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Operational interpretations of quantum discord
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Quantum discord quantifies non-classical correlations going beyond the standard classification

of quantum states into entangled and unentangled ones.

Although it has received considerable

attention, it still lacks any precise interpretation in terms of some protocol in which quantum

features are relevant.

Here we give quantum discord its first information-theoretic operational

meaning in terms of entanglement consumption in an extended quantum state merging protocol. We
further relate the asymmetry of quantum discord with the performance imbalance in quantum state

merging and dense coding.

PACS numbers: 03.67.-a,03.67.Ac

The study of quantum correlations has mostly been fo-
cused on entanglement [1]. This is because entanglement
has been identified as a key ingredient in quantum infor-
mation processing, allowing to perform a number of tasks
that are either impossible to realize or less efficient with
only classical resources at disposal. However, entangle-
ment does not account for all the non-classical properties
of quantum correlations. Zurek [2] (see also [3, 4]) identi-
fied quantum discord (QD) as a feature of quantum corre-
lations that encapsulates entanglement but goes beyond
it as it is also present even in separable states. Over the
past decade, QD has been the focus of several theoretical
and experimental studies addressing its formal charac-
terization [5, 6], its behavior under dynamical processes
[6, 7], and its connection with quantum computation [8]
and quantum phase transitions [9)].

QD was initially introduced in the context of the anal-
ysis of quantum measurements [4] and afterwards inter-
pretations in terms of the difference in performance of
quantum and classical Maxwell demons were given [10].
Nevertheless, a large part of the quantum information
community has always been skeptical towards QD as
an information-theoretic quantier. This is because QD
has not a clear operational interpretation in this context.
That is, we lack an information-theoretic task for which
the QD provides a quantitative measure about the per-
formance in the task. Thus, without this kind of opera-
tional interpretation, QD is very often considered simply
a ”quantumness parameter”.

In this Letter we give quantum discord its long sought
operational interpretation. We relate QD to state merg-
ing (SM) [11], a well known task in quantum information.
In SM a tripartite pure state is considered, i.e., Alice (A),
Bob (B), and Charlie (C') share (many copies of) a pure
state Y apc. The goal in the task is that A transfers her
part of the state to B, Yapc — ¥ppc (see Fig. 1),
by using classical communication and shared entangle-

ment. Here we show that the minimal total entanglement
consumed in a process we call “extended state merging”
(ESM) from A to B is exactly equal to the QD between
B and C (with measurements on C'). We further un-
ravel a connection between QD to a well-known protocol
in quantum information processing: dense coding (DC)
[12]. DC is a task that uses pre-established quantum cor-
relations to send classical messages more efficiently than
by classical mean.

We focus on the finite-dimensional case with the three
parties A, B, and C sharing a pure state ¢ 4pc. All
bipartite and single-party states are obtained by taking
the appropriate partial traces of Y apc. The quantum
(von Neumann) entropy of a state p is defined as S(p) =
—Trplog, p. It is the generalization to the quantum do-
main of the classical (Shannon) entropy of a probability
distribution {p;} given by H({p;}) = — >, pilog, p;. We
write S(X) to denote the entropy of the reduced state px.
Similarly, we write H(a) to denote the Shannon entropy
of a classical random variable a distributed according to
some probability distribution {p?}. The latter may be
the marginal probability distribution p¢ = 3 j p?}’ of a
bivariate (in general, multivariate) probability distribu-
tion {p§/} of two classical random variables a and b.

Conditional entropy and coherent information.— For a
bipartite system AB, the quantum (von Neumann) con-
ditional entropy is defined as S(A|B) := S(AB) — S(B)
[13]. It is the quantum version of the classical (Shannon)
conditional entropy H(a|b) := H(a,b) — H(b). Note that
both are asymmetric quantities. H(a|b) measures how
much uncertainty is left—on average—about the value
of a given the value of b. It can be written as

H{alb) ZZng(alb=j)7 (D

where H(a|b = j) is the entropy of the conditional prob-
ability distribution p?l bej = p?}’ / pg-. It has a clear opera-



tional interpretation as the amount of classical informa-
tion that A has to give—on average—to B, who knows
the value of b, so that the latter gains full knowledge
also of the value of a [14]. Given this interpretation for
H (alb), it is always non-negative.

However, the situation changes drastically for quantum
states, because S(A|B) can take negative values, e.g. for
pure entangled states. This fact was, for a long time,
an obstacle to an operational interpretation of S(A|B).
On the other hand, its opposite was identified as an im-
portant quantity in the context of quantum information,
and was even given a name of its own: coherent infor-
mation I1(A)B) := —S(A|B). Coherent information was
originally introduced to measure the amount of quan-
tum information conveyable by a quantum channel [15];
given that it is always non-positive in the classical case,
one may say that it is a purely quantum quantity.

Quantum discord.—One remedy to negative quantum
conditional entropy is to generalize the classical condi-
tional entropy to quantum using Eq. (1), as was done in
3, 4] by defining S(A[B,) := mingn;} >, pPS(A|B =),
where the minimization is over generalized measurements
{N]} [16], with Nj >0 for all j and Z]’ Nj = ]].B.
We also have S(A|B = j) = S(pa;), where py; =
Trp(la ® Ngpag)/pf with pf = Tr(la @ Njpap).
S(A|B.) is always positive and can also be thought of
as a measure of the uncertainty left on average about A
given that B has been measured. For classical systems
both S(A|B) and S(A|B.) coincide with the classical con-
ditional entropy, but in general S(A|B,) is strictly larger
than S(A|B). The difference in these two quantity is
indeed the definition of the quantum discord with mea-
surements on B [4]

D(A|B) = S(A|B.) — S(A|B). 2)

QD can be seen as the gap between the standard mea-
sure for total correlations present in a quantum state
pPAB, given by quantum mutual information 1(A : B) :=
S(A) — S(A|B) [17], and the Henderson-Vedral measure
of classical correlations I(A: B.) :== S(A) —S(A|B.) [3].
As D(A|B) = I(A : B) — I(A : B.), the QD can be
considered a (asymmetric) quantifier of non-classical cor-
relations present in a quantum state. We will refer to
D(X|Y) as to the “discord of XY measured by Y.
State merging and entanglement consumption.—A
fully convincing operational interpretation of quantum
conditional entropy and coherent information was given
with the introduction of the task of quantum state merg-
ing (SM) [11]. SM, say from A to B, is a process by
which A and B transfer A’s part of the state to B main-
taining the coherence with the reference C'. A and B both
know the state they share, and they can apply arbitrary
local operations coordinated by classical communication
(LOCC). By acting on n copies of ¥ 4pc, their goal is to
end up with a state close to 15/, such that the sub-
system B’ is in Bob’s hands and plays in the new state
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FIG. 1. (Color online). Starting from a tripartite state ¥ apc,
the goal of SM is to transfer Alice’s (A) part of the state
to Bob (B), possibly using some extra entanglement or hav-
ing some entanglement leftover. The total entanglement con-
sumption in this process is equal to D(A|C) (see Eq.(4)).

exactly the same role as A played in the old one. Errors
are allowed, but they must vanish in the limit n — co. To
achieve their goal, A and B are allowed to use extra, pre-
established two-qubit maximally-entangled pairs (ebits),
but these constitute a valuable resource they must pay
for. It turns out that the value of S(A|B) quantifies ex-
actly the optimal amount—per copy of the state—of ebits
spent in the process. A positive value means that en-
tanglement must be consumed, while a negative amount
means not only that no extra entanglement is needed,
but also that A and B retain —S(A|B) = I(A)B) ebits
per copy merged. See Fig. 1 for an illustration of SM.

A useful way to think of the role played by the con-
ditional entropy in SM is to imagine a hypothetic en-
tanglement bank in which A and B possess a joint ac-
count: the entanglement balance after merging—in ebits,
per copy merged—is given precisely by —S(A|B). When
S(A|B) > 0, A and B have to withdraw S(A|B) from
their account to perform SM. On the other hand, when
S(A|B) < 0 then the process can be completed without
any withdrawing. Moreover, after merging they end up
sharing I(A)B) = —S(A|B) extra ebits of entanglement,
which they deposit in their account for future use.

At the end of this process, the only correlations be-
tween A and B are those present in the bank account.
In particular, there is no additional entanglement left
between A and B. Given this, the bank-account picture
suggests to consider a more comprehensive balance, that
takes into account also the entanglement “lost” in the
process. Indeed, coherent information is positive only if
the state is entangled, and while A and B may end up
with “leftover” Bell pairs after SM, they do not share
anymore the starting entangled states. Thus, it is useful
and sensible to define the total entanglement consump-
tion as

T(A)B) := Er(A: B) + S(A|B), (3)

where Ep(A : B) = min{pi’w{as}ZipiS(TrA(wlAB)) is



the entanglement of formation (EoF) of pap, with the
minimum taken over pure-state ensembles {p;, /*5} for
pap [18]. EoF quantifies the minimum amount of pure-
state entanglement that A and B need to consume to
create pap by LOCC with strategies where each pure-
state member of the ensemble forming psp is prepared
independently. Thus, I' quantifies the total entanglement
consumed in SM, by taking into account the amount of
entanglement A and B would have needed to prepare
pap by LOCC—and “lost” during SM—plus the amount
of entanglement used by the process of SM itself. In
order to give a more precise operational interpretation,
we consider a two-step process. In the first stage, Alice
and Bob prepare the state pap. To this aim, they have
to share classical information, and potentially use some
other local ancillas. We demand that, in order to end up
sharing p4p and not some larger state, after preparing
the state and before the merging, they remove all ancillas.
Then Eq. (3) indeed characterizes the entanglement cost
of a two-stage process that we call extended state merg-
ing (ESM): (i) state preparation through the (possibly
non-optimal — see section Regularization below) protocol
described before and (ii) merging.

Operational interpretation of quantum discord.—Now
we are in the position to give QD an operational inter-
pretation. In Appendix 1 we prove the following;:

D(A|C) = T(A)B). (4)

This equation says that QD between C' and A with mea-
surements on C' is equal to the total entanglement con-
sumption in ESM from A to B. To the best of our knowl-
edge, this yields the first information-theoretic scenario
where the value of QD provides concrete quantitative in-
formation about a task’s performance or cost.
Asymmetry of quantum discord.—One immediate ex-
ercise of the last equation is to give meaning to the asym-
metry of QD, that is, the fact that in general D(A|C) #
D(C|A). Thanks to Eq. (4) we can interpret the asym-
metry of discord as the differences in the cost of ESM for
A versus C' to send their parts of the state to B, i.e. :

D(A|C) — D(C|A) = T(A)B) —T(C)B).  (5)

@D, DC and ESM.—Coherent information also de-
scribes the usefulness of a quantum state pap as a re-
source for dense coding (DC) [12]. DC—say from a
sender A to a receiver B, initially sharing pap—is a pro-
cedure by which A is able, by sending her subsystem to
B, to transmit more classical information than she could
if the system was classical; i.e., the maximal rate of classi-
cal information transmission per copy of p4p used can be
larger. If A’s encoding is done by unitary rotations, the
correction to the classical capacity that she could achieve
by sending a classical system with dimension equal to
that of her subsystem, d4, is exactly the coherent infor-
mation I(A)B) [19-22]. In the most general DC scenario

[19, 20, 22], A encodes her message by means of general
quantum operations Ay : My, — Md/A, where d 4 is the
dimension of the original subsystem in the hands of A,
while d/y is the dimension of the subsystem sent to B,
and M, denote the set of d x d complex matrices. If
the encoding is applied at the level of single copies of
the shared state pap, the DC single-copy capacity can
be achieved by a unitary encoding after a pre-processing
operation whose aim is exactly that of increasing coher-
ent information. More precisely the capacity is equal to
xpc(A4)B) :=log, d’y + maxy, I[(A")B), where the max-
imization is over all quantum operations with output di-
mension d’y and I(A’)B) is the coherent information of
(Aa ® 1g)[pap]. This capacity depends on the output
dimension d';, but, given that log, d’, can be considered
as a classical contribution, one can focus on the quantum
advantage of DC

Apc(A)B) = max I(A")B). (6)
A
The maximization above has no restriction on the output
dimension, which can anyway be taken to be less or equal
to d% [22]. The maximization over A4 ensures that the
coherent information of the pre-processed state is non-
negative.

In Appendix 2 we prove the following connection be-
tween QD and DC:

D(AIC) = D(BIC) = Apa(C)A) — Apa(C)B).  (7)

Note that, if C' sends subsystems with the same di-
mension to A and B (in particular a dimension large
enough to achieve the quantum advantage of DC with
both receivers) this difference can be written as D(A|C)—
D(B|C) = xpc(C)A) — xpc(C)B), i.e., in terms of the
DC capacity itself.

Eq. (7) gives an operational meaning in terms of per-
formance to the differences in QD: the difference in the
QD of AC and BC, both measured by C, is the same
as the difference in the DC capacity from C' to either A
or B. The same difference in QD can be related to the
coherent information, as can be seen using Eq. (4) twice:
D(A|IC)—D(B|C) =1(A)C)—I1(B)C) =I(C)A). Or, for
measurements on different parties, D(C|A) — D(C|B) =
I(C)B) —T(C)A).

Regularization.—All the relations we have found, al-
though already meaningful in the form above, can be cast
in their regularized version, so that they become, in the
case of ESM, more consistent from an operational and
information-theoretic point of view. To do so we note
that the minimal amount of ebits needed to create pap
over all possible LOCC strategies is given by the entan-
glement cost Ec(A : B) = lim, 0 2 Ep(A : B)pg; [23].
We can then define the asymptotic total entanglement
consumption of ESM as the regularized version of Eq.
(3), i.e, as T°(A) B) := limy, 00 F(A>B)p§g /n=FEc(A:



B)+ S(A|B), having used that conditional entropy is ad-
ditive. As ESM is itself an asymptotic process, the regu-
larized total cost I'*° is a quantity better motivated than
the unregularized I' from an operational and information-
theoretic point of view. It is worth remarking that both
I" and I'*° are positive, because coherent information is a
lower bound on distillable entanglement [24], and there-
fore on entanglement cost. By Eq. (4) we have that
D> (A|C) =T>=(A)B).

Conclusions.— We have seen that the QD is intimately
related to the tasks of ESM and DC. For a pure tri-
partite state, the QD reveals what is the entanglement
consumption in ESM and in which direction more clas-
sical information can be sent through DC. Moreover the
asymmetry of the QD can be given an operational inter-
pretation, since it matches the asymmetry of the tasks
to which we have related it, ESM and DC, which are
inherently directional.

Finally, a recent paper has unraveled a different con-
nection between QD and SM [25]. There, it was observed
that the right-hand side of (2) can be interpreted as the
difference in quantum communication costs between per-
forming SM with a partially measured version of pap
(first term) and with pap (second term) directly. Such
an interpretation of QD regards a relation between dif-
ferent states, one obtained from the other via measure-
ment, while the one presented here refers to just one state
(and its purification). On the other hand, since QD can
be expressed also as the difference in mutual informa-
tion between such two states (see the paragraph after
(2)), an approach similar to that of [25] can lead to in-
terpretations in terms of quantum locking [26, 27] and
correlations erasure [17].
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APPENDIX 1: PROOF OF EQ. (4)

We start by recalling the Koashi-Winter monogamy
relation [28] for quantum correlations within a pure tri-
partite state Yapc:

S(B)=Epr(A:B)+I1(B:C.). (8)

This, together with the definition of I(B : C.), implies
that

Ep(A: B) = S(B|C.) = S(A|C,), (9)

which we can substitute in the definition of D(A|C) to
get [29]

D(A|C) = Er(A: B)— S(A|C). (10)
Now, note that S(A|C) = S(AC)—S(C) and, since Yapc

is a pure state, we have S(AC) = S(B) and S(C) =
S(AB). Hence S(A|C) = S(B) — S(AB) = —S(A|B), so

that

D(A|C) = Ep(A: B) + S(A|B) =T(A)B).  (11)

APPENDIX 2: PROOF OF EQ. (7)

A monogamy equality similar to Eq. (8) with regards
to DC was given in [22]:

S(A4) = Ep(A: C) + Apc(B)A), (12)

where FEp is the entanglement of purification, defined
as [30] EP(A : C) = min¢AA,CC, S(TI'CC’(wAA'CC’)>7
with the minimum taken over all pure states ¥aaccor
such that TrA'C'(wAA’CC’) = PAC- Using the fact that
for a tripartite pure state I(A)C) = S(C) — S(B), and
expressing S(B) according to (12), from (4) one obtains
D(A|C) = S(C)*ADc(C>B)7(EP(A : B)*EF(A : B))
Applying this equivalence twice one gets

D(A|C) = D(B|C) = Apc(C)A) — Apc(C)B).  (13)



