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We introduce a class of variational states to describe quantum many-body systems. This class generalizes
matrix product states which underlie the density-matrix renormalization-group approach by combining them
with weighted graph states. States within this class may sid possess arbitrarily long-ranged two-point correla-
tions, siid exhibit an arbitrary degree of block entanglement entropy up to a volume law, siiid be taken
translationally invariant, while at the same time sivd local properties and two-point correlations can be com-
puted efficiently. This variational class of states can be thought of as being prepared from matrix product states,
followed by commuting unitaries on arbitrary constituents, hence truly generalizing both matrix product and
weighted graph states. We use this class of states to formulate a renormalization algorithm with graph enhance-
ment and present numerical examples, demonstrating that improvements over density-matrix renormalization-
group simulations can be achieved in the simulation of ground states and quantum algorithms. Further gener-
alizations, e.g., to higher spatial dimensions, are outlined.
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I. INTRODUCTION

Strongly correlated quantum systems give rise to a num-
ber of intriguing phenomena in condensed-matter systems
such as the existence of rare-earth magnetic insulators or
high-temperature superconductors. The classical description
or analytic solution of such quantum many-body systems is
however difficult in general, as entanglement and interac-
tions cannot be neglected and the dimension of the underly-
ing Hilbert space grows exponential with the number of con-
stituent particles. Nevertheless, a number of powerful
classical simulation methods have been developed and suc-
cessfully applied, including variational approaches such as,
e.g., the density-matrix renormalization group sDMRGd f1,2g
and their generalizations f3–5g.

The key problem in such variational approaches is to
identify families of states that show the relevant features of
the system in question and which at the same time can be
efficiently described and analyzed. DMRG can indeed be
seen as the variation over the family of matrix product states
sMPSsd f6–9g described by a polynomial number of param-
eters. The power and limitation of DMRG sand related meth-
odsd can be understood from the entanglement features of the
MPSs, where, e.g., correlations decay exponentially and
blockwise entanglement fulfills an area law f10g. Other fami-
lies such as weighted graph states sWGSsd f11–13g can em-

body long-ranged correlations in any spatial dimension and
blockwise entanglement scaling with the volume, as is, e.g.,
the case for time evolution f14g but do not seem to grasp
short-range properties as well as MPSs do f15g.

Given the complementary strength of MPS and WGS, it
seems natural to attempt a unification of the two approaches.
Here we show that this is indeed possible; i.e., we describe a
variational method based on a family of states which com-
bines the favorable features of MPS and WGS while main-
taining the possibility to efficiently calculate local properties
and correlation functions. We demonstrate the applicability
and performance as well as limitations of the new method for
ground-state approximation. The relevance of this unification
is however not only limited to ground-state approximation
but can also be employed to simulate time evolution and
certain kinds of quantum computations. In fact, we demon-
strate that the method is suited to simulate certain quantum
circuits and algorithms, which in turn leads to classical algo-
rithms for the corresponding problems.

On a more fundamental level, we contribute toward an
improved understanding of the border line between the clas-
sical and the quantum. In particular, our results give insights
on the responsible features of quantum mechanics that make
quantum computers potentially more powerful than classical
devices and on the conditions under which an efficient clas-
sical simulation of quantum systems is possible. It turns out
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that small sblockwised entanglement sas in MPSd, the sole
usage of commuting operations sas for WGSd, or special gate
sets sClifford circuitsd are not necessary to guarantee an ef-
ficient classical simulation. In fact, the family of states we
introduce allows us to continuously interpolate between
these extreme cases.

This paper has the following structure. In Sec. II, we dis-
cuss the renormalization algorithm with graph enhancement
sRAGEd class of variational states and investigate their prop-
erties and relations to matrix product states and graph states.
In Sec. III, we show how to compute reduced density
matrices—the fundamental object for the evaluation of ex-
pectation values of local operators—of this state class effi-
ciently. In Sec. IV, we show how to update the parameters of
the RAGE states in order to minimize ground-state energies
and to maximize overlaps in a time evolution algorithm. Be-
sides stating the algorithmical principle, the snumericald re-
sults of applications to example problems are given. In Secs.
V and VI, we discuss possible generalizations of the RAGE
class and conclude this paper.

II. RENORMALIZATION ALGORITHM

WITH GRAPH ENHANCEMENT

We start from MPS of a quantum chain of length N,
consisting of d-level systems, as used in DMRG f6–9g,

ucsAdl ª o
s1,. . .,sN=0

d−1

trfAs1

s1d
¯ AsN

sNdgus1, . . . ,sNl , s1d

where the Asn

snd are complex D3D matrices. For open bound-

ary conditions, the leftmost and rightmost matrices can be
taken to be vectors. For simplicity of notation, but in a way
that can be trivially generalized, we now fix d=2. MPSs
have correlation functions

kZsjdZsj+kdl − kZsjdlkZsj+kdl ,

exponentially decaying in k and satisfy an area law f10g by
construction f16g. An area law in one dimension implies that
any Renyi entropy Sa of the reduced state of a block of L
contiguous spins will eventually saturate fSasrLd=Os1dg;
many ground states possess this property and hence a good
and economical MPS approximation of them is possible f17g.

Now we go beyond this picture and apply to the MPS any
set of commuting unitaries between any two constituents,
irrespective of the distance. More specifically, we consider
the adjacency matrix F of a weighted simple graph with
Fk,lP f0,2pd and apply without loss of generality the corre-
sponding phase gates,

UsFk,ld ª u0,0lk0,0u + u0,1lk0,1u + u1,0lk1,0u

+ u1,1lk1,1ueiFk,l, s2d

between the particles k , l in the chain. Finally, we apply local
rotations V jPUs2d to arrive at the variational class of states
defined by

ucsL,F,Vdl ª p
j=1

N

V j
sjdp

k,l

Usk,ldsFk,ld o
s1,. . .,sN

trfAs1

s1d
¯ AsN

sNdg

3us1, . . . ,sNl , s3d

which then forms the basis of the RAGE.

A. Relationship with matrix product

and weighted graph states

The above set clearly embodies a large variational class.
By definition, for F=0 and V j=1, it includes the MPS. It also
includes superpositions of WGS as first considered in Ref.
f13g,

uwl = o
m

amp
j=1

N

V j
sjd o

s1,. . .,sN=0

1

e−is
TFs+dm

T
sus1, . . . ,sNl

= p
j=1

N

V j
sjdp

k,l

Usk,ldsFk,ldo
m

amuhm,1l ^ ¯ ^ uhm,Nl ,

s4d

where dm= sdm,1 , . . . ,dm,Nd, s= ss1 , . . . ,sNd, uhm,nlª u0l
+edm,nu1l, and UsFm,nd are defined as above and which can
be shown to be of the form of Eq. s3d. For simplicity and
without loss of generality, we will often set V j=1 subse-
quently.

B. Main properties of RAGE states

To start with, RAGE states have a polynomially sized
description, where the MPS and the WGS parts are fully
determined by OsND2d and OsN2d real parameters, respec-
tively.

sid Volume law for the entanglement entropy. By having a
collection of maximally entangled qubit pairs across a
boundary, the von Neumann entropy of a block of size L can
be taken to scale as SsrLd=OsLd. Encompassing graph states,
our class can hence maximize the entanglement entropy.

siid Translational invariance. Whenever the MPS part is
translationally invariant, F is a cyclic matrix and V j is the
same for all j, the whole state uwl is manifestly translation-
ally invariant. There exist other translationally invariant
states that do not have this simple form. The key feature,
though, is that unlike for multiscale entanglement renormal-
ization f3g, there exists this natural subset of states for which
translational invariance is guaranteed to be exactly fulfilled,
while at the same time a volume law for blockwise entangle-
ment is possible f11,12g.

siiid Completeness. As MPSs already form a complete set
in Hilbert space fif one allows D to scale as Os2Nd, one can
represent any pure state in sC2d^Ng and this remains true for
the RAGE set.

III. EFFICIENT COMPUTATION OF LOCAL PROPERTIES

AND CORRELATION FUNCTIONS

The previous properties are all very natural and desirable
and especially sid cannot be achieved efficiently with MPS
alone. However, as will be shown, this does not prevent us
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from computing local properties and correlation functions
efficiently—which is the key feature of this set.

To compute expectation values of observables with small
support we use the relevant reduced density matrix rS, which
may be computed efficiently with an effort of OsND5d in the
total size N of the system S, h1, . . . ,Nj. Controlled phase
gates acting exclusively on qubits that are traced out make
no contribution. We define

Ek,l
sjd

ª Lk
sjd

^ sLl
sjddp,

where p denotes complex conjugation. The reduced density
matrix rS sup to phase gates in Sd is then found to be

rS = o
s1,. . .,sN=0

r1,. . .,rN=0

1

trfEs1,r1

s1d
¯ EsN,rN

sNd gtrSFSp
k,l

Usk,ldsvk,ldD

3us1, . . . ,sNlkr1, . . . ,rNuSp
k,l

Usk,ld†svk,ldDG
= o

s1,. . .,sN=0

r1,. . .,rN=0

1

trfEs1,r1

s1d
¯ EsN,rN

sNd gusm1
, . . . ,smuSu

l

3krm1
, . . . ,rmuSu

u p
kPS,lPS

e2iFk,lsdsk,1
−drk,1

ddsl,1

3 p
kPS,lPS

eiFk,lsdsk,1
−drk,1

ddsl,1 p
si,riPS

dsi,ri
.

The key of the above argument is that the effect of the phases
is a mere modification of the transfer operators of the MPS
by a phase factor, the phase depending on the matrix element
in question. Thus, the evaluation of expectation values is
performed using sproducts ofd transfer operators associated
with the single sites. The reduced state can then be written as

rS = o
sm1

,. . .,smuSu
=0

rm1
,. . .,rmuSu

=0

1

trFp
k=1

N

Tskdshsmp
,rmp

:mp P SjdG
3usm1

, . . . ,smuSu
lkrm1

, . . . ,rmuSu
u ,

where now

Tskdfssmp
,rmp

dg ª o
l=0

1

Bl
skdfssmp

dg ^ hBl
skdfsrmp

dgjp,

which are the transfer operators modified by phases,

Bl
skdshsmp

jd ª Al
skd p

mpPS

eifFmp,k
dsmp

,1dl,1,

where f =1 if kPS and f =2 if kPS. Grouped in this way,
the reduced density operator can indeed be evaluated effi-
ciently. In fact, for each hrmp

,smp
j the effort to compute the

entry of the reduced state is merely OsND5d, as one has to
multiply N transfer matrices of dimension D23D2, just as in
the case of MPS. This procedure is inefficient in uSu with an
exponential scaling effort. However, any Hamiltonian with

two-body spossibly long-rangedd interactions can be treated
efficiently term by term.

IV. EFFICIENT UPDATES

Besides procedures for the efficient computation of re-
duced density matrices and therefore expectation values, we
need a variational principle to improve the trial states. We
will focus on local variational approaches to approximate
ground states by minimizing the energy,

E ª

kcsA,F,VduHucsA,F,Vdl

kcsA,F,VducsA,F,Vdl
, s5d

on the approximation of time evolution and on the simulation
of quantum circuits. The search for ground states is well
known to be related to imaginary-time evolution.

A. Static updates

The MPS part can be updated as in variants of DMRG f9g.
The expression kcsA ,F ,VduHucsA ,F ,Vdl is sas in MPSd a
quadratic form in each of the entries of the matrices A0

skd, A1
skd

for each site k=1, . . . ,N. An optimal local update can there-
fore be found by means of solving generalized eigenvalue
problems with an effort of OsD3d. Local rotations can be
incorporated by parametrizing single-qubit rotations on spin
k with a normalized vector xkPR

4 as

Vk = xk,01 + isxk,1sx − xk,2sy + xk,3szd .

Again, the local variation in xk in Eq. s5d is a generalized
eigenvalue problem in xk for each site k=1, . . . ,N. To opti-
mize the phases of the WGS, one may first define the Hamil-
tonian,

HV ª Sp
j=1

N

V j
sjd†DHSp

k=1

N

Vk
skdD .

The optimal phase gates between any pair of spins j ,k
P h1, . . . ,Nj can be computed efficiently as the procedure
amounts to a quadratic function of a single variable z
=eiFj,k. To summarize, an update of ucsA ,F ,Vdl to minimize
Eq. s5d corresponds to a sweeping over such local variations,
each of which is efficiently possible, with an effort of
OsMND3d for M sweeps. An element that is not present for
MPS alone is that one can make a choice whether one adapts
an MPS part or the adjacency matrix for an identical change
in the physical state. In practice, we have supplemented this
procedure with a gradient-based global optimization, making
use of the fact that the gradient can be explicitly computed.

We have applied the RAGE method to proof-of-principle
one-dimensional s1Dd and two-dimensional s2Dd models,
where the adjacency matrix is allowed to connect any con-
stituents in the lattice. Figure 1 shows the results for the 2D
Ising model with transversal magnetic field,

H = Jo
ka,bl

sz
sadsz

sbd + Bo
a

sx
sad,

comparing the achievable accuracy of MPS susing a one-
dimensional path in the 2D latticed and the RAGE method
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for a fixed total number of free parameters. The RAGE
method gives a significantly better accuracy regarding
ground-state energy and two-point correlations, already for a
very small number of parameters.

This class of states does allow for new features such as
long-range correlations and a violation of an area law but, in
turn, breaks the local SUs2d gauge invariance. It is also clear

from the simulations that the limitation of the underlying 1D
structure of the MPS cannot always be fully overcome by the
graph enhancement, as for certain models se.g., for a 2D
Heisenberg modeld the overall accuracy is still not very sat-
isfactory. The full potential in numerical performance in
identifying ground states is yet to be explored.

However, the RAGE method is particularly well suited for
certain interesting parent Hamiltonians. An example is the
perturbed Kitaev model, whose ground state is, in the unper-
turbed case, the toric code state f18g and hence a graph state.
We have considered Kitaev’s model on a periodic 2D lattice
where the additional perturbation was described by local
magnetic fields ssee Fig. 2d. Even for fixed phases of the
WGS—adjusted to match the toric code state at zero field—
and an underlying MPS with D=3, we obtain a significantly
improved accuracy as compared to WGS and MPS with a
much higher number of parameters sD=20d.

B. Time evolution and simulation of quantum circuits

We have also considered time evolution, more specifically
the evolution of a quantum state in a quantum circuit. Here,
sequences of elementary gates are applied, e.g., two-qubit
phase gates and arbitrary single-qubit rotations. This method
can be easily adapted to Hamiltonian sreal or imaginaryd
time evolution. We now show how to efficiently obtain an
optimal approximation of the resulting state after the appli-
cation of an elementary gate. It turns out to be useful to
restrict the variational family by setting V j

sjd=1, although an
extension to arbitrary V is possible. For phase gates, this
update is particularly simple, as only a change in the adja-
cency matrix F is required. It is part of the strength of the
scheme that phase gates between arbitrary constituents are

FIG. 2. sColor onlined Kitaev model on a periodic 2D lattice
with N=12 with magnetic field B in x direction. We compare the
achievable accuracy for the ground state with MPS sD=20 and D
=10d sbroken linesd and RAGE with fixed phases and underlying
MPS of D=1,2 ,3 ssolid thin linesd, where D=1 corresponds to
WGS. For B=0, the ground state is exactly described by a WGS.
For comparison, the first-excited state is plotted ssolid bold lined.
For larger N, similar results are found, although the exact treatment
was no longer possible.

FIG. 3. sColor onlined Comparison of MPS sblue, dashedd and
RAGE sred, solidd with D=2 for the simulation of a random quan-
tum circuit f19g on N=14 qubits. Application of a random local
phase gate followed by a random controlled-phase gate with ran-
dom uniform phase in f0,2pd constitutes one block. For given k we
apply this block k times to a randomly chosen initial MPS state.
About 500 of such runs are determined, and in each the fidelity with
the exact state is computed. The average over 500 realizations is
then plotted.

FIG. 1. sColor onlined 2D Ising model on a 434 periodic lat-
tice. We compare the achievable accuracy with RAGE sred, solidd
and MPS sgreen, dottedd with D=4 with exact results sblue,
dashedd. The total numbers of independent parameters are 384 for
MPS and 552 for the RAGE state. Two-point correlations as a func-
tion of B are shown. The inset depicts the energy for different total
numbers of parameters and B=2 in comparison with the exact
ground state sblue, dashedd as well as the first-excited state slight
blue, dashedd.
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already included in the variational set. The update of a local
unitary will require some more attention.

Consider an initial-state vector ucsA ,F ,1dl, to which a
single-qubit unitary operation U is applied—acting, e.g., on
the first qubit. The goal is now to find the best approximation
ucsA8 ,F8 ,1dl which maximizes

O ª

ukcsA8,F8,1duU1ucsA,F,1dlu2

kcsA8,F8,1ducsA8,F8,1dl
. s6d

It appears natural to vary only phases that directly affect
qubit 1, i.e., F j,k8 =F j,k if jÞ1. In this case, one can rewrite
Eq. s6d in such a way that the optimal MPS part A8 can be
obtained analytically by solving a set of linear equations,
while the optimization of a single phase F1,k8 leads to a
simple quadratic form. In practice, an alternating sweeping
of both kinds of local variational methods is required. We
have tested this method for a random quantum circuit ssee
Fig. 3d and compared the achievable accuracy with MPS.
Again, we obtain an improvement due to the WGS.

V. EXTENSIONS

A similar construction as illustrated for MPS also works
for unifying WGS with other underlying tensor network de-
scriptions. Similarly, one can use arbitrary Clifford circuits
instead of the WGS, thereby generalizing the Gottesman-
Knill theorem to simulate certain quantum circuits. More
precisely, whenever an exact or approximate evaluation of
expectation values of arbitrary product observables si.e., ten-
sor products of local operatorsd for a state described by a
tensor network is possible, then local observables si.e., ob-
servables with a small supportd can be efficiently computed
for the unified family of such tensor network states and WGS
sor Clifford circuitsd, following an approach similar as in Eq.
s4d. While this certainly restricts the set of computable quan-
tities se.g., string-order parameters can no longer be evalu-

atedd, it still suffices to compute expectation values of all
local Hamiltonians and hence one obtains a variational
method for a ground-state approximation or simulation of
quantum circuits.

VI. CONCLUSIONS

To summarize, we have discussed a variational class of
states to describe quantum many-body systems. These states
have a number of desirable properties. Correlation functions
can be computed efficiently; systematic improvements of the
approximation within the class are possible and the states
carry long-range correlations and violate entanglement area
laws, as being encountered in critical systems or in quenched
quantum systems undergoing time evolution. We have ap-
plied the RAGE ansatz to condensed-matter and quantum
computation problems, where we find an improvement over
MPS. From a fundamental perspective the key question is
where exactly the boundaries for the efficient classical de-
scription of quantum systems might lie. In fact, intriguingly,
the entanglement content of the state cannot be taken as an
indicator for the “complexity of a state” f20g. Delineating
this boundary will reveal more about the structure of quan-
tum mechanics from a complexity point of view and hold the
potential for new improved algorithms and methods for the
description of quantum systems.
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