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Abstract. We show that ground states of unfrustrated quantum spin-1/2

systems on general lattices satisfy an entanglement area law, provided that the

Hamiltonian can be decomposed into nearest-neighbor interaction terms that

have entangled excited states. The ground state manifold can be efficiently

described as the image of a low-dimensional subspace of low Schmidt measure,

under an efficiently contractible tree-tensor network. This structure gives rise

to the possibility of efficiently simulating the complete ground space (which

is in general degenerate). We briefly discuss ‘non-generic’ cases, including

highly degenerate interactions with product eigenbases, using a relationship to

percolation theory. We finally assess the possibility of using such tree tensor

networks to simulate almost frustration-free spin models.
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1. Introduction

An important insight in the study of quantum many-body systems is related to the observation

that common states that naturally occur do not quite exhaust the entire Hilbert space available

to them, but instead a much smaller subspace. This insight is at the heart of powerful

numerical methods that have been devised in recent years. Ideas such as the density–matrix

renormalization group approach, and new ideas that allow for the simulation of higher-

dimensional quantum lattice models [1]–[3], work exactly because they model well quantum

states that, in a certain sense, have little entanglement. More precisely, the states that are tractible

by these approaches satisfy what is called an area law [1, 4]–[17], so the entropy of a subregion

scales at most as the boundary area of that region (for a review, see [1]). For practical purposes,

and in particular for 1D systems, these methods, in particular, give accurate accounts of ground

state properties.

Now, not all ground states of local quantum lattice models can be efficiently approximated.

This holds true even for 1D chains: indeed, one can construct models for which approximating
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the ground state energy is probably NP-hard4—albeit using a fairly sophisticated construction

involving large local dimensions [19]. An important feature of these constructions is that the

difficulty of their solution appears to be strongly related to whether the system is frustrated or

not. This suggests that whether or not the system is frustrated is another criterion for whether

a quantum lattice model should be considered ‘easy’ or ‘hard’, in addition to its ground states

having ‘a lot of’ or ‘little’ entanglement. This intuition that a frustrated system should be hard

to simulate is indeed true for classical systems, where the frustrated or glassy models are the

hard ones to describe. For quantum systems, there is evidence that the situation should be more

complex [20].

In this work, we explore a class of models where this intuition of frustration-free models

being easy to solve holds true. Building upon the work in [21] and further extending the findings

of [22], for a natural class of two-local Hamiltonians acting on spin-1/2 particles (simply

‘spins’ henceforth), we show that ground states can be reduced to a completely characterized

and low-dimensional subspace, and then re-constructed by identifying the ground state space

of each interaction of the Hamiltonian term by term. Specifically, the ground space is the

image of a symmetric subspace under an explicitly constructible, and efficiently contractible,

tensor network. It follows that the ground states satisfy an area law and hence contain little

entanglement in the above sense. We discuss how to efficiently simulate the ground state

manifold, and suggest how this could be used to simulate ‘almost’ frustration-free quantum

lattice models.

2. Preliminaries

2.1. Frustration-free Hamiltonians and area laws

We consider spin-1/2 Hamiltonians on a lattice. The lattice is described by some graph, the

vertex set of which we denote by V . Naturally, the Hamiltonian will be local or more specifically

include only nearest-neighbor interaction terms. We represent the Hamiltonian as

H =
∑

{a,b}⊆V

ha,b (1)

for some terms ha,b acting on pairs of spins in the lattice described by V . By rescaling, we may

without loss of generality require that the ground state energy of each interaction term ha,b be

zero. We wish to describe the properties of the ground state manifold M of such Hamiltonians,

given the list of individual two-spin terms ha,b as the input. An important class of Hamiltonians

is those which are frustration-free (or unfrustrated), for which each ground state vector |8〉 ∈ M

is also a ground state of the individual coupling terms, that is, for which

ha,b |8〉 = 0 (2)

holds for all ha,b and all |8〉 ∈ M . The actual ground state ρ is the maximally mixed state over

M and so is mixed unless the ground state manifold M is non-degenerate.

Our main results pertain to frustration-free spin Hamiltonians, as above, with the further

constraint that each term ha,b has at least one entangled excited state. In section 6, we show that

4 More precisely, one can construct problems of this sort that are QMA complete. QMA is the class of problems that

one obtains if one generalizes the notorious complexity class NP, to also allow algorithms which act on quantum

states and which have a bounded probability of failure [18]. An efficient and deterministic algorithm for sampling

the ground states for the models presented in [19] would thus imply P = NP.
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Figure 1. The entanglement scales at most as the boundary area |∂A| of a

distinguished region A in some lattice, here a cubic lattice, with tighter bounds

for special cases.

the ground states ρ of such Hamiltonians satisfy an area law [1, 4]–[17]: that is, for a contiguous

region of spins A ⊆ V , the entanglement of formation5 of the ground state satisfies

EF(ρ)6 C |∂A| (3)

for C > 0 constant, where |∂A| is the ‘boundary area’ (i.e. the number of edges in the interaction

graph of H , which are incident to both A and V r A; see figure 1). The entanglement

of formation is the largest asymptotically continuous entanglement monotone, so this also

implies an entanglement area law for e.g. the distillable entanglement. Thus, ground states of

frustration-free Hamiltonians contain little entanglement.

This follows as a consequence of the fact that the ground state manifold is the image of

the symmetric subspace on n spins (for some n bounded above by the number of spins of the

Hamiltonian) under an efficiently simulatable, and explicitly constructible, tree tensor network.

We show this in section 5, in which we demonstrate how this allows us to efficiently simulate the

ground space of the spin models we consider. For the cases where we have a tree tensor network

with a single top root, the problem considered here may be viewed as exactly the converse

problem to the one discussed in [23].

Our result of an analytical area law complements results on area laws in harmonic bosonic

systems [7, 10, 11], fermionic [13]–[15] on cubic lattices and general gapped models in one-

dimensional (1D) quantum chains [16]. For a comprehensive review on area laws—and their

implications on the simulatability of quantum many-body systems—see [1].

2.2. Quantum 2-sat problem

The arguments behind our analysis build upon and extend the ideas of [21], which defined the

problem of quantum satisfiability and presented Bravyi’s algorithm for quantum 2-sat. We

describe here the connection between this problem and frustration in spin Hamiltonians.

quantum 2-sat is the quantum analogue of the ‘classical’ 2-sat problem on boolean

formulae. The latter asks when there exists an assignment of boolean variables x1, . . . , xn that

5 If the ground state is non-degenerate and hence pure, the entanglement of formation is nothing but the usual

entanglement entropy.
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simultaneously ‘satisfy’ a collection of constraints on the pairs of those variables. This problem

is efficiently solvable [24]; in contrast, the similar problem 3-sat (in which constraints apply

to triples of variables) is NP-complete [25]. In quantum 2-sat, individual clauses on boolean

variables are replaced by projectors pa,b with

p2
a,b = pa,b (4)

on pairs of spins: an instance of quantum 2-sat is satisfiable if there is a vector that is a zero

eigenvector of each projector simultaneously.

Given an instance of quantum 2-sat, the problem of determining if there exists such a

simultaneous zero eigenvector is equivalent to determining whether the Hamiltonian obtained

by summing the projectors is unfrustrated. Conversely, the problem of determining when a

2-local spin Hamiltonian H is frustration-free may be reduced to quantum 2-sat, by rescaling

the terms of the Hamiltonian H so that each term ha,b has a minimal eigenvalue of 0, and

replacing each rescaled term ha,b with the projector pa,b onto img(ha,b). By construction, such

a substitution does not affect the ground space of the terms. Thus, solving quantum 2-sat is

equivalent to determining whether a 2-local spin Hamiltonian is frustration-free.

Recently, random instances of quantum k-sat with rank-1 projectors6 have been studied

for k > 2, delineating the ‘boundary’ of frustration in k-local spin Hamiltonians in terms

of the density of interactions [26]–[29]. We instead extend the findings of [21] for k = 2,

and remark on implications for simulating the ground space manifold in frustration-free

Hamiltonians. In section 3, we review Bravyi’s algorithm for quantum 2-sat, in order to

demonstrate important features of the reductions involved when they are applied to unfrustrated

Hamiltonians satisfying natural constraints.

3. Reduction tools for frustration-free Hamiltonians

Bravyi’s algorithm for quantum 2-sat [21] efficiently demonstrates the satisfiability of

an instance of quantum 2-sat by a sequence of reductions of Hamiltonians, yielding a

homogeneous instance (in which all projectors have rank 1), and then verifying the satisfiability

of these instances. We may similarly use Bravyi’s algorithm to detect frustration in 2-local

spin Hamiltonians, and consider the features of these Hamiltonian reductions when applied to

particular classes of frustration-free Hamiltonians.

Throughout the remainder of the paper, we admit representations of Hamiltonians H ′ that

include non-trivial single-spin terms ha,

H ′ =
∑

{a,b}⊆V

ha,b +
∑

a∈V

ha, (5)

and again describe H ′ as unfrustrated if there exists a joint ground state with eigenvalue zero of

all terms (including the single-spin terms ha).

3.1. Reductions by isometries

Condensing the analysis of [21], we consider a reduction for 2-local Hamiltonians H to

Hamiltonians H ′ on fewer spins, provided that H contains only positive semidefinite terms

that have non-trivial kernels. Throughout, we denote C2 by H2.

6 Except where explicitly noted, references to the ranks or kernels of 2-local operators ha,b (acting on spins a

and b) are to be understood as applying to these operators as they act on C2 ⊗C2 (i.e. on spins a and b alone).
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3.1.1. Two-spin isometric contractions. Consider a Hamiltonian term hu,v of rank 2 or 3. If

H is frustration-free, hu,v fixes a subspace of H⊗{u,v} of dimension at most 2, over which the

reduced state ρu,v of a state vector |8〉 ∈ ker(H) must be a mixture. We describe this reduced

state by an encoding of one spin into two. Let {|ψ0〉, |ψ1〉, |ψ2〉, |ψ3〉} be an orthonormal basis

for H2 ⊗H2 such that

ker(hu,v)⊆ Span {|ψ0〉 , |ψ1〉} . (6)

Define an isometry Uu:u,v :H
⊗{u}

2 →H
⊗{u,v}

2 such that
∑

x∈{0,1}

αx |x〉u 7→
∑

x∈{0,1}

αx |ψx〉u,v . (7)

This is an isometric reduction, similar to those in a tree tensor network or a MERA ansatz [30].

By construction, the support of the reduced state ρu,v lies in img(Uu:uv). We may then define a

Hamiltonian

H ′ = U †
u:u,vHUu:u,v (8)

on the subsystem V ′ = V r {v}, where the spin v is essentially deleted; any state vector

|8〉 ∈ ker(H) then has the form

|8〉 = Uu:uv

∣

∣8′
〉

,
∣

∣8′
〉

∈ ker(H ′). (9)

We may express H ′ as a sum of terms

h′
a,b = U †

u:u,vha,bUu:u,v, h′
a = U †

u:u,vh
′
aUu:u,v. (10)

(In the case that h is of rank 3, these will include a non-zero single-spin operator h′
u,v that acts on

u alone.) If H contains non-zero terms ha,u and ha,v, we obtain two terms h′
a,u = U †

u:u,vha,uUu:u,v

and h′
a,v = U †

u:u,vha,vUu:u,v in the Hamiltonian H , which both act on the spins u and a. We sum

these to obtain a combined term

h̄′
a,u = h′

a,u + h′
a,v (11)

in the reduced Hamiltonian, which may be of higher rank than either h′
a,u or h′

a,v. (We similarly

accumulate any single-spin contributions h′
u and h′

v to H ′, arising from single-spin contributions

hu and hv in H .) Figure 2 illustrates the effect of multiple transformations on the interaction

graph of the Hamiltonian.

For example, consider an anti-ferromagnetic four-spin Hamiltonian, with interactions

h j,k = 1

2
σ ( j)

x σ (k)x + 1

2
σ ( j)

y σ (k)y (12)

on a four-spin cycle with interacting pairs (1,2), (2,3), (3,4) and (4,1). Here we denote

σx =

[

0 1

1 0

]

= |1〉 〈0| + |0〉 〈1| , (13a)

σy =

[

0 −i

i 0

]

= i |1〉 〈0| − i |0〉 〈1| . (13b)

Rescaling the interactions to have ground energy zero (and taking these for the h j,k instead)

gives us

h j,k = |0, 0〉 〈0, 0| j,k + |1, 1〉 〈1, 1| j,k . (14)

New Journal of Physics 12 (2010) 095007 (http://www.njp.org/)
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Figure 2. Illustration of transformations of the interaction graph of a Hamiltonian

H by two-spin isometries. Darker, thicker edges represent interaction terms

ha,b of rank 2 or 3, which may be eliminated by contraction (corresponding

to a reduction H 7→ U
†
a:ab HUa:ab). In the case of an interaction term with

rank(hr,u)= 3, as illustrated above, a single-spin operator (represented above by

a loop) is produced on the contracted vertex.

The kernel of this operator is clearly spanned by |0, 1〉 and |1, 0〉. We may consider the effect of

contracting spins 3 and 4 into a renormalized spin, using the isometry

R3:3,4 = ( |0〉3 ⊗ |1〉4 ) 〈0|3 + ( |1〉3 ⊗ |0〉4 ) 〈1|3 . (15)

By construction, we have R
†
3:3,4h3,4 R3:3,4 = 0; and as {1, 2} is disjoint from {3, 4}, we have

h′
1,2 = R

†
3:3,4h1,2 R3:3,4 = h1,2. We compute the renormalized terms h′

2,3 and h′
4,1 as

h′
2,3 = R

†
3:3,4

(

|0, 0〉 〈0, 0|2,3 ⊗ 14 + |1, 1〉 〈1, 1|2,3 ⊗ 14

)

R3:3,4

= |0, 0〉 〈0, 0|2,3 + |1, 1〉 〈1, 1|2,3 , (16a)

h′
4,1 = R

†
3:3,4

(

13 ⊗ |0, 0〉 〈0, 0|4,1 + 13 ⊗ |1, 1〉 〈1, 1|4,1

)

R3:3,4

= |1, 0〉 〈1, 0|3,1 + |0, 1〉 〈0, 1|3,1 ; (16b)

up to rescaling, the resulting renormalized Hamiltonian is then

H ′=R
†
3:3,4 H R3:3,4 ∼ 1

2

(

[

σ (1)x σ (2)x + σ (1)y σ (2)y

]

+
[

σ (2)x σ (3)x + σ (2)y σ (3)y

]

−
[

σ (3)x σ (1)x + σ (3)y σ (1)y

]

)

, (17)

with a ferromagnetic coupling between site 1 and the renormalized site 3. Arbitrary rank-2 or

rank-3 interactions may be contracted similarly.

New Journal of Physics 12 (2010) 095007 (http://www.njp.org/)
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3.1.2. Single-spin deletions. For a 2-local Hamiltonian H containing non-zero single-spin

operators hv (e.g. such as may arise from the preceding reduction), any state vector |8〉 ∈

ker(H) must be factorizable into a single-spin pure state vector |ψ〉 ∈ ker(hv) acting on v, and

some state of the remaining spins. If the operator hv has full rank, it follows |ψ〉 = 0, so that H

has trivial kernel. Otherwise, |ψ〉 may be taken to be a unit vector spanning the kernel of hv,

and we may form a Hamiltonian

H ′ = (〈ψ |v ⊗ 1)H(|ψ〉v ⊗ 1) (18)

on the subsystem V ′ = V r {v}, consisting of a sum of terms h′
a = ha acting on individual spins

a 6= v, and terms

h′
a,b = (〈ψ |v ⊗ 1)ha,b(|ψ〉v ⊗ 1), (19)

acting on pairs of spins {a, b} ⊆ V . In the latter case, if v ∈ {a, b}, then h′
a,b will be an operator

acting on a single spin; otherwise, we have h′
a,b = ha,b. Again, in the case of single-spin terms

h′
a,b acting on a spin a, if there was a term ha present in H , we may accumulate these into a

term h̄′
a = ha + h′

a,b.

We may again describe H ′ using an isometric reduction in this case: if we define Pv =

|ψv〉 ⊗1V ′ , then Pv is an isometry whose image contains any state vector |8〉 ∈ ker(H). We

may then rewrite equation (18) as

H ′ = P†
v H Pv, (20)

expressing it in a form more explicitly similar to equation (8).

3.1.3. Remarks on these reductions. The reductions above correspond to the reductions

presented in [21] for instances of quantum 2-sat that contain two-spin operators of rank greater

than 1. This allows us to reduce quantum 2-sat to the special case of ‘homogeneous’ instances

(in which all terms have rank 1).

The key feature of both reductions above is that the kernels of H and H ′ are related by

isometries and so have the same dimension. If the Hamiltonian H ′ has any terms of full rank

(acting on either one or two spins), it follows that the Hamiltonian H ′ has trivial kernel; then the

same holds for H as well. If we do not encounter any full-rank terms, each reduction produces

a Hamiltonian acting on one fewer spins, eventually yielding a ‘homogeneous’ Hamiltonian

(extending the terminology of [21] to Hamiltonians in general, including those with single-spin

terms of rank 1).

The choice of the reduction at each stage does not matter, in the following sense. As long

as we have a Hamiltonian that contains two-spin terms of rank at least 2 and which does not

contain full-rank terms, we may extend any sequence of reductions to one that terminates with
a Hamiltonian H̃ that is either homogeneous or contains a full-rank term. In the latter case,

the original Hamiltonian has trivial kernel and is therefore frustrated; otherwise, we obtain a

‘homogeneous’ Hamiltonian whose kernel may be mapped to that of the original Hamiltonian

H by a sequence of known isometries. If we can solve the homogeneous case, we may then

choose the reductions according to whichever criteria are convenient.

Note that this reduction process, from an input Hamiltonian H to a homogeneous

Hamiltonian, amounts to a tree tensor network of isometries (albeit applied to a vector

subspace): from a temporal top layer defined by a Hamiltonian containing only terms of

rank 1, one constructs the ground space of the full Hamiltonian H by sequential applications

of isometries with a simple topology. We develop this observation further, and remark on

New Journal of Physics 12 (2010) 095007 (http://www.njp.org/)
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implications for simulating the ground space of H , in section 5. Note also that for a 1D quantum

chain and a sequential contraction, this construction gives rise to a sequential preparation of a

quantum state and hence to a matrix-product state of small bond dimension.

3.2. The homogeneous case

Given a homogeneous Hamiltonian H ′ (containing only terms of rank 1) acting on some system

V ′, consider a collection of vectors |βa,b〉 ∈H
⊗{a,b}

2 such that

ha,b =
∣

∣βa,b

〉 〈

βa,b

∣

∣ . (21)

We interpret each two-spin Hamiltonian term h′
a,b as a constraint on the corresponding two-spin

marginal state ρa,b of a state |8〉 ∈ ker(H), and attempt to obtain additional constraints on pairs

of spins a, b ∈ V ′ by combinations of the constraints that are already known. Bravyi [21] has

shown that if |8〉 lies in the kernel of 〈βa,b| and 〈βb,c| acting on the corresponding spins, it also

lies in the kernel of the functional
〈

β ′
a,c

∣

∣= (
〈

βa,b

∣

∣⊗
〈

βb,c

∣

∣)(1 ⊗
∣

∣9−
〉

⊗ 1) (22)

acting on spins a and c, where |9−〉 ∝ |0〉|1〉 − |1〉|0〉 is the two-spin antisymmetric state vector.

We call such a constraint 〈β ′
a,c| an ‘induced’ constraint, and use the term induction of constraints

to refer to the operation on 〈βa,b| and 〈βb,c| that gives rise to 〈β ′
a,c| in equation (22), up to a scalar

factor.

For each induced constraint 〈β ′
u,v| on a pair of spins u, v, we may add a term

h̃u,v =
∣

∣β ′
u,v

〉 〈

β ′
u,v

∣

∣ (23)

to the Hamiltonian H ′, obtaining a Hamiltonian H̃ that (by construction) has the same kernel

as H ′. If H ′ already contains a term hu,v that is not colinear to the induced term h̃u,v, these

may be accumulated into a term h̄u,v whose rank is at least 2, and one may apply a two-spin

contraction, as described in section 3.1. Otherwise, we may induce further constraints from the

terms of H̃ , until we obtain a complete homogeneous Hamiltonian Hc: a Hamiltonian in which

the two-spin constraints 〈βu,v| are closed under constraint induction.

By inducing constraints on pairs of spins, possibly performing two-spin contractions, as

in section 3.1, when we obtain terms of rank 2 or more, we may efficiently obtain a complete

homogeneous Hamiltonian Hc from a frustration-free, 2-local Hamiltonian H . Furthermore,

Bravyi [21] has shown that a complete homogeneous Hamiltonian Hc that is acting on at least

one spin (and which lacks single-spin operators7) has a ground space that contains product

states. Thus, for homogeneous Hamiltonians H , we may either efficiently determine that it is

frustrated or efficiently obtain a Hamiltonian that is closed under constraint induction. In the

latter case, we may construct product states in the kernel of H by selecting states for each spin

consistent with the two-spin constraints.8

7 We effectively ignore the presence of single-spin terms in much of our analysis. However, such terms impose

constraints on the ground state manifold. In particular, they imply that the Hamiltonian H is frustration-free only

if, for any ground state vector |8〉 of H , the spins on which such terms act are disentangled from the rest of the

system.
8 In the case that H contains single-spin terms, the resulting Hamiltonian may still be frustrated, e.g. if there are

no product states that are also in the kernel of all of the single-spin terms. Extending the analysis of [21], this may

be efficiently determined with no additional effort, by incorporating the single-spin constraints when constructing

a product state in the kernel of the Hamiltonian terms and verifying that these constraints may be simultaneously

satisfied.
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4. Unfrustrated natural Hamiltonians

We now present results concerning the ground state manifold of a ‘physical’ class of 2-local spin

Hamiltonians. We will say that a Hamiltonian H is natural if it is 2-local, contains no isolated

subsystems, and each term ha,b (acting onH2 ⊗H2) has at least one entangled excited state (i.e.

there exists an entangled state orthogonal to the ground state manifold of ha,b). Without loss of

generality, we may further require that the ground energy of each term in H is zero. This is a

natural assumption that typical physical interactions will satisfy: for instance, ferromagnetic

or anti-ferromagnetic Ising interactions (which have excited eigenstates |0〉|1〉 − |1〉|0〉 and

|0〉|0〉 + |1〉|1〉, respectively), ferromagnetic or anti-ferromagnetic XXX models (which also

have those respective eigenstates), or indeed any interaction that is inequivalent to either

diag(0, 0, Ea, Eb) or diag(0, Ea, 0, Eb) up to rescaling and a choice of basis for each spin.

Using the reductions of section 3.1, we show strong bounds on the dimension of the

ground space of an unfrustrated natural Hamiltonian on spins. This will allow us, in section 5,

to describe a scheme for efficiently simulating the ground space of frustration-free natural

Hamiltonians and, in section 4, to demonstrate that the ground states of such Hamiltonians

satisfy an entanglement area law.

4.1. Ground-spaces of unfrustrated, natural, homogeneous Hamiltonians

We now present an extension of the analysis of Bravyi [21] for homogeneous and complete

Hamiltonians Hc (acting on a set Vc of spins) to examine the ground state manifold of Hc in

the case that Hc is also natural. We show, using techniques similar to those used in [27, section

III A], that the ground space of such a Hamiltonian is equivalent to the symmetric subspace

Symm(H
⊗Vc

2 )⊆H
⊗Vc

2 , up to some efficiently constructible choice of invertible operations

on each spin. As we may reduce more general Hamiltonians, i.e. having terms of rank 2

or 3 (extending beyond those Hamiltonians considered in [27]) to homogeneous natural

Hamiltonians via the reductions of section 3.1, these results yield important consequences for

natural frustration-free Hamiltonians in general.

Consider a Hamiltonian Hc acting on Vc, where Hc has no single-spin terms. Because the

two-spin constraints described by the terms of Hc are closed under the induction of constraints

(as described by equation (22)), and as there are no isolated subsystems, it is easy to show that

every pair of spins is acted on by a non-zero term in Hc. For such a Hamiltonian, the excited

states |βa,b〉 for the terms ha,b in Hc are entangled states. We may then construct a family of

operators {Lv}v∈Vc
⊆ GL(2) such that

〈

βu,v

∣

∣∝
〈

9−
∣

∣

u,v
(Lu ⊗ Lv) (24)

for each pair of spins u, v, where |9−〉 is again the two-spin antisymmetric state vector.

For instance, one may fix La = 1 for an arbitrarily chosen spin a ∈ Vc, and determine linear

operators Lv satisfying equation (24) for each v ∈ Vc and operator 〈βa,v|. Any such choice of

operators {Lv}v∈V c
satisfies equation (24) for all u, v, which follows from the closure of the

constraints 〈βu,v| under induction,
〈

βu,v

∣

∣ ∝ (〈βua| ⊗
〈

βa,v

∣

∣)(1 ⊗
∣

∣9−
〉

⊗ 1)

∝ (
〈

9−
∣

∣⊗
〈

9−
∣

∣)(Lu ⊗
∣

∣9−
〉

⊗ Lv)

∝
〈

9−
∣

∣ (Lu ⊗ Lv). (25)
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We define scalars λu,v 6= 0 such that 〈βu,v| = λu,v〈9
−|(Lu ⊗ Lv) for each u, v ∈ Vc, and let

T = (
⊗

v∈Vc
Lv)

−1: we then have

(
〈

βu,v

∣

∣⊗ 1)T =
〈

9−
∣

∣

u,v
⊗ Tu,v, (26a)

where we define Tu,v by

Tu,v = λu,v

⊗

w 6=u,v

L−1
w . (26b)

As the operators Tu,v have full rank, the operator (〈βu,v| ⊗1)T then has the same kernel as

〈9−|u,v, which is the +1-eigenspace of the swap operator acting on u and v. It follows that the

kernel of the Hamiltonian

T † HcT =
∑

u,v∈Vc

T †(
∣

∣βu,v

〉 〈

βu,v

∣

∣⊗ 1)T

=
∑

u,v∈Vc

∣

∣9−
〉 〈

9−
∣

∣

u,v
⊗ T

†
u,vTu,v (27)

is the symmetric subspace Symm(H
⊗Vc

2 ); this corresponds to the result of [27, section III A].

We remark on some important properties of Symm(H
⊗nc

2 ), where nc = |Vc|. This subspace

is spanned by uniform superpositions |Wk〉 of the standard basis states having Hamming weight

06 k 6 nc,

|Wk〉 ∝
∑

x∈{0,1}nc

‖x‖1=k

|x〉; (28)

thus dim Symm(H
⊗nc

2 )= nc + 1. This subspace may also be spanned by product state vectors

|α0〉
⊗nc, . . . , |αnc

〉⊗nc for any set of nc + 1 pairwise independent state vectors |α j〉 ∈H2. Thus,

any natural Hamiltonian Hc that is also complete and homogeneous has a ground space of

dimension nc + 1, and can be spanned by a family of classically efficiently simulatable state

vectors
∣

∣8 j

〉

=
⊗

v∈Vc

(Lv
∣

∣α j

〉

), (29)

for some choice of pair-wise independent single-spin state vectors |α0〉, . . . , |αnc
〉 ∈H2; we use

this fact in section 5. Note that if even this efficient method should be too computationally costly

for very large systems, one can also Monte-Carlo sample from the ground state manifold in this

way.

4.2. Preservation of natural Hamiltonians under reductions

A key feature of natural Hamiltonians (defined earlier in section 4) is that the class of frustration-

free natural Hamiltonians on spins is preserved by the two-spin contractions described in

equation (8). This implies that the reductions of section 3.1 map the ground state manifold of

an unfrustrated natural Hamiltonian H provided as input to that of a complete, homogeneous,

natural Hamiltonian. We may then apply the results of the preceding section to describe the

ground state manifold of H .

Consider an isometry Uu:u,v :H
⊗{u}

2 →H
⊗{u,v}

2 derived from a two-spin Hamiltonian term

hu,v, as described in section 3.1.1. We may show that for any term ha,u in H , the corresponding
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term h′
a,u = U †

u:u,vha,uUu:u,v in the reduced Hamiltonian H ′ = U †
u:u,vHU u:u,v has an entangled

excited state if the same holds for ha,u . We require the following two lemmas, whose proofs we

defer to the appendix:

Lemma 1 (Product states). For two-spin state vectors |ψ〉 and |φ〉, we have (〈ψ | ⊗1)(1 ⊗

|φ〉)= 0 only if both |ψ〉 and |φ〉 are product states.

Lemma 2 (Product operators). Let U :H2 →H2 ⊗H2 be an isometry that is not a product

operator. Let η > 0 be an operator on two spins, and η′ = (U † ⊗ 12)(12 ⊗ η)(U ⊗ 12). If η′ is

not of full rank, then η′ is a product operator if and only if η is a product operator.

We show that frustration-free natural Hamiltonians are preserved by the reductions of

section 3.1.1, as follows. Let H be a natural 2-local Hamiltonian, and hu,v be a two-spin term in

H . Define

Uu:u,v = |ψ0〉 〈0| + |ψ1〉 〈1| (30)

for orthonormal two-spin state vectors |ψ0〉 and |ψ1〉 whose span contains ker(hu,v); we require

that |ψ1〉 be entangled, which ensures that Uu:u,v is not a product operator. Consider the terms

h′
a,b = U †

u:u,vha,bUu:u,v that occur in the Hamiltonian H ′ = U †
u:u,vHU u:u,v. For any two-spin

operator hv,a acting on v and some other spin a, the fact that hv,a has an entangled excited

state implies, in particular, that it is not a product operator. Thus, h′
v,a is a product operator

only if it has full rank. If H is frustration-free, h′
v,a cannot have full rank; then h′

v,a is not a

product operator, and in particular it will have entangled excited states. As h′
a,b = ha,b when

a, b /∈ {u, v}, it follows that H ′ is a natural Hamiltonian; and as H ′ has a kernel of the same

dimension as H , it is frustration-free as well.

We may strengthen this result, to show that if H is natural and frustration-free, and also

contains no two-spin terms of rank 1, then the same is true of H ′ = U †
u:u,vHU u:u,v as well. For

any two-spin term hv,a acting on v with rank at least 2, consider states |ϕ0〉, |ϕ1〉 ∈ img(hv,a)

such that |ϕ0〉 = |α〉|β〉 is a product state and |ϕ1〉 is entangled;9 and choose real parameters

λ0, λ1 > 0 such that

hv,a − λ0 |ϕ0〉 〈ϕ0| − λ1 |ϕ1〉 〈ϕ1| > 0. (31)

Let ηk = |ϕk〉〈ϕk| for k ∈ {0, 1}, and consider the images η′
k under contraction by Uu:u,v:

η′
k = U †

u:u,vηkUu:u,v

=
∑

j,`

(| j〉
〈

ψ j

∣

∣⊗ 1)(1 ⊗ ηk)(|ψ`〉 〈`| ⊗ 1)

=
∑

j,`

| j〉 〈`| ⊗ M j,k M
†
`,k, (32)

where we define M j,k = (〈ψ j | ⊗1)(1 ⊗ |ϕk〉). By lemma 1, we have M j,k = 0 only if both |ψ j〉

and |ϕk〉 are product operators; this implies that the operators M1,k , in particular, are non-zero,

so that η′
k 6= 0 for any k. Note that

h′
v,a = U †

u:u,vhv,aUu:u,v

> λ0U †
u:u,vη0Uu:u,v + λ1U †

u:u,vη1Uu:u,v

= λ0η
′
0 + λ1η

′
1; (33)

9 Any subspace of H2 ⊗H2 of dimension at least 2, such as img(hu,v), contains a product state vector |ϕ0〉; the

existence of |ϕ1〉 is guaranteed by the definition of a natural Hamiltonian (compare also [32]).
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because H ′ has a non-trivial kernel, h′
v,a has rank at most 3, in which case neither operator

η′
k has full rank. By lemma 2, η′

1 is not a product operator; as η′
0 is a product operator, these

operators are linearly independent. Then, λ0η
′
0 + λ1η

′
1 has rank at least 2; by equation (33), the

same is true of h′
v,a. If all of the terms in H have rank 2 or higher, the same then holds for H ′

as well.

Thus, if we apply the reductions of section 3.1 to an initial Hamiltonian that is both

natural and frustration-free, the resulting Hamiltonians will also be natural and frustration free.

Furthermore, if H contains no terms of rank 1, then neither will the reduced Hamiltonians.

Because the process of inducing constraints, described in section 3.2, also preserves the

property of each term ha,b having entangled excited states, these invariants ensure that initial

Hamiltonians with these properties (natural and frustration-free, and possibly containing no

terms of rank 1) may be reduced to homogeneous and complete Hamiltonians that have these

same properties. We may then apply the results of section 4.1 to these reduced Hamiltonians.

5. Simulating ground spaces of frustration-free natural Hamiltonians

Building on the results of section 4, we now show how the reductions of section 3.1 may be

used to obtain a procedure for simulating states from the ground state manifold of frustration-

free natural Hamiltonians H .

5.1. Tree tensor networks and matrix-product states

As we noted in section 3.1.3, implicit in the reductions of section 3.1 is that the isometric

reduction from general Hamiltonians to homogeneous instances has the form of a tree tensor

network. Thus, simulating the ground state manifold of any unfrustrated 2-local Hamiltonian

on spins may be reduced to that of a complete homogeneous Hamiltonian acting on a smaller

system. In this section, we sketch this reduction.

For any unfrustrated 2-local Hamiltonian H on n spins, we may apply two-spin reductions,

as described in section 3.1, until we obtain a homogeneous instance without single-spin terms.

We then attempt to induce additional constraints via equation (22) and apply further two-spin

reductions if we obtain terms of rank 2 or 3. If H is frustration-free, this process will ultimately

terminate in a complete homogeneous Hamiltonian Hc on a subset Vc ⊆ V .

Consider the tensor network T that performs the complete reduction as above. We describe

T in reverse order, as introducing new spins to represent a unitary embedding of ker(Hc) into

ker(H). The various spin contraction isometries Uu:u,v, as in equation (7), each have a single

input index and two output indices; the spin deletion isometries Pv have no input indices at all.

These are applied sequentially, giving rise to an acyclic directed network. As the in-degree of

each tensor is at most 1, it follows that the network contains no cycles at all (neither directed

nor undirected): the output indices of each tensor represent spins whose state depends on only

a single spin at the input. Put another way: any spin v that is introduced by an isometry Uu:u,v

may be considered a ‘daughter spin’ of a unique parent U , which imposes a tree-like hierarchy10

on the tensor network T , as illustrated in figure 3. The roots of each tree are spins u which are

10 Strictly speaking, the quantum circuit or tree tensor network will have the structure of a forest graph, which is a

graph that may have more than one connected component, each of which is a tree.
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Figure 3. A simple tree tensor network.

prepared by an isometry Pu derived from the removal of single-spin terms or which correspond

to free indices at the input of the tensor network T .

In the case that H is non-degenerate, the resulting tensor network will (by that fact) simply

be a tree tensor network with no free input indices. Conversely, if the input Hamiltonian H

is degenerate, there will necessarily be free input indices, representing a domain consisting

of a state space of dimension at least 2. In the latter case, the tensor network T will yield

ground states of the original unfrustrated Hamiltonian H if and only if it operates on a state

|ϕ〉 ∈ ker(Hc) at the input, where Hc is the complete homogeneous instance obtained by the

Hamiltonian reductions. Thus, if one may efficiently simulate states from the ground space of

such a Hamiltonian, we may apply the network T to simulate the ground space of the original

Hamiltonian H .

5.2. Efficiently simulating ground spaces of unfrustrated natural Hamiltonians

Tensor networks T with free input indices, and with a tree-like structure such as described

above, can be efficiently simulated over inputs with low Schmidt measure [33], as follows.

For any observable � acting on m spins, one may evaluate 〈�〉H for the maximally mixed

state over the ground state manifold of H by computing the expectation 〈T †�T 〉H c
over the

ground state manifold of the complete homogeneous Hamiltonian Hc obtained as described in

section 3. As the tensor T has tree structure, the observable T †�T also acts on at most m spins.

If we can obtain an orthonormal basis for ker(Hc) which may be succinctly described in terms

of product states, we may evaluate expectation values of T †�T with respect to m-fold products

of single-spin states.

As we noted in section 4.1, ker(Hc) can be spanned by a collection of nc + 1 product vectors

(where nc is the number of spins on which Hc acts). Let |8′
0〉, |8

′
1〉, . . . , |8

′
nc

〉 ∈ ker(Hc) be a

collection of independent product vectors,

∣

∣8′
j

〉

=
∣

∣ϕ j,1

〉

⊗
∣

∣ϕ j,2

〉

⊗ · · · ⊗
∣

∣ϕ j,nc

〉

. (34)

We may efficiently compute a projection of �c onto ker(Hc) by performing a suitable

transformation of the matrix

W (�c)=

nc
∑

j,k=0

| j〉
〈

8′
j

∣

∣�c

∣

∣8′
k

〉

〈k|, (35)
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Tree tensor network

Tree tensor network

Figure 4. Schematic diagram showing the isometric decomposition for

efficiently simulating the ground state manifold. A local Hamiltonian term

supported on two sites is shown in yellow.

as follows. The operator W (1), in particular, is positive definite. We thus have W (1)= U1U †

for some unitary U and positive diagonal matrix 1. It is not difficult to show that

1−1/2U †

nc
∑

j=0

| j〉
〈

8′
j

∣

∣=

nc
∑

j=0

| j〉
〈

8 j

∣

∣, (36)

for some orthonormal basis |80〉, . . . , |8nc
〉 of ker(Hc), by taking the product of the above

operator with its adjoint. Thus, the restriction of�c to ker(Hc) with respect to the basis of states

|8 j〉 may be computed as

�̄=1−1/2U †W (�c)U1
−1/2. (37)

By considering operators �c = T †�T , this allows us to compute the restriction of operators to

the ground space of HU (see figure 4).

We may thus efficiently estimate such observables with respect to ground states of HU : for

constant m, the required inner products may be calculated as (sums of) scalar products of at

most nc inner products over vector spaces of bounded dimension. To evaluate the value of �

with respect to ground states of the input Hamiltonian H , it suffices to analyze the polynomially

sized operator �̄ representing the action of � on the ground state manifold.

6. Entanglement bounds for ground states of frustration-free natural Hamiltonians

The fact that the reductions of section 3.1 preserve the class of natural Hamiltonians (as

defined in section 4) allows us also to make more global statements about ground states

for frustration-free Hamiltonians, again by reduction to the complete homogeneous case

described in section 4.1. In this section, considering frustration-free natural Hamiltonians H ,

we demonstrate an area law for the entanglement possible in a ground state of H between any

subsystem A ⊆ V and its environment V r A. We also consider some very general cases in

which still stronger upper bounds on the entanglement may be obtained.
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6.1. Area law for frustration-free natural Hamiltonians

We consider first the case where A is a contiguous subsystem (i.e. for which there is a path

between any pair of spins in A, following edges in the interaction graph of the Hamiltonian

H ), and subsequently generalize the observation in this case to arbitrary subsystems A. We first

decompose

H = HA + HB + HA,B, (38)

for B = V r A, and where HA and HB contain all terms internal to A and B, respectively. We

then apply the reductions of section 3.1 to subsystem A. That is, we perform two-spin contrac-

tions, as described in section 3.1.1, for any two-spin terms in HA of rank 2 or 3, and perform

spin deletions, as described in section 3.1.2, for any single-spin terms in HA. Performing the

constraint-induction process of (22)—again on the terms acting on A alone—and then reducing

further reductions as necessary, we eventually obtain a Hamiltonian H̃ of the form

H̃ = H̃Ã + HB + H̃Ã,B, (39)

where Ã ⊆ A is the set of spins remaining after the reduction process, and where H̃Ã is

a homogeneous and complete Hamiltonian11. In other words, we perform a complete tree

tensor reduction on subsystem A, until we obtain a Hamiltonian whose restriction to A is

homogeneous and complete. As dim ker(H̃)= dim ker(H) > 0, we have ker(H̃Ã) > 0 and

ker(HB) > 0 as well; in particular, ker(H̃)⊆ ker(H̃Ã), so that H̃Ã is frustration-free. Because

ker(H̃)⊆ ker(HB) as well, we then have

ker(H̃)⊆ ker(H̃Ã)⊗ ker(HB) (40)

taking the restrictions of H̃Ã and HB to their respective subsystems Ã and B. Let ñ = | Ã|: as

H̃Ã is also homogeneous and complete, it has kernel of dimension ñ + 1 by section 4.1.

In the case where A contains multiple components A1, A2, . . . , Ak with respect to the

interaction graph of H (where each A j is disconnected from the others but connected internally),

we may perform the Hamiltonian reductions of section 3.1 to each component independently.

We may further decompose the Hamiltonian H̃Ã obtained in equation (39) as

H̃Ã = H̃Ã1
+ · · · + H̃Ãk

, where Ã j = Ã ∩ A j . (41)

As H̃Ã is unfrustrated, each of the sub-Hamiltonians H̃Ã j
is unfrustrated as well, in which case

we may write

ker(H̃Ã)⊆ ker(H̃Ã1
)⊗ · · · ⊗ ker(H̃Ãk

), (42)

similarly to equation (40). Then, the dimension of ker(HÃ) is bounded by the product of

dim ker(H̃Ã j
)= ñ j + 1 for each subsystem, where ñ j = | Ã j |. Let α j be the number of spins

in A j which are adjacent in the spin lattice to spins in B, and let α̃ j 6 α j be the number of

such spins in Ã j . For any H with nearest-neighbor interactions on a lattice in finitely many

dimensions (in the graph theoretical sense), there exist scalars c, K > 0 such that

α j > K nc
j (43)

11 The Hamiltonians H̃Ã and H̃Ã,B contain the terms derived from HA and HA,B , respectively, by the reduction

process.
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for each subsystem A j . We may then bound on the dimension of ker(H̃Ã) in terms of these

‘boundary spins’ as

log(dim ker(H̃Ã))6

k
∑

j=1

log(dim ker(H̃Ã j
))

6

k
∑

j=1

log(ñ j + 1) 6

k
∑

j=1

ñc
j 6

α

K
, (44)

where α = α1 + · · · +αk is the number of spins in A adjacent to elements of B.

From this bound on dim ker(H̃Ã), it follows that any pure state |8〉 in the ground space

of H̃ has Schmidt measure [33] at most α/K across the partition Ã + B and so can support at

most this many e-bits of entanglement between Ã and B. Because any state vector |9〉 ∈ ker(H)

can be obtained from some vector |8〉 ∈ ker(H̃) by a network of isometries acting only on spins

in A, it follows that any state vector |9〉 in the ground state manifold of H contains at most α/K

e-bits of entanglement between A and B. Note the similarity to ground states of low Schmidt

rank close to factorizing ground states in Heisenberg models [31]. In case the ground state ρ

is degenerate, each pure state in the spectral decomposition of ρ will have that property. As

the entanglement of formation is convex (this usually being taken as a necessary property of an

entanglement monotone), one obtains the bound

EF(ρ)6
α

K
(45)

for the entanglement of formation between A and B. Finally, let ∂A be the set of edges between

A and B. By definition, for each edge in ∂A, there is a spin in A which is adjacent to some spin

in B; then we have α 6 |∂A|, so that

EF(ρ)6
|∂A|

K
. (46)

Thus, the amount of entanglement that can be supported by a ground state of H between A and

B is governed by an area law. We summarize:

Proposition 1 (Area law). Let H be an unfrustrated natural Hamiltonian on a lattice V ,

and denote as ρ its (possibly degenerate) ground state. Then, for any subsystem A ⊆ V , the

entanglement of formation of ρ with respect to A and V r A satisfies an area law, i.e. there

exists a constant C > 0 of the lattice model such that

EF(ρ)6 C |∂A|. (47)

6.2. Stronger entanglement bounds for contiguous subsystems

The above analysis imposes no additional constraints, beyond the requirement that H be natural

and frustration-free. We may obtain still stronger bounds—by the logarithm of the system size,

or even by a constant—on the entanglement between A and its environment B = V r A, under

fairly general conditions on the subsystem A when it is a contiguous subsystem.
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6.2.1. Contiguous subsystems in general. Implicit in the analysis of the previous subsection

is a stronger entanglement bound for contiguous subsystems in general: we observe that if A

consists of a single component, we have

dim ker(H̃Ã)= ñ + 1 (48)

for ñ = | Ã| by the analysis of section 4.1 (where HÃ is the reduced Hamiltonian acting on the

subsystem A described in equation (39)). By a similar analysis, if α is the number of spins in A

adjacent to at least one spin in B, we may use equation (43) to obtain

log(dim ker(H̃Ã))= log(ñ + 1)6
log(α/K + 1)

c
. (49)

As α 6 |∂A|, we may then obtain:

Proposition 2 (Logarithm law for contiguous systems). Let H be an unfrustrated natural

Hamiltonian on a lattice V , and denote as ρ its (possibly degenerate) ground state. There then

exists a constant C > 0 of the lattice model such that, for any contiguous subsystem A ⊆ V , the

entanglement of formation of ρ with respect to A and V r A satisfies

EF(ρ)6 C log |∂A|. (50)

6.2.2. Subsystems acted on by many high-rank Hamiltonian terms. In the above result, we

have neglected the difference in the sizes of subsystem A and the reduced subsystem Ã ⊆ A. The

difference in their sizes will be precisely the number of isometric reductions performed to obtain

Ã from A. Each isometric reduction corresponds to either an edge contraction in the interaction

graph G of the Hamiltonian H or a vertex deletion in G, yielding an interaction graph G ′ for

the Hamiltonian H ′. Two-spin isometries Uu:uv represent the reduced state space of the two-spin

subsystem {u, v} as the image of a single spin under an isometry: the corresponding reduction

may thus be represented as a ‘contraction’ of two spins into one, as illustrated in figure 2. Single-

spin terms hu may be represented by loops on vertices: isometric reductions arising from terms

hu,v of rank 3 also yield a loop on the contracted vertex. Spin-removal reductions Pu correspond

to the deletion of a vertex u with a loop, which removes all edges au incident to u, possibly

replacing them by loops on the neighbors a.

This representation of Hamiltonian reductions in terms of graphs is underdetermined, in

that it is not always possible to determine the ranks of the reduced Hamiltonian H ′ from those

of the Hamiltonian H prior to contraction. However, the correspondence to graph reductions

motivates a simple observation. Consider a subsystem A, and consider the Hamiltonian HA

together with its interaction graph G A. We may ‘color’ or ‘rank’ the edges of G A according

to whether the term corresponding to each edge is rank 1 (which we call ‘light’ edges) or has

rank 2 or 3 (which we call ‘heavy’ edges). The two-spin isometric reductions of section 3.1.1

required to obtain H̃Ã correspond to contractions of all heavy edges in G A. As such contractions

preserve connectivity, this implies that the interaction graph G̃ Ã corresponding to H̃Ã has as

many vertices as there are connected components in the ‘heavy subgraph’ of G A. In particular,

if the number of ‘heavy’ connected components (components connected only by heavy edges)

is bounded above by some parameter β, we then obtain ñ = | Ã|6 β, so that

log(dim ker(H̃Ã))6 log(β + 1). (51)
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A consequence of this is that if H is a frustration-free natural Hamiltonian that contains only

terms of rank 2 or 3, all edges in G A will be heavy, so that it consists of a single heavy

component; we then have log(dim ker(H̃Ã))= 1. In this case, there is at most one e-bit of

entanglement between A and any other, disjoint subsystem in the lattice.

We may further refine this observation by considering the impact of Hamiltonian terms of

rank 3. More generally, we may consider rank-1 single-spin terms in the reduced Hamiltonians,

arising either from rank-1 terms in preceding Hamiltonians or from performing an isometric

reduction on terms of rank 3. Such single-spin terms correspond to loops on vertices in the

interaction graphs G ′
A′ of the reduced Hamiltonians H ′

A′ . In the case of a frustration-free natural

Hamiltonian containing such terms, we may show that the Hamiltonian H is non-degenerate

with a ground state consisting essentially of a product of single-spin states (together with a

single two-qubit entangled state if the original Hamiltonian H contains a term of rank 3).

Consider the effect of preferentially performing single-spin deletions in the process of reducing

H by isometries: for a natural Hamiltonian, we may easily verify that removal of such a

vertex u (i.e. performing the single-spin removal reduction of section 3.1.2) will induce loops

corresponding to single-spin terms on all neighbors of u. These spins may then be removed

in turn, inducing still further loops. By the requirement that the original interaction graph G

be connected, this ultimately results in the removal of every spin on which H acts, each by

independent single-spin isometries that describe a fixed single-qubit state vector |ϕu〉. As a

result, the entire lattice contains no entanglement, or at most one e-bit if H contained a single

rank-3 term giving rise to a ‘seed’ loop. Any subsystem A that is not acted on by the rank-3 term,

therefore, contains no entanglement, nor does it have any entanglement with its environment.

The above exhibits the fragility of the condition of frustration-freeness: it follows, for

instance, that any natural Hamiltonian H that contains as many as two terms of rank 3 is

necessarily frustrated (i.e. does not have a ground space characterized by those of its interaction

terms). Because the same unique ground state must be produced by any reduction, e.g. in

which we first perform two-qubit isometries, it follows that each two-qubit isometry in such a

reduction must also map the single-spin states (describing the unique ground state of the reduced

Hamiltonians) to product states, which is, of course, highly unlikely if instead one considers

arbitrarily chosen two-qubit isometries and single-product input states. These observations may

be used together with the random satisfiability results of Laumann et al [27] to suggest that

‘exact’ frustration-freeness is likely to be rare in physical systems; small perturbations are

likely to cause frustration. This is nothing but a manifestation of a fragility against spontaneous

symmetry breaking. However, in section 8, we suggest ways in which systems that differ only

slightly from frustration-free systems may be examined using the techniques of sections 5 and 6.

7. Different models of frustration-free Hamiltonians

In this section, we consider frustration-free Hamiltonians H , but suspend our earlier restriction

to natural Hamiltonians (as described in section 4) in order to consider different models of

Hamiltonians that are of interest. In doing so, we will compare the resulting analysis to the case

of frustration-free natural Hamiltonians in section 6.

7.1. Rank-two terms lacking entangled excited states

Any Hamiltonian term ha,b in H which has rank 2 and has only product states orthogonal

to its ground space is of the form ha,b = |ϕ〉〈ϕ|a ⊗ ηb (or the reverse tensor product), where
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η is a single-spin operator of full rank and |ϕ〉 ∈H2. This operator has the same kernel as

the single-spin operator |ϕ〉〈ϕ|a ⊗ 1b. Therefore, if H is frustration-free, we may perform this

substitution without any change to the ground state manifold or its properties. As any rank-3

operator has entangled states orthogonal to its (unique) ground state, we may therefore restrict

to the case where ‘non-natural’ terms ha,b occurring in H have rank 1, so long as we permit

input Hamiltonians with single-spin terms.

7.2. Unfrustrated translationally invariant Hamiltonians

Consider a frustration-free Hamiltonian H in which the interaction terms ha,b of each spin a is

the same for all of its neighbors b. If H is not natural, it follows that ha,b = |α〉〈α|a ⊗ |β〉〈β|b
for some states |α〉, |β〉 ∈H2; and by a suitable choice of basis on each site, we may, without

loss of generality, let |α〉 = |β〉 = |1〉.

Consider a ground state vector |8〉 of the Hamiltonian. For each site a, if the state vector of

|α〉 is not given by |1〉, it follows that all of the neighbors of a are in |1〉; and conversely, if all of

the neighbors of some site a are in |1〉, the site a may be in an arbitrary single-spin state without

contributing to the energy of the global state. It follows that the ground-state manifold of H

consists of all superpositions of product states in which all sites are in |1〉, except for some set

of mutually non-adjacent sites A ⊆ S, whose spins may have arbitrary states (including states

that are entangled with other sites in S). In particular, for bipartite lattices, this includes states

in which the entire ‘even’ sublattice of sites an even distance from the origin are in |1〉, and the

opposite ‘odd’ sublattice may have an arbitrary entangled state.

Thus, if H is isotropic and frustration-free, then without loss of generality it is either

natural, or contains subspaces in which large subsystems of the lattice are essentially uncon-

strained, and may occupy states with arbitrarily large entanglement content. Consequently, one

may expect that unfrustrated translationally invariant Hamiltonians should have interaction

terms with entangled excited states, i.e. be given by natural Hamiltonians.

7.3. Unfrustrated lattices with randomly located product terms and percolation

Finally, we wish to consider a class of random Hamiltonians that includes non-natural

Hamiltonians, and compare the behavior of their ground-state manifolds to natural

Hamiltonians. If one distributes random Hamiltonian terms ha,b over nearest-neighbor pairs in

an arbitrary lattice, then they will almost certainly have an entangled excited state, as the highest-

energy eigenstate of each term will be a product state with probability zero. This remains true

even if one constrains each interaction term ha,b in the lattice to have ranks described by integers

ra,b ∈ {1, 2, 3} selected according to any distribution, including the case where every term has

rank 1. In order to obtain a random model of non-natural Hamiltonians, we must explicitly

designate certain interactions ha,b to be rank-1 product operators (non-natural terms of higher

rank being subject to the remarks of section 7.1 above), and consider the scaling of the resulting

lattice model.

Consider a d-dimensional rectangular lattice, in which each term ha,b has rank 1, and

for each term we randomly determine whether ha,b is a product term (i.e. satisfies ha,b =

|α〉〈α|a ⊗ |β〉〈β|b for some |α〉, |β〉 ∈H2) or an entangled term (satisfies ha,b = |γ 〉〈γ | for some

entangled |γ 〉 ∈H2 ⊗H2). The probability that ha,b is entangled is given by some fixed p > 0,

independently for each edge. Having determined whether ha,b is entangled or not, we select a
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random rank-1 projector for ha,b subject to that constraint on ha,b. Considering only frustration-

free Hamiltonians H constructed under such a model12, and subsystems A of the lattice on

which H acts, we wish to determine the dimension of the ground state manifold M = ker(HA).

By a similar analysis as in section 6, this will indicate how close the ground states of H come

to obeying an entanglement area law.

As we noted in section 4.1, the process of inducing rank-1 constraints, as in equation (22),

will yield entangled (‘natural’) constraints from two other entangled constraints. Consider the

subgraph of the lattice consisting of entangled constraints: it follows that any subsystem A ⊆ V

of the lattice which is connected only by entangled constraints forms a subsystem for which HA

is a natural Hamiltonian, with a kernel of dimension at most |A| + 1. Conversely, we may easily

show that for any product term ha,u = |α〉〈α|a ⊗ |β〉〈β|u , the constraints h̃a,v induced by ha,b

together with any other constraint hu,v will also be a product term (regardless of whether hu,v

is a product term). Thus, such product terms ha,u in the Hamiltonian represent obstacles to the

induction of constraints which would yield bounds on entanglement: as we noted in section 7.2

above, the prevalence of product terms in a Hamiltonian H allows for the effective decoupling

of large subsystems in the ground state manifold of H , yielding extremely high degeneracy.

These observations suggest an approach to bounding dim(M) using percolation theory [34]

to bound the number and size of components connected by entangled edges in a large convex

subset (for a review on the applications of percolation theory in quantum information, see [35]).

We may consider the worst case scenario in which no additional constraints may be induced

between any two subregions A1 and A2 that are internally connected by entangling terms, but

separated by a barrier of product terms that effectively decouple the subsystems A1 and A2. If

the probability p is above the percolation threshold pc of the lattice, we may apply the following

results:

Proposition 3 ([34, theorem 4.2]). Let A be a hypercube consisting of n vertices, in a

d-dimensional rectangular lattice with edge-percolation probability p. Then there exists a posi-

tive real κp ∈ R such that the number of connected components in A grows as κpn, as n → ∞.

Proposition 4 ([34, theorem 8.65]). Let C be a finite-size connected component containing an

arbitrary vertex (e.g. the origin) in a d-dimensional rectangular lattice with edge-percolation

probability p. For p > pc, there exists a positive ηp ∈ R such that

Pr
p
(|C | = s) 6 exp

(

− ηps(d−1)/d
)

. (52)

Both κp and exp(−ηp) in the propositions above are analytic for p > pc and thus must

converge to 0 in the limit p → 1. We may thus describe an upper bound on the dimension of M

as follows, for A a large cube containing n � 1 spins. For p > pc, there is almost surely a unique

maximum-size component A0 of the lattice that is connected by entangled edges: because the

percolation probability θp is strictly positive (by definition) for p > pc, we will have |A0| = θpn,

on average. Each subsystem A0, A1, . . . , Ak ⊆ A that is connected by entangled edges induces a

natural Hamiltonian HA j
that has a kernel of dimension at most |A j | + 1: we may bound dim(M)

by noting that

M ⊆ ker(HA0
)⊗ ker(HA1

)⊗ · · · ⊗ ker(HAk
), (53)

12 NB By the analysis of Laumann [27], one expects that such Hamiltonians will be frustrated with probability 1 if

the ‘natural’ terms form more than one cycle in the lattice, which occurs with high probability if p > 1/2 (or more

precisely, if p is greater than the percolation threshold for the lattice model).
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as in equation (42). This allows us to obtain the bound

log dim(M)6
∑

j>0

log dim(ker(HA j
))

6
∑

j>0

log (|A j | + 1). (54)

By proposition 3, the expected number of components k grows like κpn for some κp > 0 as

n → ∞; using the probability bound on the typical finite component size of proposition 4 as

the probability of an indistinguished connected component having size s, we obtain the upper

bound

Exp
p

[

log dim(M)
]

6 log(|A0| + 1)+
∑

j>1

log(|A j | + 1)

6 log(θpn + 1)+

κpn
∑

j=1

[

∞
∑

s=1

log(s + 1)

exp(ηps(d−1)/d)

]

6 log(θpn + 1)+ κpC pn, (55)

where C p is the sum in square brackets (which is small for exp(−ηp) small).

As log dim(M) is also the logarithm of the maximum Schmidt rank of any state with respect

to the bipartition into A and V r A for the lattice V , the amount of entanglement scales with

the logarithm of the size of the cube A, with a small and tunable linear correction, for p ≈ 1.

In this sense, frustration-free Hamiltonians in such a ‘percolated’ product model on rectangular

lattices resemble frustration-free natural Hamiltonians in the expected case as p → 1.

8. Almost frustration-free Hamiltonians

The method of efficiently simulating ground state manifolds of frustration-free Hamiltonians

can be extended to serve as a method to simulate almost-frustration-free Hamiltonians, albeit in

a non-certified way. Consider a Hamiltonian

H = H0 + λH1 (56)

for λ ∈ R playing the role of a small perturbation, where

H0 =
∑

{a,b}⊆V

ha,b (57)

is exactly frustration-free (i.e. in the sense defined in section 2.1), and H1 is a small local

perturbation. Then, one can still efficiently compute

inf
|8〉∈M

〈8| H |8〉, (58)

where M denotes the (in general, degenerate) ground state manifold of H0. Again, we may

characterize M as the image of the low-dimensional subspace Symm(H
⊗nc

2 ) under a tree tensor

network, as described in section 5; H1 being a local Hamiltonian, each term of the infumum

above can be efficiently computed using a suitable basis of Symm(H
⊗nc

2 ). This is a variational

approach that will always provide an upper bound to the true ground state energy.
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In this way, one approximates the ground state manifold of an almost frustration-free

Hamiltonian with the ground state manifold of an exactly frustration-free one. The interesting

aspect here is that one can consider the image of an entire large subspace under a tensor

network. In practice, one would think of a Hamiltonian HU near a realistic one H , where one

may show that HU is frustration-free (which may be efficiently verified using the algorithm

of [21], as outlined in section 3), and then approximate the ground state of the full Hamiltonian.

This approach appears to be particularly suitable for slightly frustrated Hamiltonians reminding

us of Shastry–Sutherland-type [36] models, with—in a cubic lattice and a frustration-free

Hamiltonian—an additional bond along the main diagonal, which renders the model frustrated.

9. Summary

In this work, we have investigated in great detail a class of models whose ground state manifolds

can be completely identified: those of physically realistic frustration-free models of spin-1/2

particles on a general lattice. We have seen that the entire ground state manifold can be

parameterized by means of tensor networks applied to symmetric subspaces, by essentially

undoing a sequence of isometric reductions. We also found that any ground state of such

a system satisfies an area law and hence contains little entanglement. This is a physically

meaningful class of physical models—beyond the case of free models—for which such an area

law behavior can be rigorously proven. It is hoped that the idea of considering entire subspaces

under tensor networks, and eventually looking at the performance when being viewed as a

numerical method, will give rise to new insights into almost frustration-free models.
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Appendix. Technical lemmas

We now supply the proofs of technical lemmata required in the preceding sections.

Proposition (lemma 1). For two-spin state vectors |ψ〉 and |φ〉, we have (〈ψ | ⊗1)(1 ⊗ |φ〉)=0

only if both |ψ〉 and |φ〉 are product states.

Proof. Consider Schmidt decompositions

|ψ〉 =
∑

r

µr |er〉 | fr〉 , |φ〉 =
∑

s

νs |gs〉 |hs〉, (A.1)

where without loss of generality we may require 〈 fr |gr〉 6= 0 by an appropriate choice of labels.

Then, we have

(〈ψ | ⊗ 1)(1 ⊗ |φ〉)=
∑

r

(µrνr 〈 fr |gr〉) |er〉 〈hr |, (A.2)

which is only zero if µr = 0 and ν1−r = 0 for some value of r ∈ {0, 1}. ut
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Proposition (lemma 2). Let U: H2 →H2 ⊗H2 be an isometry that is not a product operator.

Let η > 0 be an operator on two spins, and η′ = (U † ⊗ 12)(12 ⊗ η)(U ⊗ 12). If η′ is not of full

rank, then η′ is a product operator if and only if η is a product operator.

Proof. Suppose that η′ is not full rank and is a product operator. As it is positive semidefinite, η′

must have the form |α〉〈α| ⊗ η′′ or η′′ ⊗ |α〉〈α| for some |α〉 ∈H2. In particular, there must exist

a state vector |γ 〉 ∈H2 such that either

(〈γ | ⊗1)η′(|γ 〉 ⊗1)= 0 or (A.3a)

(1 ⊗ 〈γ |)η′(1 ⊗ |γ 〉)= 0 (A.3b)

holds. Decompose η in its spectral decomposition,

η =
∑

k

λk |φk〉 〈φk| (A.4)

for λk > 0. Suppose that (〈γ | ⊗1)η′(|γ 〉 ⊗1)= 0: if we let |0〉 = U |γ 〉, we have

0 = (〈γ | U † ⊗ 1)(1 ⊗ η)(U |γ 〉 ⊗ 1)

= (〈0| ⊗ 1)

(

∑

k

λk1 ⊗ |φk〉 〈φk|

)

(|0〉 ⊗ 1)

=
∑

k

λk Tk T
†

k , (A.5)

where we define Tk = (〈0| ⊗1)(1 ⊗ |φk〉). By lemma 1, each operator Tk is zero only if both

|0〉 and |φk〉 are both product vectors; we may then decompose |0〉 = |σ 〉|τ 〉 and |φk〉 = |τ ′〉|φ′
k〉,

where we require 〈τ |τ ′〉.= 0 for all k. We then have

η = |τ ′〉 〈τ ′| ⊗

[

∑

k

λk |φ′
k〉 〈φ′

k|

]

. (A.6)

On the other hand, if (1 ⊗ 〈γ |)η(1 ⊗ |γ 〉)= 0, we obtain

0 = (U † ⊗ 〈γ |)η(U ⊗ |γ 〉)

=
∑

k

λkU †(1 ⊗
∣

∣φ′
k

〉

)(1 ⊗
〈

φ′
k

∣

∣)U, (A.7)

for single-spin states |φ′
k〉 = (1 ⊗ 〈γ |)|φk〉. We then require U †(1 ⊗ |φ′

k〉)= 0 for each k;

because U cannot be decomposed as U ′ ⊗ |u〉 for any state |u〉 ∈H2, this implies that the vectors

|φ′
k〉 themselves are zero. Thus, |φk〉 = |αk〉|β〉 for some states |αk〉 ∈H2 and where 〈γ |β〉 = 0.

We then have

η =

[

∑

k

λk |α′
k〉 〈α′

k|

]

⊗ |β〉 〈β| . (A.8)

In either case, η′ is a product operator only if η is a product operator; the converse holds

trivially. ut
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