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Monogamy of multipartite Bell inequality violations
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We show that the complementarity relation between dichotomic observables leads to the
monogamy of Bell inequality violations. We introduce a simple condition for the squares of expec-
tation values of complementary observables that is satisfied by all physical states. This condition
is used to study multi-qubit correlation inequalities involving two settings per observer. In con-
trast with the two-qubit case a rich structure of possible violation patterns is shown to exist in the

multipartite scenario.

Quantum mechanical predictions violate Bell inequal-
ities [1]. An interesting phenomenon occurs when a sys-
tem is involved in more than one Bell experiment. In
this case trade-offs exist between strengths of violations
of a Bell inequality by different sets of observers, known
as monogamy relations [2-7]. One of the origins of this
monogamy is the principle of no-signaling, according to
which no information can be transmitted faster than the
speed of light. If violations are sufficiently strong possi-
bility of superluminal communication between observers
arises and consequently the Bell monogamy is present in
every no-signaling theory [4-7]. However, no-signaling
principle alone does not identify the set of violations al-
lowed by quantum theory. The monogamy relations de-
rived within quantum theory, in the scenario where a Bell
inequality is tested between parties AB and AC, show
even more stringent constraints on the allowed violations
2, 3].

Here we derive within quantum theory the monogamy
relations which involve violation of multi-partite Bell
inequalities, and study their properties. The trade-
offs obtained are stronger than those arising from no-
signaling alone and in some cases we show that they fully
characterize the quantum set of allowed Bell violations.
Our method uses complementarity of operators defining
quantum values of Bell parameters and shows that Bell
monogamy stems from quantum complementarity.

We begin with the principle of complementarity, which
forbids simultaneous knowledge of certain observables,
and show that the only dichotomic complementary ob-
servables in quantum formalism are those that anti-
commute. Conversely, we present a theorem that gives a
bound for the sum of squared expectation values of anti-
commuting operators in any physical state. This result is
subsequently used to derive monogamy of Bell inequality
violations. The theorem also finds other applications, for
instance see Ref. [8].

Consider a set of dichotomic complementary measure-
ments with the corresponding outcomes +1. The com-
plementarity is manifested in the fact that if the ex-

pectation value of one measurement is +1 then expec-
tation values of all other complementary measurements
are zero. We show that the corresponding quantum me-
chanical operators anti-commute. Consider a pair of di-
chotomic operators A and B and put the expectation
value (A) = 1, ie., the state being measured is one
of the +1 eigenstates |a). Complementarity requires
(a| Bla) = 0, ie., Bla) = |ay), a state orthogonal to
la). Since B? = 1, we also have Bla,) = |a) and there-
fore |b) = \%(\a) + |ay)) is the eigenstate of B with
+1 eigenvalue. For this state complementarity demands,
(b| A|b) =0, i.e. A|b) is orthogonal to |b) which is only
satisfied if |a, ) is the eigenstate of A with —1 eigenvalue.
The same argument applies to all eigenstates |a) with +1
eigenvalue and therefore the two eigenspaces have equal
dimension. Therefore, A = > (|a) (a| — |a1) (a1]) and
B=>"_(Ja1) {a]+|a) (ar]). It is now easy to verify that
A and B anti-commute.

Conversely, consider a set of traceless and trace-
orthogonal dichotomic hermitian operators Aj and as-
sume for the moment that arbitrary quantum states can
be decomposed as p = (]1 + 221_11 akAk)- Here, d
is the dimension of the underlying Hilbert space and ay
are real coefficients in the range [—1, 1] being expecta-
tion values of measurements Aj in the state p. Let us
group operators Ay, into disjoint sets S; of mutually anti-
commuting operators, S; = {Agj)7 Agj), ... }. Denoting
the number of sets by S, the density operator reads
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where F; = Z‘ks:’ll aij,(Cj) — @; - A;. Operators F;

are traceless, orthogonal, and have only two eigenval-
ues +|aj|, because F? = |@;[*1, which follows from the
properties of Aj. Moreover, the eigenvalues are equally
degenerated since Tr(F;) = 0.

The properties of F; operators allow derivation of the
following theorem, which is a necessary condition for p



to describe a physical state. For a related theorem for
Clifford algebra observables see Ref. [9].
Theorem: For all physical states and for all j, |&;| < 1.
Proof: The proof is by contradiction. Let us as-
sume the existence of an index j such that |&;| > 1.
We show that this implies negativity of p. Note that
F; = |a;|(I14 — II_-), where II1 denotes a projector

onto subspace of degenerated eigenvalue =+|d;|. Since
Iy +1II- =1 we find
I =5 (1 - F;/|d;]). (2)

Both eigenvalues of [} have the same degeneracy
Tr(Ily) = d/2, and hence the probability to observe the
result associated with II_ in the state p reads
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The last term vanishes due to orthogonality of operators
F; and since by assumption |&/;| > 1, the probability in
(3) is negative, which ends the proof. [J

This theorem implies that if an expectation value of
one observable is +1 then expectation values of all other
anti-commuting observables are necessarily zero. In this
way anti-commuting operators encode the concept of
complementary observables in quantum formalism. The
theorem is in fact more general as it gives trade-offs be-
tween squared expectation values of anti-commuting op-
erators in any physical state.

We apply these results to derive constraints on Bell
inequalities between many qubits. A general N-qubit
density matrix can be decomposed into tensor products
of Pauli operators

1
p= 271\7 Z TM1~~~NN0M1 ®"'®UMN7 (4)

where 0,,,, € {1, 0,,0,,0.} is the y1,,-th local Pauli opera-
tor for the n-th party and T}, . = Tr[p(0,, @ - -Q0,, )]
are the components of the correlation tensor T. The or-
thogonal basis of tensor products of Pauli operators has
the property that its elements either commute or anti-
commute.

We consider a complete collection of two-setting corre-
lation Bell inequalities for N qubits, which form a neces-
sary and sufficient condition for existence of local hidden
variable model [10-12]. This condition can be condensed
into a single Bell parameter, which is bounded by one
[12]. The quantum value of this parameter, denoted by
L, was shown to have an upper bound of

£2 S Z T]?l...kN’ (5)
ki,....,kn=z,y

where summation is over orthogonal local directions x
and y which span the plane of the local settings [12].

FIG. 1: The nodes of these graphs represent observers try-
ing to violate Bell inequalities which are denoted by colored
edges. a) The simplest case: two subsets of three parties try
to violate CHSH inequality [Eq. (6)]. b) Four subsets of
four parties try to violate Mermin inequality [Eq. (10)]. c)
Two subsets of odd number of parties try to violate multi-
partite Bell inequality in a scenario in which only one particle
is common to two Bell experiments [Eq. (12)]. d) A binary
tree configuration leads to strong monogamy relation (15).

Our method for finding monogamy relations is to use
condition (5) for combinations of Bell parameters and
then identify sets of anti-commuting operators in order
to utilize our theorem to obtain a bound on these com-
binations.

To describe the method, consider the simplest scenario
of three particles, illustrated in Fig. 1la. There exists
a monogamy relation for the violation of the CHSH in-
equality [13] between parties AB and AC. It was shown
that for quantum systems of arbitrary dimension [3]:

31243 + 81240 < 87 (6)

where Bap (Bac) stands for the quantum value of the
CHSH parameter obtained by AB (AC'). If the CHSH in-
equality is violated by AB then it cannot simultaneously
be violated by AC. Moreover, if AB obtain maximal vi-
olation of Bapg = 2v/2, then necessarily Bac = 0, which
is a form of monogamy of entanglement [4, 5, 14-17].
We now show a slightly more general result for qubits,
which is the monogamy of local hidden variable cor-
relations. We show that if correlations obtained in
two-setting Bell experiment by AB cannot be mod-
eled by local hidden variables, then correlations ob-
tained by AC' admit local hidden variable model. We
use condition (5) which applied to the present bipar-
tite scenario reads: 5,243 + 5,240 < Zk,l:x,y Tk2l0 +
> km—ay Thom- It is important to note that the set-
tings of A are the same in both sums and accordingly
orthogonal local directions = and y are the same for
A in both sums. We arrange the Pauli operators cor-
responding to correlation tensor components entering
the sums into the following two sets of anti-commuting
operators: A; = (XX1,XY1,Y1X,Y1Y) and Ay =
(YX1,YY1,X1X,X1Y), where X = 0, and ¥ = o,.
Note that the anti-commutation of any pair of operators



within a vector is solely due to anti-commutativity of lo-
cal Pauli operators. From the theorem, we obtain our
result

L+ L0 <2 (7)

In particular, for qubits, Eq. (7) is more general than
Eq. (6) because the CHSH inequality is a special case of
the unifying inequality of Ref. [12].

Before we move to a general case of arbitrary number
of qubits, we present an explicit example of multipartite
monogamy relation. Consider parties A, B, C, D trying
to violate a correlation Bell inequality in a scenario de-
picted in Fig. 1b. We shall show the following quantum
bound

Lipc+ Lisp + Licp + Laop < 4. (8)

Condition (5) applied to these tripartite Bell parameters
implies that the left-hand side is bounded by the sum of
32 elements. The corresponding tensor products of Pauli
operators can be grouped into four sets

A = (XXY1,XY1X,X1XY,1YYY,...),
Ay = (XYX1,YY1Y,YIXX,1XXY,...),
A; = (YXX1,XX1Y,Y1YY,1XYX,...),
I, = (YYY1,YX1X,X1YX,1YXX,...), (9)

where the dots denote four more operators being the pre-
vious four operators with X replaced by Y and vice versa.
All operators in each vector A;- anti-commute and by
virtue of our theorem, Eq. (8) is proved.

To give a concrete example of monogamy of a well-
known inequality we choose the inequality due to Mermin
[18]: Fi12 + E121 + FEo11 — Eg2o < 2, where Ey,, denote
the correlation functions. Since the classical bound of the
Mermin inequality is 2, and not 1 as we have assumed in
the derivation of Eq. (8), the Mermin monogamy is

Mipe + Migp + Miop + Mpep < 16, (10)

where M is the quantum value of the corresponding Mer-
min parameter. The bound of the new monogamy rela-
tion (10) can be achieved in many ways. If a triple of
observers share the GHZ state, they can obtain maximal
violation of 4 and the remaining triples observe vanishing
Mermin quantities M. This can be attributed to maxi-
mal entanglement of the GHZ state. It is also possible for
two and three triples to violate Mermin inequality non-
maximally, and at the same time to achieve the bound.
For example, the state 3 (|0001) +[0010) + iv/2[1111))
allows ABC and ABD to obtain M = 2v/2, and the state
75 (10001) +]0010) + [0100) + i+/3[1111)) allows ABC,

ABD and ACD to obtain M = %. Note that it is

impossible to violate all four inequalities of (10) simulta-
neously.

We now derive monogamy relations for N qubits. Con-
sider scenario of Fig. 1lc, in which N is odd, A is the
fixed qubit and the remaining N — 1 qubits are split into
two groups B = (By,...,By) and C= (C1,...,Cyr) each
containing M = (N — 1) qubits. We shall derive the
trade-off relation between violation of (M + 1)-partite
Bell inequality by parties AB and AC. Using condition
(5), the elements of the correlation tensor which enter
the bound of ﬁi}ﬁ + L2 are of the form Ty, . 1,,0...0 and
T%o...0my...m - Lhe corresponding Pauli operators can be
arranged into 2M sets of four mutually anti-commuting
operators each:

Ais
Ass

(XXSI, XYSI, YIXS, YIYS),
(YXSI, YYSI, XIXS, XIYS), (11)

where S stands for all 21 combinations of X’s and
Y’s for M — 1 parties, and I = 1% is identity operator
on M neighboring qubits. Therefore, according to the
theorem, we arrive at the following trade-off

2 2 M
L2+ L2 5 <2V, (12)

The bound of this inequality is tight in the sense that
there exist quantum states achieving the bound for all
allowed values of £ , 5 and £ , 5. This is a generalization
of a similar property for CHSH monogamy [3]. The state
of interest is

[) = % cos « <|066) + \1613)—#—% sin «v (\ﬂﬁ) + |Oﬁ>) ,

(13)
where e.g. [101) denotes a state in which qubit A is in
the |1) eigenstate of local Z basis, all qubits of B are in
state |0) of their local Z bases, and all qubits of C' are in
state |1) of their respective Z bases. The non-vanishing
correlation tensor components in xy plane, which involve
only (M + 1)-partite correlations are T, .z = =£sin2a,
T,55 = £1, and T, 5; = — cos 2, where W contains even
number of y indices, other indices being x, and ¥ con-
tains odd number of y indices, other indices again being
z. There are Z,Efl/ 2l (%) = 2M=1 correlation tensor el-
ements of each type and consequently

[ZZE = 2M=14in? 2q, Eic“ =2M71(1 4 cos? 2a). (14)

Therefore, the bound of (12) is always achieved and all
allowed values of £ , 5 and £ , 5 can be attained either by

the state (13) or the state with the role of qubits B < C
interchanged.

This multipartite scenario has the feature of
monogamy in the sense that if one set of observers max-
imally violates a Bell inequality, the other set observes
vanishing Bell parameters. However, the trade-off rela-
tion is in stark contrast with the bipartite case. It is
impossible for two sets of observers to violate bipartite
Bell inequalities, whereas in Eq. (14) both terms can be



bigger than one indicating that both sets of observers can
simultaneously violate the multipartite inequality.

The underlying reason why the trade-off relation (12)
allows for violation by both AB and AC is the fact that
sets of anti-commuting operators of the Bell parameters
can contain at most four elements. Now we present a
much stronger monogamy related to the graph in Fig.
1d. Consider M-partite Bell inequalities corresponding
to different paths from the root of the graph to its leaves
(M = 3 in Fig. 1d). There are 2"~1 such inequalities
and we shall prove that their quantum mechanical values
obey

L2 4 4 L2, <2M (15)

where £; is the quantum value for the j-th Bell param-
eter in the graph. To prove this, we construct 21 sets
of anti-commuting operators, each set containing 2
elements, such that they exhaust all correlation tensor
elements which enter the bound of the left-hand side of
(15) after application of condition (5). The construction
also uses the graph of the binary tree. We begin at the
root, to which we associate a set of two anti-commuting
operators, X and Y, for the corresponding qubit. A
general rule now is that if we move up in the graph from
qubit A to qubit B we generate two new anti-commuting
operators by placing X or Y at position B to the
operator which had X at position A. Similarly, if
we move down in the graph to qubit C' we generate
two new anti-commuting operators by placing X or
Y at position C' to the operator which contained Y
at position A. For example, starting from the set of
operators (X,Y) by moving up we obtain (X X1, XY1),
and by moving down we have (Y1X,Y1Y). The
next sets of operators are (XX1X111, XX1Y111),
(XY11xX11, Xy11y11), (YViX11X1,YixX11Y1)
and (YIYV111X,Y1Y111Y) if we move from the root:
up up, up down, down up and down down, respectively.
By following this procedure in the whole graph we obtain
a set of 2 mutually anti-commuting operators. Ac-
cording to this algorithm the anti-commuting operators
can be grouped in pairs having the same Pauli operators
except for the qubits of the last step (the leaves of the
graph). There are 2M~1 such pairs corresponding to
distinct combinations of tensor products of X and Y
operators on M — 1 positions. Importantly, in different
operators these positions are different and to generate
the whole set of operators entering the bound we have
to perform suitable permutations of positions. Such
permutations always exist and they do not affect anti-
commutativity. Finally we end up with the promised
2M =1 sets of 2M anti-commuting operators each, which
according to our theorem give the bound of (15).

The inequality (15) is stronger than the trade-off rela-
tion (12) in the sense that it does not allow simultaneous
violation of all the inequalities of its left-hand side. All
other patterns of violations are possible as we now show.

Choose any number, m, of Bell inequalities, i.e. paths
in the Fig. 1d. Altogether they involve n parties which
share the following quantum state

1 1 &
|thn) ﬁ|o.;.o>+ \/%j;m...m;v.m...o%
J

(16)
where P; denotes parties involved in the j-th Bell in-
equality. Note that all states under the sum are orthog-
onal as they involve different parties. The only non-
vanishing components of the correlation tensor of this
state have even number of y indices for the parties in-

volved in the Bell inequalities. Squares of all these com-
2M71

ponents are equal to % which gives E? = for each
Bell inequality 7 = 1,...,m. Therefore, all m Bell in-
equalities are violated as soon as m < 2M~1. Moreover,
the sum of these m Bell parameters saturates the bound
of (15) and therefore independently of the state shared
by other parties the remaining Bell parameters of (15)
all vanish.

In conclusion, we have derived monogamy of multi-
partite Bell inequality violations which are all quadratic
functions of Bell parameters. As such these relations are
stronger than those following from no-signaling principle
alone, which are linear in Bell parameters [4-7]. Indeed,
some of our monogamies are tight in the sense that they
precisely identify the set of Bell violations allowed by
quantum theory. Our proofs are within quantum formal-
ism and utilize the bounds imposed by the complemen-
tarity principle. It would be interesting to see if the Bell
violation trade-offs can be derived without using quan-
tum formalism. A plausible candidate for this task is the
principle of information causality [19].
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