformed to j%i by multiple-copy
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entanglement transformation (MLOCC). Similarly, if there

is a state jci such that the transformation of jc i - jci to
j%i - jci is possible by LOCC, then we say that jc i can be
transformed to j%i by entanglement-assisted (or catalytic)

transformation (ELOCC). The state jci is called a catalyst

for the transformation. For bipartite pure states, it is known

that both MLOCC and ELOCC are strictly more powerful

than ordinary LOCC [15,16]. In the stochastic versions of

multiple-copy and entanglement-assisted transformations

(SMLOCC and SELOCC, respectively) we are only con-

cerned with nonvanishing success probability. For bipartite

pure states, a transformation is realizable by SLOCC if and

only if it is possible by SMLOCC or SELOCC, because of

the multiplicativity of the Schmidt rank: Schð. -/Þ ¼
Schð.ÞSchð/Þ. Thus, there is no stochastic entanglement

catalysis in bipartite systems.

In thisLetter,we advanceboth topics ofmultipartite tensor

ranks and SMLOCC/SELOCC transformations while dem-

onstrating how results of the first have unexpected conse-

quences for the second. As we show, since tensor rank is not

multiplicative, there exist instances when the use of multiple

copies or a catalyst can increase the conversion probability of

some transformation from zero to positive. In the first part of

the Letter, we describe the correspondence between homo-

geneous polynomials and symmetric states, and use it to

bound the tensor rank of various multipartite symmetric

states. In the second part, we derive some general properties

of SMLOCC and SELOCC transformations and then use

results from the first part to demonstrate the feasibility of

certain SMLOCC and SELOCC transformations when their

corresponding SLOCC conversions are impossible.

Homogeneous polynomials and symmetric states.—A

symmetric multipartite state is one that is invariant under

any permutation of the parties, jW3i provides a tripartite

example. For such a state jc i, we can ask not only about

its tensor rank, but also about its symmetric tensor rank

srkðc Þ: the smallest number of symmetric product states

fj%ii-ngi¼1;...;srkðc Þ to provide an expansion jc i ¼
Psrkðc Þ

i¼1 j%ii-n. To estimate srkðc Þ [and thus rkðc Þ] we

introduce a correspondence between symmetric states

and homogeneous polynomials.

A homogeneous polynomial h of order N in d variables

x1; . . . ; xd is a linear combination of monomials xj ¼
xj11 ; . . . ; x

jd
d (with a multi-index j ¼ j1; . . . ; jd); i.e., it has

the form h ¼ hðx1; . . . ; xdÞ ¼
P

j¼j1;...;jn
aj

Q

d
i¼1 x

ji
i , where

the sum extends over all multi-indices with
P

d
i¼1 ji ¼ N.

Every homogeneous polynomial has a symmetric decom-

position h ¼ PprðhÞ
i¼1 ð21;ix1 þ . . . þ 2n;ixdÞN , with the

minimum number prðhÞ of power terms. We refer to this

number as the polynomial rank of h. The computation and

estimation of polynomial rank is a much-studied problem

in algebraic geometry [12,17].

Now, introducing a computational basis fj1i; . . . ; jdig of
the d-dimensional local systems H ), a monomial xj is

associated with the Dicke state defined as

jDðjÞi :¼ N
j1 . . . jd

% &

1=2

Psymðj1i-j1 - . . . - jdi-jdÞ;

where Psym is the projection onto the bosonic (fully sym-

metric) subspace, Psym ¼ 1
N!

P

52SN
U5, the sum extending

over all permutation operators U5 of the N systems.

General homogeneous polynomials (symmetric states)

are associated by linear extension of the above since mono-

mials (Dicke states) form a basis for the homogeneous

polynomials (symmetric states). That is

Observation 2.—Every symmetric state jc i 2 ðCdÞ-N is

uniquely associated with a homogeneous polynomial hðc Þ
of orderN in d variables, and vice versa each homogeneous

polynomial h is associated with a symmetric state jhi, such
that hðDðjÞÞ ¼ xj and jxji ¼ jDðjÞi. Under this identifica-
tion, symmetric tensor rank and polynomial rank are iden-

tical: prðhÞ ¼ srkðhÞ. h

E.g., two copies of jW3i read jW3i-2 ¼ ðj003i þ j030i þ
j300iÞ þ ðj012i þ j021i þ j102i þ j120i þ j201i þ j210iÞ,
which is a sum of two Dicke states having corresponding

homogenous polynomials x0x0x3 and x0x1x2. These

have symmetric expansions x0x0x3 ¼ 1
6
ððx0 þ x3Þ3 (

ðx0 ( x3Þ3 ( 2x33Þ and x0x1x2 ¼ 1
24
ððx0 þ x1 þ x2Þ3 (

ð(x0 þ x1 þ x2Þ3 ( ðx0 ( x1 þ x2Þ3 ( ðx0 þ x1 ( x2Þ3Þ,
thus rkðW-2

3 Þ / srkðW-2
3 Þ / 7, which is tight [18].

Using observation 1, we prove the following relations

between unrestricted and symmetric tensor ranks.

Theorem 3.—(a) For multiqubit Dicke states

jDðm; nÞi :¼ Psymðj0-m; 1-niÞ with m , n, rkðDðm; nÞÞ ¼
srkðDðm; nÞÞ ¼ mþ 1, (b) for any N-partite symmetric

state jc i, rkðc Þ / srkðc Þ / 2N(1rkðc Þ, (c) limn!12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

srkðc -nÞn
p

¼ limn!1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rkðc -nÞn
p

.

Proof.—(a) The second equality follows from [17],

Cor. 4.5, and it always holds that rkðDðm; nÞÞ /
srkðDðm; nÞÞ. So to prove the first equality, it suffices

to show that the lower bound of rkðDðm; nÞÞ equals

mþ 1 too. We use induction on n. For n ¼ 1,
the claim is true [13], and we assume it holds for

n( 1. Ignoring normalization, we can rewrite the state

as jDðm; nÞi ¼ jDðm; n( 2Þij11i þ jDðm( 1; n( 1Þi2
ðj01i þ j10iÞ þ jDðm( 2; nÞij00i. Now we perform the

global operation j1ih11j þ 1
2
j0iðh01j þ h10jÞ on the last

two systems which cannot increase the rank. The resulting

(mþ n( 1)-partite state is just the Dicke state jDðm;
n( 1Þi and so rkðDðm; nÞÞ , rkðDðm; n( 1ÞÞ ¼ mþ 1.
(b) Suppose that jc i has an optimal product state ex-

pansion
Prkðc Þ

i¼1 jAii - . . . - jNii. As jc i is symmetric, we

have jc i ¼ Prkðc Þ
i¼1 PsymðjAii - . . . - jNiiÞ. But this is just

a sum of rkðc Þ Dicke states, each one corresponding to the
monomial xAi

; . . . ; xNi
. From [17], Prop. 11.6,

prðxAi
; . . . ; xNi

Þ / 2N(1 which proves the claim.

Part (c) follows directly from (b). h

Three copies of jW3i.—By observation 2, the homoge-

neous polynomial hðW-3
3 Þ can be written as 2

9
ðx0x1x6 þ

x0x2x5 þ x0x3x4 þ x1x2x4Þ þ 1
9
x20x7. To compute its
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polynomial rank, we perform the following linear trans-

formations which do not change the polynomial rank: y1 ¼
x1 þ x2 ( x4, y2 ¼ x1 ( x2 þ x4, y4 ¼ (x1 þ x2 þ x4,
z3 ¼ 1=2ðx3 þ x5Þ, z5 ¼ 1=2ðx3 þ x6Þ, z6 ¼ 1=2ðx5 þ
x6Þ. By using the fact that the polynomial rank is invariant

under scalar multiplication, we can remove constant

coefficients and obtain prðhðW-3
3 ÞÞ / prðx0y1z6 ( y31Þþ

prðx0y2z5 ( y32Þ þ prðx0y4z3 ( y34Þ þ prððy1 þ y2 þ y4Þ3þ
x20x7Þ / 16. Here, the inequalities follow from

[17], Table 2. With the lower bound rkðW-3
3 Þ , 15 [18],

we have

Theorem 4.—(a) rkðW-3
3 Þ ¼ 15 or 16, (b) limn!12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rkðW-n
3 Þn

q

/
ffiffiffiffiffiffi

163
p

4 2:52. h

This improves the previously best bound of rkðW-3
3 Þ /

21 [18]. In particular, Theorem 4 implies that two tripartite

GHZ-type states with tensor rank 4 are sufficient to prepare

three jW3i states under SLOCC.
Upper bound on the tensor rank of jWNi-n.—The

N-partite W state is defined as the Dicke state jWNi ¼
1
ffiffiffi

N
p ðj0 . . . 01i þ . . .þ j10 . . . 0iÞ 2 ðC2Þ-N . As jWNi-n will
be a linear combination of Dicke states, we can obtain an

upper bound for rkðW-n
N Þ by adding up the tensor ranks of

each component Dicke state. Now each one of these cor-

responds exactly to a different way of separating n distinct

excitations j1i into k ¼ 1; 2; . . . ; N local states. This num-

ber is equal to the Stirling number of the second kind,

namely Sðn; kÞ ¼ 1
k!

P

k
i¼0ð(1Þk(i k

i

% &

in, where we only

have to consider k / n as any larger number of parties is

taken care of by the symmetrization.

For example, Sð3; 2Þ ¼ 3 which implies that there

are three ways of separating three excitations into

two local systems, namely j0-3; . . . ; 0-3; 100; 011i,
j0-3; . . . ; 0-3; 010; 101i, and j0-3; . . . ; 0-3; 001; 110i. By

permuting the local states, each of these generates a

Dicke state with corresponding monomials xN(2
0 x4x3,

xN(2
0 x2x5 and xN(2

0 x1x6, respectively.
Since each of the Sðn; kÞ monomials representing the

same separation (n ! k) are related by a simple change in

variables, each will have the same polynomial rank. Then

by adding up all separations we obtain rkðW-n
N Þ /

PminfN;ng
k¼1 Sðn; kÞprðxN(k

0 x1 . . . xkÞ /
PminfN;ng

k¼1 Sðn; kÞ2
ð1þmaxfN ( k; kgÞ2k(1, where the second inequality fol-

lows from [17], Cor. 4.5 and Prop. 11.6. In particular, this

bound is of the form fðnÞN þ gðnÞ with some functions

fðnÞ and gðnÞ. In other words,

Theorem 5.—rkðW-n
N Þ is upper bounded by a linear

function in N. Thus for large N, jWNi-n can be pre-

pared by LOCC from a GHZ-type state of rank linear

in N. h

The large-n behavior of this bound is not very good, but

based on a simple asymptotic consideration of the Stirling

numbers for n 4 logN, we find that

Corollary 6.—limn!1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rkðW-n
N Þn

p

/ OðlogNÞ. h

Lower bound on the tensor rank of jWNi-n.

Lemma 7.—Any state of the form jBi ¼ jWN(1i-n þ
P

n
k¼1

P

52SN
c5kU5ðjWN(1i-kj0N(1i-ðn(kÞÞ is SLOCC

equivalent to jWN(1i-n.
Proof.—We perform successively invertible SLOCC

transformations on jBi, each transformation eliminating

a term in the double sum. For instance, applying the trans-

formation jWN(1i ! jWN(1i ( c5kj0N(1i, j0N(1i !
j0N(1i on jBi by local invertible operators will eliminate

the term U5ðjWN(1i-kj0N(1i-ðn(kÞÞ. The procedure is re-

peated on all terms in the sum until just jWN(1i-n
remains. h

To prove a lower bound, note that rkðW-n
N Þ is the mini-

mum number of product states whose linear span contains

the set S ¼ fjWN(1i; j0N(1ig-n. Each of these product

states can be substituted with an element from S n
fjWN(1i-ng to yield a new set whose linear span also

contains S. Thus, jWN(1i-n is a linear combination of

elements from S n fjWN(1i-ng and at most rkðW-n
N Þ (

ð2n ( 1Þ product states. Thus by Lemma 7 we get

rkðW-n
N(1Þ / rkðW-n

N Þ ( ð2n ( 1Þ. As proven in [18], for

N ¼ 3, 2nþ1 ( 1 / rkðW-n
3 Þ. From these two inequalities,

a simple inductive argument provides part (a) in the next

theorem; part (b) then immediately follows after observing

that Theorem 5 reads rkðjWNi-2Þ / 3N ( 2 when n ¼ 2.
Theorem 8.—(a) rkðW-n

N Þ , ðN ( 1Þ2n ( N þ 2,
(b) rkðW-2

N Þ ¼ 3N ( 2. h

Multicopy and catalytic SLOCC transformations.—We

now move on to the topic of SLOCC catalysis for multi-

partite entanglement transformations. Let H ¼
N

n
k¼1H k and H 0 ¼ N

n
k¼1H

0
k be n-partite quantum

systems, and consider H k and H 0
k to be orthogonal to

each other. Let jc 0i and jc 1i be two vectors fromH and

H 0, respectively. Then the direct sum of jc 0i and j%1i is
given by jc 0i 7 jc 1i 2H 7H 0 8 N

n
k¼1ðH k 7H 0

kÞ.
Notice that when j%1i ¼ -n

k¼1Lkjc 1i and j%2i ¼
-n
k¼1L

0
kjc 2i, we simply have j%1i 7 j%2i ¼

N

n
k¼1ðLk 7

L0
kÞðjc 1i 7 jc 2iÞ. By induction one can immediately show

that the SLOCC ordering is preserved under direct sums.

Lemma 9.—If jc ki can be transformed into j%ki via

SLOCC, then
L

kjc ki can also be transformed into
L

kj%ki via SLOCC. h

We can use Lemma 9 to get a general relation between

SMLOCC and SELOCC. Assume that jc i-n can be trans-

formed into j%i-n via SLOCC for some n , 1. Then by

choosing jci ¼ L

n
k¼1 jc i-n(k - j%i-k, the result that

jc i - jci can be transformed to j%i - jci via SLOCC

follows from Lemma 9. So we get, similar to [19,20]:

Theorem 10.—If jc i can be transformed to j%i via

SMLOCC, then the same transformation can also be

achieved via SELOCC. h

By observation 1, to demonstrate the effect of entangle-

ment catalysis, we only need to find a state j%i with the

following property: rkð%Þ ¼ n and there is some k , 1
such that rkð%-kÞ / ðn( 1Þk. The source state jc i can be

chosen as an n-partite GHZ state with tensor rank (n( 1).
Such states j%i do exist as proven in the previous section.
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In the following we shall provide two different construc-

tions. The first class is given by the famous tripartite matrix

multiplication tensor and the second one is given by the

WN states. By Theorem 10 these also suffice to show the

existence of SELOCC transformations when the uncata-

lyzed transformation is impossible.

Theorem 11.—Let j/ð3Þi ¼ j/2iAB - j/2iBC - j/2iCA,
where j/2i ¼ j00i þ j11i, and let jc iABC be any general-

ized GHZ-type state with tensor rank 6. Then the trans-

formation of jc i to j/ð3Þi cannot be realized by SLOCC

but can be realized by both SMLOCC and SELOCC.

Proof.—It has been shown that j/ð3Þi is just the 22 2
matrix multiplication tensor [14,21]. By a well known

result in algebraic complexity theory, rkð/ð3ÞÞ ¼ 7> 6
[22]. Hence, jc i cannot be SLOCC transformed into

j/ð3Þi. The best known algorithm for d2 d matrix multi-

plication requires Oðd2:376Þ multiplication steps [23].

Hence the tensor rank of j/ð3Þi-n, which corresponds to

the algebraic complexity of 2n 2 2n matrix multiplication,

is Oð22:376nÞ. On the other hand, the tensor rank of j.i-n is
simply 6n ¼ 2ðlog26Þn 4 22:585n, which is larger than

Oð22:376nÞ for sufficiently large n. Thus we have confirmed

the existence of n (perhaps very large) such that rkð.-nÞ ,
rkðð/ð3ÞÞ-nÞ. Both SMLOCC and SELOCC are possible.h

If we consider multipartite rather than tripartite state

spaces, the W states provide much simpler examples.

Theorem 12.—For any N , 5 the transformation of

jGHZN(1
N i to jWNi cannot be realized by SLOCC but can

be achieved by both SMLOCC and SELOCC.

Furthermore, two copies are sufficient in SMLOCC, and

the catalyst in SELOCC can be chosen as jWNi 7
jGHZN(1

N i.
Proof.—The result follows immediately from the facts

that rkðW-2
N Þ ¼ 3N ( 2 in Theorem 8 and ðN ( 1Þ2 ,

3N ( 2 for N , 5. One can easily see that the rank of

the GHZ state can indeed be chosen as d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3N ( 2
p

e, which is
much smaller than N ( 1 for N ; 1. h

Conclusions.—We have shown that the theory of homo-

geneous polynomials can be used to obtain insights on the

symmetric tensor rank of symmetric states. Via this con-

nection, we proved upper and lower bounds on the tensor

rank for one and multiple copies ofWN states as well as the

exact tensor and symmetric tensor rank of multiqubit

Dicke states. We then proceeded to show that multicopy

and catalytic activation of otherwise impossible SLOCC

transformations exists, using our results on WN states to

find explicit low-dimensional examples.

Our work suggests several open questions which we

leave for future investigation. First, given two states jc i
and j%i, what are the necessary and sufficient conditions

such that jc i can be converted to j%i under SMLOCC and

SELOCC? When jc i is a generalized GHZ state, the

question becomes completely a matter of tensor rank

multiplicativity. Asked in a different way, for some target

state j%i, when does there exist a state jc i such that

transformation jc i to j%i is possible under SMLOCC

and SELOCC but impossible with just single copies.

Another relevant problem is to determine the asymptotic

tensor rank of jW3i, and more generally of jWNi. Note that
our lower bound of 2 coincides with the border rank [24]. It

is conceivable that the asymptotic rank is 2 for all N, but

even an improvement of our logarithmic upper bound

would be interesting.
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