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A generic quantum channel can be represented in terms of a unitary interaction between the information-

carrying system and a noisy environment. Here, the minimal number of quantum Gaussian environmental

modes required to provide a unitary dilation of a multi-mode bosonic Gaussian channel is analyzed both for

mixed and pure environment corresponding to the Stinespring representation. In particular, for the case of pure

environment we compute this quantity and present an explicit unitary dilation for arbitrary bosonic Gaussian

channel. These results considerably simplify the characterization of these continuous-variable maps and can be

applied to address some open issues concerning the transmission of information encoded in bosonic systems.

PACS numbers: 03.67.Hk, 42.50.Dv

I. INTRODUCTION

Bosonic Gaussian channels (BGCs) are an important spe-

cial class of transformations that act on a collection of bosonic

modes preserving the Gaussian character of any Gaussian in-

put quantum state [1]. The set of BGCs is singled out from

a theoretical perspective [2], but most significantly also from

the perspective of practical implementations, since it emerges

naturally as the fundamental noise model in several experi-

mental contexts. In the vast majority of physical implemen-

tations of quantum transmission lines quantum information

is almost invariably sent using photons — through optical

fibers [3], in free space [4], or via superconducting transmis-

sion lines [5]) — physical situations for which BGCs provide

extraordinarily good models. What is more, BGCs play a ma-

jor role in characterizing the open quantum system dynamics

of various setups which use collective degrees of freedom to

store and manipulate quantum information, including systems

from cavity QED, nano-mechanical harmonic oscillators [6],

or clouds of cold atomic gases [7].

Unsurprisingly, therefore, the study of Gaussian or quasi-

free quantum channels has a long tradition [1, 2, 8]. Intense

recent research has mostly been focusing on properties of

BGCs with respect to their ability to preserve and transmit

quantum information (for a review see, e.g., Ref. [9] and ref-

erences therein). Recent contributions include the computa-

tion of the quantum capacity [10] of a large subset of single

mode BGCs [11], a characterization in terms of the notion of

degradability — introduced in Ref. [12] — that allows one to

identify a zero-quantum capacity subset of BGCs, and a nec-

essary and sufficient condition for BGCs being entanglement-

breaking [13]. A general unitary dilation theorem for BGCs

was proven in Ref. [14]: It shows that each BGC Φ acting on a

system A formed by n input bosonic modes admits a unitary

dilation in terms of a bosonic environment E composed of

` 6 2n modes, the initial state ρ̂E of which is Gaussian, with

a Gaussian unitary coupling ÛA,E corresponding to a Hamil-

tonian that is quadratic in the canonical coordinates,

Φ(ρ̂) = TrE [ÛA,E(ρ̂⊗ ρ̂E)Û
†
A,E] . (1)

Here, ρ̂ is the input quantum state of the systemA and TrE de-

notes the partial trace over the degrees of freedom associated

with E.

The fact that the number of environmental modes ` enter-

ing in the unitary dilation can be bounded from above by 2n
may be viewed as the continuous-variable counterpart of the

upper bound on the minimal dilation set by the Stinespring

theorem [16] for finite dimensional quantum channels: It in-

dicates that any quantum channel can be described by using

an environment which is no more than twice the size of the

input system. An important open question is the characteriza-

tion of the minimal value of `(Φ) that is needed to represent

a given BGC, specifically the minimal value `
(Φ)
pure in case of a

pure unitary dilation. Similarly to the quantum capacity, this

quantity may be used to induce a partial ordering in the set of

BGCs since, as a general rule of thumb, one expects that the

larger it is, the noisier and the less efficient in preserving the

initial state will be the associated channel. Furthermore, an

exact estimation of such number will allow one to consider-

ably simplify the degradability analysis of BGCs by minimiz-

ing the number of degrees of freedom of the corresponding

complementary channel.

The main result of this work is to explicitly identify this

minimal value `
(Φ)
pure — so the minimum number of environ-

mental modes initially in a pure Gaussian state ρ̂E in a unitary

dilation (1) (related to the Stinespring dilation [17]) — and to

construct the corresponding dilation. To simplify terminol-

ogy, in this case we speak of Eq. (1) as of the Stinespring rep-

resentation. This is accomplished by first determining a lower

bound for `
(Φ)
pure in terms of the minimum number q

(Φ)
min of ancil-

lary modes which are needed to construct a Gaussian purifica-

tion of a (generalized) Choi-Jamiolkowski (CJ) Gaussian state

of Φ. This is motivated by the fact that any Gaussian Stine-

spring representation (1) naturally induces a Gaussian purifi-

cation of the CJ states of the channel. Then, we show that this

lower bound can be exactly achieved by explicitly construct-

ing a Gaussian Stinespring dilation with q
(Φ)
min modes. In the

second part of the paper we finally address the case of unitary

dilations (1) in which the environment state ρE is not neces-

sarily pure, and provide an estimation for the minimal `which

improves the one presented in Ref. [14].
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The paper is organized as follows: In Sec. II we recall some

basic definitions and set the notation. The notion of a gener-

alized CJ state of a BGC and the lower bound q
(Φ)
min for `

(Φ)
pure

are presented in Sec. III. Then, in Sec. IV, we present an

explicit recipe to construct such minimal dilation. The case

of dilations involving not necessarily pure environments is fi-

nally addressed in Sec. V, while conclusions are presented in

Sec. VI. This work includes also some technical appendixes.

II. BOSONIC GAUSSIAN CHANNELS

Consider a system A composed of n bosonic quantum me-

chanical modes described by the canonical coordinates R̂ :=

(Q̂1, · · · , Q̂n; P̂1, · · · , P̂n) and by the Weyl (or displacement)

operators

V̂ (z) := eiR̂z, (2)

with z := (x1, · · · , xn, y1, · · · , yn)
T ∈  2 being a column

vector [1]. To simplify notation, we choose units in which

~ = 1. A BGC Φ acting on A is completely determined by

assigning a real vector v ∈  2n and two 2n × 2n real ma-

trices Y,X ∈ Gl(2n, ) satisfying the complete positivity

condition

Y > iΣ with Σ := σ2n −XTσ2nX , (3)

where σ2n is the matrix defining the symplectic form capturing

the canonical commutation relations of n modes, i.e.,

σ2n :=

[

0 11n

−11n 0

]

, (4)

with 11n indicating the n× n identity matrix. More precisely,

the map Φ is defined as the linear mapping which, for all z
complex, induces the following transformation

φ(ρ̂; z) 7→ φ(Φ(ρ̂); z) := φ(ρ̂;Xz)e−
1
4 z

TY z+ivT z ,

where

φ(ρ̂; z) := Tr[ ρ̂ V̂ (z) ] , (5)

is the symmetrically ordered characteristic function of the

state ρ̂. A state is called Gaussian if its characteristic func-

tion is a Gaussian function in phase space [1, 15]. A Gaus-

sian map is a completely positive map that maps all unknown

Gaussian states onto Gaussian states and a Gaussian unitary

a unitary generated by a quadratic polynomial in the canoni-

cal coordinates, reflected by a symplectic transformation from

Sp(2n, ) on the level of canonical coordinates.

In the construction of the Gaussian unitary representa-

tions (1) of Φ, the vector v plays a marginal role since it can

be eliminated via a unitary rotation acting on the output state,

see, e.g., Ref. [14]. In contrast, the matrices in Eq. (3) are

of fundamental importance — in particular, we shall see that

the value of `
(Φ)
pure, and of our estimation of `

(Φ)
mix , depend upon

the ranks of Y , Σ, and Y − iΣ. It is thus worth anticipating

some relevant facts that concern these matrices. First of all we

notice that the inequality (3) implies the following relations

ker[Σ] ∩ ker[Y − iΣ] ⊆ ker[Y ] ⊆ ker[Y − iΣ] , (6)

ker[Y ] ⊆ ker[Σ] , (7)

where throughout the paper, given a generic (possibly real)

d × d matrix M , we denote its kernel (null subspace) with

ker[M ] :=
{

w ∈ Cd :Mw = 0
}

[20]. The first inclusion

in Eq. (6) follows from the definition, the remaining one and

the inclusion of Eq. (7) are derived from the observation that

w†Y w = 0 ⇒ w†(iΣ)w = 0 ⇒ w†(Y − iΣ)w = 0 ⇒
(Y − iΣ)w = 0 ⇒ Σw = 0. Putting these identities together

we also find that

ker[Y ] = ker[Σ] ∩ ker[Y − iΣ]. (8)

Other useful properties are the identities

2 rank[Y − iΣ] = rank[Y ] + rank[Y − ΣY 	1 ΣT ] , (9)

and the inequalities

rank[Y ] > rank[Σ] > rank[Y ]− rank[Y − ΣY 	1 ΣT ] > 0 ,
(10)

where rank[M ] stands for the rank of the matrix M (i.e. the

dimension over the complex field of the complement to Cd of

the matrix ker[M ]), and Y 	1 is the Moore-Penrose (MP) in-

verse of Y [21]. The explicit proof of these relations is rather

technical and thus we postpone it to Appendix A. Here we

rather point out that the first inequality of Eq. (10) is a conse-

quence of the fact that ker[Y ] is included in ker[Σ], while the

last inequality is an immediate consequence of the fact that

ΣY 	1 ΣT is positive semi-definite.

In Ref. [14], an upper bound for `
(Φ)
pure was set by showing

that one can construct a Stinespring dilation of Φ that involves

` = 2n− r′/2 environmental modes with

r′ := rank[Y ]− rank[Y − ΣY 	1ΣT ]. (11)

In what follows we will strengthen this result by showing that

the minimum number of modes necessary to build a Gaussian

Stinespring unitary dilation for Φ is given by

`(Φ)
pure = rank[Y ]− r′/2 = rank[Y − iΣ] , (12)

where we used Eq. (9) when formulating the second identity.

Since Y is a 2n× 2n matrix, we have 2n− k > 0, and so the

optimal bound we prove here leads to a significant improve-

ment compared to the results of Ref. [14]. In particular, for

those BGCs which represent unitary transformations of the n
input modes (i.e., Y = 0 and X ∈ Sp(2n, ) symplectic [1])

the optimal bound (12) yields `
(Φ)
pure = 0 — no environment is

required to construct the dilation — while Ref. [14] had this

value equal to 2n. To prove Eq. (12) we shall first show that

the quantity rank[Y −iΣ] provides a lower bound for `
(Φ)
pure (see

Sec. III) and then construct an explicit Stinespring dilation (1)

for Φ which attains such bound (see Sec. IV).



3

III. LOWER BOUND ON `
(Φ)
pure VIA GENERALIZED

CJ-STATES OF BGCS

In this section we review the notion of generalized Choi-

Jamiolkowski (CJ) state for a multi-mode BGC (see also

Ref. [18] and compare Refs. [19]), and use it to show that the

term on the rhs. of Eq. (12) provides a lower bound for `
(Φ)
pure.

Consider a state vector |ΨΛ̂〉A,B providing a purification of a

quantum state Λ̂ =
∑∞

j=1 λj(|j〉〈j|)A of the system labeled

A which has full rank (e.g., a Gibbs state of n modes). That is

to say,

|ΨΛ̂〉A,B =

∞
∑

j=0

√

λj |j〉A ⊗ |j〉B

= (Λ̂1/2 ⊗ 11)

∞
∑

j=0

|j〉A ⊗ |j〉B ,

withA indicating the input space of the channelΦ,B being an

ancillary system isomorphic to A, and {|j〉 : j = 0, · · · ,∞}
denoting an orthonormal complete basis. A generalized CJ

state of the channel Φ is now obtained as

ρ̂A,B(Φ) = (Φ⊗ I) (|ΨΛ̂〉〈ΨΛ̂|)A,B , (13)

with I being the identity map. The state ρ̂A,B(Φ) provides a

complete representation of the channel via the inversion for-

mula,

Φ(ρ̂) = TrB [(11A ⊗ Λ̂
−1/2
B ρ̂TBΛ̂

−1/2
B )ρ̂A,B(Φ)] , (14)

where ρ̂B and Λ̂B are copies of the states ρ̂ and Λ̂ on B, re-

spectively, while ρ̂TB is its transpose with respect to the or-

thonormal basis introduced above. We will suppress an index

labeling both the chosen basis and the reference state.

For finite-dimensional system ρ̂A,B(Φ) provides a standard

CJ state representation when Λ̂ is taken to be the maximally

mixed state (compare Refs. [19]). In the infinite-dimensional

case such limit in general is well defined only in the context

of positive forms, see Ref. [18]. However, Eq. (14) shows

that we do not need to approach such a limit in order to build

a proper representation of the channel: It is defined for any

state diagonal in the distinguished basis of full rank. Further-

more, it is easy to verify that it is always possible to work with

CJ states ρ̂A,B(Φ) which are Gaussian: To do so simply take

(|ΨΛ̂〉〈ΨΛ̂|)A,B to be Gaussian and use the fact that the Gaus-

sian map Φ ⊗ I maps Gaussian states into Gaussian states.

In the following we choose to take such Gaussian reference

states. In particular, we will assume (|ΨΛ̂〉〈ΨΛ̂|)A,B to be a

Gaussian purification of a multi-mode Gibbs (thermal) state

of quantum mechanical oscillators.

An important observation concerning the generalized CJ

representation is that, given a Stinespring representation of Φ
involving an environmental system E, one can construct a pu-

rification of ρ̂A,B(Φ) that uses E as ancillary system. Indeed,

assuming that ÛA,E and (|0〉〈0|)E give rise to a Stinespring

representation for Φ, we have that the pure state with state

vector

|χ〉A,B,E = ÛA,E|ΨΛ̂〉A,B ⊗ |0〉E (15)

is a purification of ρ̂A,B(Φ). Furthermore, if ρ̂A,B(Φ) is

Gaussian and E represents a collection of ` environmental

bosonic modes with |0〉E being a Gaussian state vector and

UA,E being a Gaussian unitary, it follows that also |χ〉A,B,E

will define a Gaussian purification of ρ̂A,B(Φ). Putting these

facts together it follows that a lower bound for the minimal

number `
(Φ)
pure of environmental modes that are needed to build

a Gaussian Stinespring representation of Φ is provided by the

minimal number q
(Φ)
min of Gaussian ancillary modes that are re-

quired to purify a generalized Gaussian CJ state ρ̂A,B(Φ) of

Φ, i.e., we have that

`(Φ)
pure > q

(Φ)
min . (16)

To compute q
(Φ)
min we first make a specific choice for |ΨΛ̂〉A,B .

In particular, since A is composed by n bosonic modes, we

can take |ΨΛ̂〉A,B to be a product of n identical two-mode

state vectors of the form

|ΨΛ̂〉A,B =

n
⊗

i=1

|ψ〉Ai,Bi
(17)

where |ψ〉AiBi
reflects a purification of a Gibbs state of the

i-th mode Ai of A built by coupling it with the correspond-

ing ancillary system Bi: This is nothing but what is usually

referred to as a two-mode squeezed state [15]. The resulting

state is of course Gaussian and it is fully characterized by its

covariance matrix. To express it in a compact form note that

the kernel of the natural symplectic form for the 2n modes of

A,B is given by

σA,B :=

[

σ2n 0

0 σ2n

]

, (18)

where the upper-left and lower-right block matrices represent

the symplectic forms of the nmodes ofA andB, respectively,

defined as in Eq. (4). With this choice the covariance matrix

γ of (|ΨΛ̂〉A,B〈ΨΛ̂|) is given by the followingGl(4n, ) ma-

trix,

γ =

[

α δ

δT β

]

, (19)

where α, β ∈ Gl(2n, ) are the covariance matrices of the A
and B modes, respectively, with δ, δT ∈ Gl(2n, ) being the

cross-correlation terms. Explicitly, they are given by

α =

[

θ11n 0

0 θ11n

]

= β , δ =

[

0 f(θ)11n

f(θ)11n 0

]

= δT ,

with θ > 1 and

f(θ) := −(θ2 − 1)1/2. (20)

The parameter θ determines the temperature of the Gibbs

states we used to build the vector |ΨΛ̂〉A,B , or equivalently,

the two-mode squeezing parameter of the purification. In par-

ticular, the case θ = 1 corresponds to the limit in which all

the modes of A and B are prepared into the vacuum state: In

this case the state Λ̂ no longer has maximum support and thus
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does not provide a proper starting point to build a CJ state. For

θ → ∞, in contrast, the state |ΨΛ̂〉A,B approaches a purifica-

tion of a maximally mixed state for the modes (for details see

Ref. [18]). Equivalently, it corresponds to the limit of large

squeezing in the two-mode squeezed state of the purification.

Notice also that by construction, for all values of θ > 1, γ
satisfies the condition γ > iσA,B , as it indeed represents a

physical pure state.

The generalized CJ state ρ̂A,B(Φ) for a Gaussian channel

characterized by matrices Y and X as in Eq. (3) is now com-

puted as in Eq. (13). The resulting state is still Gaussian and

has the covariance matrix γ′ ∈ Gl(4n, ) given by

γ′ =

[

XTαX + Y XT δ

δTX β

]

=

[

θXTX + Y f(θ)XT σx

f(θ)σxX θ112n

]

,

where

σx :=

[

0 11n

11n 0

]

. (21)

In general it will be a mixed state and we are interested in the

minimum number q
(Φ)
min of ancillary modes q that is needed to

construct a Gaussian purification of it. As discussed in Ap-

pendix B, this is given by the quantity

q
(Φ)
min = rank[γ′ − iσA,B]− 2n

= 2n− dim ker[γ′ − iσA,B] , (22)

(note that in this case γ′, σA,B ∈ Gl(4n × 4n, )). In what

follows we will compute this quantity, showing that it coin-

cides with the right hand side of Eq. (12). To do so, we first

notice that the dimension of the kernel of γ′ − iσA,B can be

expressed as

dim ker[γ′−iσA,B] = dim ker

[

θXTX + Y − iσ f(θ)XT

f(θ)X θ112n + iσ

]

,

(23)

where the second identity was obtained by rotating γ′−iσA,B

with the transformation

T :=

[

112n 0

0 σx

]

. (24)

As for any positive semi-definite matrix M , the kernel in

Eq. (23) can be computed as the set of vectors w ∈ C
d

which satisfy the condition w†Mw = 0 [20]. Writing w =
(wA, wB), we arrive at the condition

θ
(

w∗
AX

TXwA − w∗
AX

TwB − w∗
BXwA + w∗

BwB

)

+ w∗
A (Y − iσ)wA + w∗

BiσwB

+ O(1/θ)
(

w∗
AX

TwB + w∗
BXwA

)

= 0, (25)

where in the first and second line we have collected all terms

which are linear and constant in θ, respectively. For θ > 1
sufficiently large this requires the following conditions,

w∗
AX

TXwA − w∗
AX

TwB − w∗
BXwA

+w∗
BwB = 0 , (26)

w∗
A (Y − iσ)wA + w∗

BiσwB = 0 . (27)

The first equation means XwA = wB, whereas the second

reads w∗
A (Y − iσ)wA + w∗

AiX
TσXwA = 0, that is

w∗
A[Y − iΣ]wA = 0. (28)

There is one-to-one correspondence between solutions wA of

Eq. (28) and w = (wA, XwA) of Eq. (25), hence

dim ker[γ′ − iσA,B] = dim ker[Y − iΣ].

Replacing this into Eq. (22) we finally get

q
(Φ)
min = 2n− dim ker[Y − iΣ] = rank[Y − iΣ] , (29)

where in the last identity we used the fact that Y − iΣ is a

2n× 2n matrix.

IV. OPTIMAL BOUND AND EXPLICIT CONSTRUCTION

In this section we explicitly construct a Gaussian unitary

dilation with q
(Φ)
min = rank[Y − iΣ] environmental modes. In

this way, we demonstrate that the lower bound derived in the

previous section is tight, concluding the derivation of Eq. (12).

To do so, let us assume that the number of modes which define

the state ρ̂E in Eq. (1) are q
(Φ)
min. Without loss of generality, we

write the kernel of the form corresponding to the commutation

relations of our n+ q
(Φ)
min modes in block structure

σ := σ2n ⊕ σE

2q
(Φ)
min

=

[

σ2n 0

0 σE

2q
(Φ)
min

]

, (30)

where σ2n and σE

2q
(Φ)
min

are 2n × 2n and 2q
(Φ)
min × 2q

(Φ)
min ma-

trices associated with the system and environment, respec-

tively. While σ2n is defined as in Eq. (3), for σE

2q
(Φ)
min

we do not

make any assumption at this point, leaving open the possibil-

ity of defining it later on. Accordingly, the Gaussian unitary

ÛA,E of Eq. (1) will be determined by a symplectic matrix

S ∈ Sp(2(n+ q
(Φ)
min), ) of block form

S :=

[

s1 s2

s3 s4

]

(31)

satisfying the condition SσST = σ. In the above expressions,

s1 and s4 are 2n×2n and 2q
(Φ)
min×2q

(Φ)
min real square matrices,

while s2 and sT3 are 2n× 2q
(Φ)
min real rectangular matrices. As

noticed in Ref. [14], the possibility of realizing the unitary

dilation (1) can now be proven by simply taking

s1 = XT (32)

and finding s2 and a q
(Φ)
min-mode covariance matrix [1] γE >

iσE

2q
(Φ)
min

satisfying the conditions

s2 σ
E

2q
(Φ)
min

sT2 = Σ , s2 γE s
T
2 = Y , (33)

with γE being the covariance matrix of the Gaussian state ρ̂E
of Eq. (1).
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First, let us consider the case in which q
(Φ)
min is an even num-

ber. To identify valid s2 and γE which solve Eq. (33), it is

useful to transform Y and Σ as in Eq. (A7) and (A8) of Ap-

pendix A (take A = T , B = Σ, m = 2n, a = k, and

b = r = rank[Σ]). Actually, applying an extra orthogonal

matrix, Y ′ is still like in (A7), while Σ′ can be written as

Σ′ := CΣCT =













0
µ 0

0 0
0

−µ 0

0 0
0 0

0 0 0













} r/2

} (q
(Φ)
min − r)/2

} r/2

} (q
(Φ)
min − r)/2

} 2n− q
(Φ)
min,

(34)

where C ∈ Gl(2n, ) and µ = diag(µ1, · · · , µr/2) is the

r/2 × r/2 diagonal matrix formed by the strictly positive

eigenvalues of |Σ′| (satisfying 11r/2 > µ as in Appendix A).

Introducing then s′2 := C s2 the conditions of Eqs. (33) can

be equivalently written as

s′2 σ
E

2q
(Φ)
min

(s′2)
T = Σ′ , s′2 γE (s′2)

T = Y ′ . (35)

The explicit expressions for corresponding γE and s2 are ob-

tained in the following way. We take the environmental sym-

plectic form to be

σE

2q
(Φ)
min

= σk ⊕ σk−r′ (36)

where we have set k := rank[Y ]. A unitary dilation with

q
(Φ)
min = k − r′/2 environmental modes in a pure state is ob-

tained by choosing the 2n× 2q
(Φ)
min rectangular matrix s′2 as

s′2 =

[

K̃−1 A

0 0

]

, (37)

with K̃ being the k × k symmetric matrix defined by

K̃ :=









µ−1/2 0

0 11(k−r)/2

0

0
µ−1/2 0

0 11(k−r)/2









(38)

and A being a rectangular matrix k × (k − r′) of the form

A :=

















0

0 0

0 0

0 11(k−r)/2

0 0

0 0

0 11(k−r)/2

0

















} r′/2

} (r − r′)/2

} k/2− r/2

} r′/2

} (r − r′)/2

} k/2− r/2.

(39)

By direct substitution one can easily verify that the first con-

dition of Eq. (35) is indeed satisfied. Vice versa, expressing

the (2k − r′)× (2k − r′) covariance matrix of ρ̂E as

γE =

[

α δ

δT β

]

, (40)

the second condition of Eq. (35) yields the following equation

α+AδT + δ AT +Aβ AT = K̃2 . (41)

A solution can be easily derived by taking the k × k block α
as

α =









µ−1 0

0 5
4

11(k−r)/2

0

0
µ−1 0

0 5
4

11(k−r)/2









(42)

while β and δ are, respectively, (k − r′) × (k − r′) and k ×
(k − r′) real matrices defined as follows:

β :=









µ−1
o 0

0 5
4

11(k−r)/2

0

0
µ−1
o 0

0 5
4

11(k−r)/2









, (43)

δ :=

















0

0 0

f(µ−1
o ) 0

0 − 3
4

11(k−r)/2

0 0

f(µ−1
o ) 0

0 − 3
4

11(k−r)/2

0

















,(44)

with µo is the (r− r′)/2× (r− r′)/2 diagonal matrix formed

by the elements of µ which are strictly smaller than 1, and

with f(θ) defined as in Sec. III. Notice that the parameter r′

(defined above) corresponds also to the number of eigenvalues

having modulus 1 of the matrix Σ′, i.e.,

r′ = 2n− rank[112n − Σ′(Σ′)T ], (45)

as can be easily shown by using Eq. (A18) with A = Y and

B = Σ. With the choice we made on the commutation matrix

σE

2q
(Φ)
min

, the matrix α is a k × k covariance matrix for a set of

independent k/2 bosonic modes, the matrix β is a (k − r′) ×
(k− r′) covariance matrix for a set of independent (k− r′)/2
modes, and the matrices δ and δT represent cross-correlation

terms among such sets. For all diagonal matricesµ compatible

with the constraint

11r/2 > µ , (46)

the solution γE satisfies also the uncertainty relation γE >

iσE

2q
(Φ)
min

. Furthermore, since it has

Det[γE ] = 1, (47)

this is also a minimal uncertainty state, i.e., a pure Gaussian

state of q
(Φ)
min modes [1]. By a close inspection of the covari-

ance matrix γE derived above, one realizes that it is composed

of three independent pieces. The first one describes a collec-

tion of r′/2 vacuum states. The second one, in turn, describes

(r − r′)/2 thermal states characterized by the matrices µ−1
o

which have been purified by adding further (r− r′)/2 modes.

The third one, finally, reflects a collection of k− r modes pre-

pared in a pure state formed by k/2 − r/2 independent pairs

of modes which are entangled. Let us point out again that

this covariance matrix is indeed formed by q
(Φ)
min modes. The

whole derivation can be trivially extended for q
(Φ)
min odd, by

adding to the previous covariance matrix a single mode in the

vacuum state.
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V. DILATIONS WITHMIXED ENVIRONMENTS

In Ref. [14] it was shown that for arbitrary (not necessar-

ily Stinespring) dilations one can consider an environment of

only ` = 2n− r/2 modes — observe that r is larger than the

quantity r′ introduced in Sec. II because of Eq. (10). Here,

we will strengthen this bound by showing that it is possible to

construct a unitary dilation using just

`
(Φ)
mix = k − r/2 = rank[Y ]− rank[Σ]/2 , (48)

environmental modes which are prepared in a Gaussian, but

not necessarily pure, state. Note that the term on the rhs. is

nonnegative due to the first of the inequalities in Eq. (10), and

that it is explicitly smaller than the one provided in Ref. [14]

due to the fact that Y is a 2n× 2nmatrix. It is worth stressing

however that differently from the pure dilation case, we are

not able to determine whether Eq. (48) is indeed the optimal

bound (we believe it is).

For the sake of simplicity, again we will treat explicitly only

the case of k even (the analysis however can be easily ex-

tended to the odd case). Because of the structure ofA given in

Eq. (39), the (k − r) environmental modes prepared in a pure

state (see the end of Sec. IV) enter explicitly in the identity in

Eq. (41): consequently, if we wish to satisfy such relation, we

cannot remove any of these modes without changing A. Vice

versa we can drop some of the auxiliary modes which were

introduced only for purifying the environmental state. Since

they are (r− r′)/2, we can reduce the number of modes from

`
(Φ)
pure to

`
(Φ)
mix = `(Φ)

pure − (r − r′)/2 = k − r/2. (49)

To see this explicitly, take

σE

2`
(Φ)
mix

= σk ⊕ σk−r . (50)

The matrix s′2 can be still expressed as above but withA being

a rectangular matrix k × (k − r) of the form

A :=









0
0

11(k−r)/2

0

11(k−r)/2

0









. (51)

Similarly, β and δ entering in the definition of γE become,

respectively, the following (k − r)× (k − r) and k× (k − r)

real matrices:

β :=

[

5
4

11(k−r)/2 0

0 5
4

11(k−r)/2

]

(52)

and

δ :=









0 0

0 − 3
4

11(k−r)/2

0 0

− 3
4

11(k−r)/2 0









. (53)

This covariance matrix now consists of two independent parts:

the first one describes a collection of r/2 thermal states de-

scribed by the matrices µ−1. The second one reflects a col-

lection of k − r modes prepared in a pure state formed by

k/2−r/2 independent couples of modes which are entangled.

VI. CONCLUSIONS

We have analytically computed the minimum number of en-

vironmental modes necessary for a Gaussian unitary dilation

of a generic multi-mode bosonic Gaussian channel. Moreover,

we have also explicitly demonstrated how to construct such

a Gaussian dilation in terms of the covariance matrix of the

noisy environment and the symplectic transformation associ-

ated to the unitary system-environment interaction. These re-

sults may allow one to introduce a classification of the bosonic

Gaussian channels in terms of the corresponding noise in-

duced by these maps, which is somehow related to the mini-

mum number of environemntal modes to represent such chan-

nels. Moreover, constructing a dilation with a minimal num-

ber of auxiliary modes may be useful to minimize the size of

the corresponding complementary channel and then to sim-

plify the degradability analysis, which is extremely useful in

the calculation of the quantum capacity of these continuous-

variable quantum maps.
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vertible matrix Ȳ := Y + (11 − Π), the MP-inverse of Y is
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Appendix A: An important identity

In this Appendix, we prove the important identity (9) and

the inequality (10), by the following more general lemma.

Lemma 1 LetA,B ∈ Gl(m, ) bem×m real matrices with

B being skew-symmetric, which satisfy the inequality

A > iB . (A1)

Then givenA	1 the MP inverse [21] of A, the following iden-
tity holds

2 rank[A− iB] = rank[A] + rank[A−BA	1 BT ] .(A2)

Furthermore the following inequality applies

rank[B] > rank[A]− rank[A−BA	1BT ] . (A3)

Proof: Let us start by reviewing some general properties of

A and B. Because of Eq. (A1) the matrix A must be positive

semi-definite, and its support must contain the support of B.
Consequently indicating with a = rank[A] and b = rank[B]
the ranks of the two matrices, we must have a > bwith b even.

Furthermore, defining Π ∈ Gl(m, ) to be the projector on
the support of A, it will commute with A and B and hence

satisfy the following identity

Π A = A Π = A , Π B = B Π = B . (A4)

Consider then the invertible matrix

Ā := A+ (11m −Π) . (A5)

The MP inverse [22] of A is defined by

A	1 := ΠĀ−1Π . (A6)

To prove the validity of Eq. (A2) we note that it is possible

to identify a congruent transformation A 7→ A′ = CACT ,

B 7→ B′ = CBCT , with C ∈ Gl(m, ) invertible such that,

A′ =

[

11a 0

0 0

]

} a

}m− a ,
(A7)

and

B′ =









0 µ

−µ 0
0

0 0

0

0 0









} b/2

} b/2

} a− b

}m− a ,

, (A8)

with µ = diag(µ1, µ2, · · · , µb/2) being the b/2 × b/2 diago-
nal matrix formed by the strictly positive eigenvalues of |B′|
(by construction they satisfy 1 > µj > 0). The matrix C can

be explicitly constructed as follows. First we identify the or-

thogonal matrix O ∈ Gl(m, ) which diagonalizes A and Π
puts them in the following block forms:

OAOT =

[

A′′ 0

0 0

]

} a

}m− a
, (A9)

O Π OT =

[

11a 0

0 0

]

} a

}m − a
, (A10)

with A′′ ∈ Gl(a, ) being a a × a positive definite diag-

onal matrix. Then we construct the invertible matrix K ∈
Gl(m, ) defined as

K =

[

A′′−1/2 0

0 11m−a

]

} a

}m− a
, (A11)

(notice that the matrix A′′−1/2 ∈ Gl(a, ) is well defined
since A′′ ∈ Gl(a, ) is invertible). Finally, we take O′ ∈
Gl(a, ) to be an orthogonal a × a matrix and define C as

follows

C =

[

O′ 0

0 11m−a

]

KO =

[

O′A′′−1/2 0

0 11m−a

]

O .(A12)

By construction we have that for all the choices of O′ the

resulting matrix is invertible and Eq. (A7) is satisfied. Vice

versa, Eq. (A8) can be satisfied by noticing that, since the sup-

port of B is included into the support of A, we must have

KO B OTKT =

[

B′′ 0

0 0

]

} a

}m − a
, (A13)
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with B′′ ∈ Gl(a, ) skew-symmetric and having the same

rank as B. By using a theorem from linear algebra one can

then find an orthhogonalO′ ∈ Gl(a, ) such that

O′ B′′ O′T =





0 µ

−µ 0
0

0 0



 , (A14)

with µ being a positive diagonal matrix of dimension equal to
the rank of B′′ (the elements ±iµj are its not null eigenval-

ues). Using such an O′ in order to build C as in Eq. (A12) we

can then satisfy Eq. (A8).

Now we notice that, since any congruent transformation

preserves the rank of a matrix, the following identity holds:

rank[A− iB] = rank[C(A − iB)CT ]

= rank









11b/2 −iµ

iµ 11b/2
0

0 11a−b

0

0 0









= a−#1(µ) ,

where #1(µ) counts the number of eigenvalues of the matrix
µwhich are equal to 1. The last identity follows from counting

the non-zero eigenvalue of the matrix on the left-hand-side of

the second line. This can be easily done by observing that its

spectrum contains m − a explicit zeros (these are the terms

in the zero block diagonal term), a − b ones (these are the
ones on the diagonals of the first block) and 1± µj with µj ∈
[1, 0] being the eigenvalues of µ. Consequently, the non-zero
eigenvalues are obtained by subtracting from k (rank of the

first block) the number #1(µ) of eigenvalues of µ which are

equal to 1. To compute the latter quantity we note that

B′B′T =









µ2 0

0 µ2
0

0 0

0

0 0









} b

} b

} a− b

}m− a ,

, (A15)

which yields

rank[11m −B′B′T ] = m− 2 #1(µ) . (A16)

Using the fact that C is invertible, one has

rank[11m −B′B′T ] = rank[11m − CBCTCBTCT ]

= rank[C−1C−T −BCTCBT ] .

Since O′ and O are orthogonal, we notice that C−1C−T is

composed of two terms that span orthogonal supports. Specif-

ically we can rewrite it as

C−1C−T = OTKO = OT

[

A′′ 0

0 11m−a

]

O

= A+OT

[

0 0

0 11m−a

]

O = A+ (11m −Π) = Ā ,

where Eqs. (A9) and (A11) have been used. Similarly,

BCTCBT is only supported on the support of A. Indeed,

we have

BCTCBT = (Π B Π) [C−1C−T ]−1 (Π BT Π)

= (Π B Π) Ā−1 (Π BT Π) = (Π B Π2) Ā−1 (Π2 BT Π)

= (Π B Π)(Π Ā−1 Π)(Π BT Π)

= (Π B Π)A	1 (Π BT Π) = B A	1BT . (A17)

Using these identities, we can then rewrite Eq. (A17) as

rank[11m −B′B′T ] = rank[Ā−BA	1 BT ]

= rank[11m −Π] + rank[A−BA	1BT ]

= m− a+ rank[A−BA	1 BT ] . (A18)

Thanks to Eq. (A16) the above identity finally yields

#1(µ) =
rank[A]− rank[A−BA	1 BT ]

2
, (A19)

which gives Eq. (A2) when inserted into Eq. (A16). The in-

equality (A3) can finally be proven by noticing that because

of the invertibility of C, one has rank[B] = rank[B′] = b
which, by construction, is larger than 2#1(µ). The result then
follows simply by applying Eq. (A19). �

Appendix B: Gaussian purifications

Here, we emphasize the minimal number of ancillary

modes which are necessary to construct a Gaussian purifica-

tion (i.e., a purification which is joint pure Gaussian state of

the system and of the ancillary modes) of a generic multi-

mode Gaussian state ρ̂. Of course, the Gaussian requirement
on the purification is fundamental for our purposes: Since any

number of modes can always be embedded in a single one, by

dropping it the minimal number of modes is always smaller

than or equal to one.

1. Minimal Gaussian purifications of Gaussian mixed states

Let γ ∈ Gl(2n, ) the covariance matrix of a Gaussian

state ρ̂ of a system A formed by n bosonic modes. We know

that it must satisfy the following inequality

γ > iσ2n , (B1)

with σ2n ∈ Gl(2n, ) being the skew-symmetric matrix

in Eq. (4) representing the symplectic form of the modes.

Thanks to the Williamson’s theorem [23] we know that there

exists a symplectic transformation S ∈ Gl(2n, ) which al-
lows us to diagonalize γ in the following form

γ 7→ SγST =

[

D 0

0 D

]

, (B2)

with D ∈ Gl(n, ) being the diagonal matrix formed by

the symplectic eigenvalues Dj of γ which satisfy the con-

dition Dj > 1 as follows from Eq. (B1). The values {Dj}
are the symplectic eigenvalues of γ [1, 15], so the positive

square roots of the eigenvalues of the matrix −σ2nγσ2nγ ∈
Gl(2n, ). The transformation γ 7→ SγST corresponds to

appling a Gaussian unitary to the state which transforms it

into a product state of the n modes, in fact a product of Gibbs
states of unit harmonic oscillators. Hence, it does not restrict

generality to assume that γ is of the form of the rhs. of Eq.

(B2) in the first place.

Now, let Γ be the covariance matrix of the minimum pu-

rification of γ, viewed as being defined on a bi-partite system
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labeled A — the original system — and B. Since the spec-
trum of the reduced state with respect to B is identical to the

spectrum of the reduced state ofA, also the symplectic spectra
of the two reductions are the same. Hence, it does not restrict

generality to take Γ to be of the form

Γ =









D 0

0 D
C

CT D 0

0 D









, (B3)

with suitable C ∈ Gl(2n, ) such that the symplectic spec-
trum of Γ consists of 1 only, with respect to the symplectic

form in the convention as in Eq. (18). Now, by taking

C =

[

0 η

η 0

]

, (B4)

with η = diag(f(D1), · · · , f(Dn)), one clearly arrives at

the covariance matrix of a valid purification. This purifica-

tion essentially involves as many modes as there are symplec-

tic eigenvalues different from 1 — those modes associated

with unit symplectic eigenvalues correspond to pure Gaus-

sian states already. Denoting the number of unit values in D
by#1(D), this purification hence involves n−#1(D) many
modes. Invoking the definition of the symplectic spectrum,

one finds that

#1(D) = n− rank[γ − σ2nγ
−1σT

2n]/2 . (B5)

It is also easy to see, however, that no purification can involve

fewer modes than that. Consequently we have

qmin = n−#1(D). (B6)

The covariance matrix of the reduced Gaussian state of the

purification with respect to B is necessarily given by the

rhs. of Eq. (B2), up to local symplectic transformations S ∈
Sp(2n, ). Hence, any Gaussian purification must involve at
least involve n−#1(D)modes, as so many symplectic eigen-
values are different from 1. Needless to say, if one gives up
the property of requiring a Gaussian purification, one can al-

ways embed the purification in a single mode, if the state is

mixed, while no additional mode being required if the state is

already pure.


