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We find the optimal scheme for quantum phase estimation in the presence of loss when no a priori knowledge

on the estimated phase is available. We prove analytically an explicit lower bound on estimation uncertainty,

which shows that, as a function of the number of probes, quantum precision enhancement amounts at most to a

constant factor improvement over classical strategies.
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I. INTRODUCTION

Owing to highly promising predictions of the theory of pre-

cise quantummeasurements and parameter estimation, as well

as significant progress in quantum state engineering, the task of

phase shift determination has recently been readdressed both

theoretically and experimentally [1–11]. In classical systems

the precision of the estimated phase scales with the amount of

available resources as 1/
√

N, the so-called standard quantum

limit (SQL), or as it is more commonly referred to, the “shot

noise.” Traditionally, N denotes the number of independent

measuring probes, repetitions, or copies of a system. The

potential precision boost offered by quantummechanics stems

from the possibility of preparing N copies of a system in a

highly entangled state, which is particularly sensitive to the

variations of the estimated parameter [1–3]. In ideal scenarios,

these states yield phase estimation precision that scales as 1/N

and is referred to as the Heisenberg limit (HL).

Environmentally induced decoherence, however, signifi-

cantly affects the performance of entanglement-based quantum

strategies [12–21], with photon loss being its most relevant

source in optical implementations. The need to balance the

phase sensitivity and robustness against losses results in states

performing better than the SQL yet falling short of the HL

[18,19]. Other approaches that try to mimic the quantum-

enhanced strategies using the multiple-pass technique [8] are

even more susceptible to losses and cannot compete with

the optimally designed entangled states [22]. Despite the

quantitative improvement of precision offered by quantum

states in the presence of loss, the problem of whether in the

asymptotic regime N → ∞ quantum states offer better than

SQL scaling, i.e., c/Nα with α > 1/2, has yet to be solved.

In this paper we solve the problem of optimal phase

estimation in the presence of loss with no a priori knowledge,

and prove analytically that, even for arbitrarily small loss,

quantum enhancement does not offer better than c/
√

N scaling

for N → ∞, and the only gain over classical strategies is a
smaller multiplicative constant c. It should be emphasized that

the proof contains the most general description of a quantum

measurement, hence its conclusions are valid also for adaptive

schemes (see Appendix C), which are especially interesting

from a practical point of view [23,24].

II. MODEL

Two approaches to phase estimation are typically pursued.

In the first, which we refer to as the local approach, a

measurement scheme is devised, which offers the highest

sensitivity to phase deviations from an a priori known value,

ϕ = ϕ0. This is achieved by finding a strategy that maximizes

the quantum Fisher information, FQ, which defines the lower

bound on the precision of the estimated phase through δϕ >

1/
√

FQ [25–28]. The optimal states have been found both for

lossless [1,2] [the N-particle path-entangled (so-called N00N)

state] and more realistic lossy scenarios [18,19].

The second approach, which we will pursue in this paper

and will refer to as the global approach, assumes no a

priori knowledge about the phase, so that ϕ is equiprobably

distributed over the [0,2π ) region.

We consider a general pureN -photon two-mode state [29],

|ψin〉 =
N∑

n=0

αn|n,N − n〉, (1)

which is fed into an interferometer with a relative phase delay

ϕ (see Fig. 1). Apart from acquiring the phase via the unitary

Uϕ = e−iϕa†a , the state experiences losses modeled by two

beam splitters with power transmissions ηa and ηb [30]. The

output state then takes the form ρout(ϕ) = UϕρoutU
†
ϕ , where

ρout =
N∑

la=0

N−la∑

lb=0

|φla ,lb 〉〈φla ,lb |, (2)

with subnormalized conditional states corresponding to la and

lb photons lost in arms a and b, respectively,

|φla ,lb 〉 =
N−lb∑

n=la

αnβ
la ,lb
n |n − la,N − n − lb〉, (3)

where

β la ,lb
n =

√
Bn

la
(ηa)B

N−n
lb

(ηb), Bn
l (η) =

(
n

l

)
(1− η)lηn−l .

(4)

Keeping the reasoningmost general, the information regarding

ϕ is extracted via a measurement on ρout(ϕ) described by a

positive operator valued measure (POVM), {Mr},
∑

r Mr =
1. The outcome r is observed with a probability p (r|ϕ) =
Tr {ρout(ϕ)Mr}, and the estimated phase inferred from it is

defined by an estimator ϕ̃ (r). The optimization procedure with

respect to a given cost function C(ϕ,ϕ̃) amounts to finding the

state |ψ〉, the measurement {Mr}, and the estimator ϕ̃ (r) that
minimize the cost function averaged over a flat a priori phase
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FIG. 1. Phase estimation setup. Channel a acquires a phase ϕ

relative to channel b. Losses are modeled by two beam splitters with

power transmissions ηa and ηb.

distribution,

〈C〉 =
∫

dϕ

2π

∑

r

p (r|ϕ)C(ϕ,ϕ̃(r)). (5)

Let C(ϕ,ϕ̃) = C(ϕ − ϕ̃) =
∑∞

n=−∞ cne
in(ϕ−ϕ̃) be an arbitrary

real symmetric cost function (cn = c−n 6 0 for n 6= 0), re-

specting the cyclic nature of ϕ [26,31].

III. OPTIMIZATION

Thanks to the flat a priori phase distribution, the problem

has a symmetry with respect to an arbitrary phase shift Uϕ .

The search for the optimal measurement strategy may be

restricted to the class of covariant POVMs {Mϕ̃} [26,31,32]
parametrized by a continuous parameter ϕ̃: Mϕ̃ = Uϕ̃4U

†
ϕ̃ ,

where 4 is a positive semidefinite operator satisfying the

POVM completeness constraint
∫

dϕ̃

2π
Uϕ4U †

ϕ = 1. With the

above substitution, the average cost function simplifies to

〈C〉 =
∫

dϕ

2π
Tr {ρout (ϕ)4} C(ϕ), (6)

and 〈C〉 has to be minimized only over the choice of the input
state |ψ〉in and the seed operator 4.
In order to find the optimal 4, one can rewrite

Eq. (2) in the form ρout =
⊕N

N ′=0 ρN ′

out, with ρN ′

out =∑N−N ′

la=0 |φla ,N−N ′−la 〉〈φla ,N−N ′−la |, which reveals the block
structure with respect to the total number of surviving

photons N ′. Therefore, without loss of generality, we may
impose an analogous block structure on the seed operator,

4 =
⊕N

N ′=0 4N ′
. Physically, such a block structure implies

that a nondemolition photon number measurement had been

performed at the output, before any further phase measure-

ments had taken place. Following the reasoning presented

in Refs. [26] and [31], it can be shown that, without losing

optimality, the input state parameters αn can be chosen to be

real, inwhich case the optimal seed operator4N ′

opt = |eN ′〉 〈eN ′ |,
where |eN ′〉 =

∑N ′

n=0 |n,N ′ − n〉 (see Appendix A).
In what follows, we choose the cost function C(ϕ − ϕ̃) =

4 sin2 ϕ−ϕ̃

2
(c0 = 2,c1 = c−1 = −1), and denote its average

by δ̃2ϕ, as it is the simplest cost function approximating the

variance for narrow distributions [3].

Performing the integration in Eq. (6), the average cost

function reads

δ̃2ϕ = 2− α
†Aα, (7)

where nonzero elements of the matrix A read

An−1,n = An,n−1 =
n,N−n∑

la ,lb=0

β la ,lb
n β

la ,lb
n−1 . (8)

FIG. 2. Log-log plot of optimal phase estimation uncertainty as

a function of the number of photons used for three different levels of

loss (equal in both arms): η = 1 (solid line), η = 0.8 (dashed line),

η = 0.6 (dotted line). The white area in the middle of the picture

corresponds to 1/N < δϕ < 1/
√

N . Gray lines represent asymptotic

bounds given by Eq. (12) for η = 0.8 and η = 0.6. The inset depicts

the structure of the optimal states for the three levels of loss for

N = 100.

Hence, the minimal cost equals δ̃2ϕ = 2− λmax, where λmax is

themaximal eigenvalue of thematrixA, and the corresponding

eigenvector provides the optimal input state parameters α.

A. Numerical solution

Numerical results of the above eigenvalue problem are

presented in Fig. 2. The black lines depict the phase estimation

uncertainty δϕ of the optimal quantum strategy plotted as

a function of N for ηa = ηb ∈ {0.6,0.8,1}. In the absence
of loss, the optimal quantum curve tends to the Heisenberg

scaling, whereas, when losses are present, the curve flattens

significantly with increasing N . The inset depicts the form

of the optimal state. With an increasing degree of loss, the

distribution of αn for the optimal state becomes more peaked

as compared with the lossless case, αn =
√

2
N+2 sin[

(n+1)π
N+2 ]

[3]. This behavior can be intuitively understood in a similar

fashion as in the local approach [18,19], where the N00N

states with only two nonzero coefficients α0 and αN are most

sensitive to the phase shift but extremely vulnerable to loss.

In the presence of loss, larger weights need to be ascribed

to intermediate coefficients in order to preserve quantum

superposition even after some photons are lost. The same

effect of increasing weights of intermediate coefficients at the

expense of marginal coefficients is also present in the global

approach.

B. Asymptotic bounds

We now present the main result of the paper. Numerical

results presented above and the ones obtained within the local

approach [18,19] indicate that, in the presence of loss, the

phase estimation uncertainty δϕ departs from the HL and

asymptotically approaches c/
√

N . Until now, however, an

analytical proof of the above conjecture was missing.

Let us first derive an upper bound on the maximal

eigenvalue λmax of matrix A in Eq. (7). Without loss of
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generality, we assume that ηa 6 ηb. Clearly, setting ηb =
1 can only improve our estimation; hence λmax increases.

For ηa = η < 1, ηb = 1, the nonzero matrix elements read

An,n−1 =
∑n

l=0
√

Bn
l (η)B

n−1
l (η).

Recall that for an arbitrary normalized vector v, v†Av 6

λmax. Let α be the eigenvector corresponding to λmax: α
†Aα =

λmax. The fact that all matrix elements of A are non-negative

implies ∀ n αn > 0.

Let us now define a matrix A′, such that all nonzero
entries of A are replaced by the maximum matrix element

A↑ = maxn{An,n−1} = AN,N−1. Since αn > 0 and A′
n,m >

An,m > 0, we can write

λmax = α
†Aα 6 α

†A′
α 6 λ′

max, (9)

where λ′
max is the maximal eigenvalue of A′. λ′

max can

be found analytically by noting the following recurrence

relation for the characteristic polynomial of A′: det3n+1 =
−λ det3n − A↑2 det3n−1, where 3 = A′ − λ1, while 3n

are (n + 1)× (n + 1) submatrices of 3. The solution of the

recurrence relation reads det(3) = DN+1(−λ,A↑2), where

Dn(x,a2) = an sin[(n+1)arccos( x
2a
)]

sin[arccos( −x
2a
)]

is theDickson polynomial [33]

of the nth order. The largest eigenvalue corresponds to the

largest root of det(3), λ′
max = 2A↑cos[ π

(N+2) ].

We can finally write explicitly the lower bound on the

variance as

δ̃2ϕ > 2

[
1− cos

(
π

N + 2

) N∑

l=0

√
BN

l (η)B
N−1
l (η)

]
. (10)

Expanding the above formula in the limit N → ∞ we get

δ̃2ϕ >
1− η

4ηN
+ O

(
1

N2

)
, (11)

which proves that, for η < 1, δϕ scales as c/
√

N .

A tighter bound can be analogously derived for the case

ηa = ηb = η by noting that maxn{An,n−1} = Ad N
2
e,d N

2
e−1. In

the limit N → ∞ we get

δ̃2ϕ >
1− η

ηN
+ O

(
1

N2

)
. (12)

C. Optimal classical strategy

For the sake of comparison, we also derive the optimal

classical phase estimation strategy, in which a coherent state

with a mean photon numberN is sent to an initial beam splitter

of transmissivity τin, whose output feeds paths a and b of

the interferometer. We assume no additional external phase

reference, and hence the state is effectively a mixture of terms

with a different total photon number. The optimal seed POVM

is
⊕∞

N ′=0 4N ′

opt, yielding

δ̃2ϕ = 2−
2B [Nηaτin]B [Nηb (1− τin)]

N
√

ηaτinηb (1− τin)
, (13)

whereB(x) = e−x
∑∞

n=0
xn

n!

√
n is the Bell polynomial of order

1/2. For strong beams (N → ∞) up to the first order in 1/N ,

δ̃2ϕ ≈ ( 1
τinηa

+ 1
(1−τin)ηb

)/4N and is minimized for the choice

τin = 1/(1+
√

ηa/ηb),

δ̃2ϕ ≈
1

4N

(
1

√
ηa

+
1

√
ηb

)2
, (14)

which is exactly the same formula as for the optimal classical

strategy in the local approach [19].

IV. CONCLUSIONS

Results presented in this paper indicate that,while quantum-

enhanced protocols provide a quantitative boost in the preci-

sion of estimates, the presence of loss unavoidably causes the

precision scaling to become classical in the limit of a large

number of resources N . The asymptotic gain of quantum-

enhanced protocols amounts to just a smaller multiplicative

constant c in the scaling law c/
√

N . Comparing Eq. (14) (with

ηa = η, ηb = 1) with the bound given in Eq. (11), we may

conclude that asymptotically quantum-enhanced protocols

provide at most a factor of

lim
N→∞

δϕclassical

δϕquantum
6

√
1+ √

η

1− √
η

(15)

decrease in the uncertainty of estimation. In the caseηa = ηb =
η, using a tighter bound equation (12), the above factor reads

1/
√
1− η. We conjecture that the fact that losses necessarily

turn the HL into c/
√

N is a general feature of all quantum

estimation problems, such as estimation of direction, Cartesian

frames, etc.

Note added. Recently, analogous conclusions were pre-

sented within the complementary local approach [34].
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APPENDIX A: OPTIMAL MEASUREMENT

Substituting the output state ρout =
⊕N

N ′=0 ρN ′

out and the

seed operator 4 =
⊕N

N ′=0 4N ′
into Eq. (6), we get an explicit

formula for the average cost function:

〈C〉 =
N∑

N ′=0

N−N ′∑

la=0

N ′+la∑

n,m=la

Cnmβ la ,lb
n β la ,lb

m α∗
nαm4N ′

n−la ,m−la
, (A1)

where lb = N − N ′ − la , Cnm =
∫

dϕ

2π
C(ϕ)ei(n−m)ϕ , and

4N ′

n′,m′ = 〈n′,N ′ − n′|4N ′ |m′,N ′ − m′〉. The completeness

constraint
∫

dϕ̃

2π
Uϕ4U †

ϕ = 1 implies that4N ′

n′n′ = 1. Therefore,

if restricted tom = n terms, the sum (A1) reduces to a constant

c0 = C00. Changing the summation order, we can rewrite

Eq. (A1) as

〈C〉 − c0 =
N∑

n,m=0
n 6=m

min(n,m)∑

la=0

N−max(n,m)∑

lb=0

Cnmβ la ,lb
n β la ,lb

m

×α∗
nαm4

N−la−lb
n−la ,m−la

. (A2)
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Now, as for all n 6= m cost coefficients Cnm 6 0, we get the

following lower bound on the average cost:

〈C〉 − c0 >

N∑

n,m=0
n 6=m

min(n,m)∑

la=0

N−max(n,m)∑

lb=0

Cnmβ la ,lb
n β la ,lb

m

× |α∗
n||αm|

∣∣4la+lb
n−la ,m−la

∣∣ (A3)

>

N∑

n,m=0
n 6=m

min(n,m)∑

la=0

N−max(n,m)∑

lb=0

Cnmβ la ,lb
n β la ,lb

m |α∗
n||αm|.

(A4)

The first inequality is saturated by choosing the input state’s

and seed operator’s coefficients to be real. The second in-

equality follows from 4N ′

n′,m′ 6
√

4N ′
m′,m′4N ′

n′,n′ = 1, which is a

consequence of positive semidefiniteness of4N ′
and the com-

pleteness constraint. Both inequalities are saturated for4N ′

opt =
|eN ′〉〈eN ′ |, where |eN ′〉 =

∑N ′

n=0 |n,N ′ − n〉. This proves the
optimality of the measurement considered in this paper.

APPENDIX B: DISTINGUISHABILITY OF PHOTONS

If photons traveling through the interferometer are distin-

guishable, e.g., they are prepared in different time bins, the

dimension of the Hilbert space needed to describe the state of

N photons is 2N , as opposed toN + 1 for the indistinguishable
case. In fact, the indistinguishable case may be considered as a

restriction of the former space to its fully symmetric subspace.

We prove in the following that considering distinguishable

photons is of no use, since the optimality can always be attained

within the class of states belonging to the fully symmetric

(bosonic) subspace. Let

|ψN 〉 =
1N∑

n=0N

αn|n〉 (B1)

be a general state of N distinguishable photons traveling

through the interferometer, where the sum runs over all N -bit

sequences n, with |n〉 = |n1〉 ⊗ · · · |nN 〉, where |ni〉 = |1〉
(|0〉) denotes a photon in the ith time bin, propagating in the

a (b) arm of the interferometer, respectively.

By taking loss into account, we additionally need to track

the time slots in which photons were lost. We define a binary

string la = la,1la,2 · · · la,N , with 1’s representing the time bins

in which the photon was lost in arm a and similarly lb for the

arm b. The general seed operator has a block diagonal structure

with respect to different patterns of surviving photons: 4 =⊕1N

N ′=0N 4N ′
, where 1’s in the binary string N ′ denote the time

bins inwhich photonswere successfully transmitted. Formally,

using bitwise subtraction, we can write N ′ = 1 − la − lb.

We write in a basis 4N ′ =
∑1N ′

n′,m′=0N ′ 4N ′

n′,m′ |n′〉〈m′|, where
n′ stands for a string with N ′ bits placed at positions
corresponding to 1’s in N ′ with the complementary positions
left empty (neither 0 nor 1). In order to simplify the notation,

for any binary sequence x, we denote by x = |x| the number
of 1’s in the sequence. Moreover, we use a notation x \ y for a

binary string x with empty entries at positions corresponding

to 1’s in y.

Adapting Eq. (A2) to the distinguishable photon case, we

get

〈C〉 − c0 =
1∑

n,m=0

n 6=m

min(n,m)∑

la=0

1−max(n,m)∑

lb=0

Cnmγ la ,lb
n γ la lb

m

×α∗
nαm4

1−(la+lb)

n\(la+lb),m\(la+lb)
, (B2)

where min and max should be understood as bitwise op-

erations, γ la ,lb
n =

√
(1− ηa)laηn−la

a (1− ηb)lbηN−n−lb
b , and for

simplicity we put 0 = 0N , 1 = 1N .

We now split the sums over l i into a sum over li (number

of 1’s in l i) and the sum over permutation of 1’s within l i . We

proceed analogously for summations over n (m), obtaining

〈C〉− c0=
N∑

n,m=0
n 6=m

min(n,m)∑

la=0

N−max(n,m)∑

lb=0

Cnmγ la ,lb
n γ la lb

m

=
1∑

n=0

|n|=n

1∑

m=0

|m|=m

α∗
nαm

min(n,m)∑

la=0

|la |=la

1−max(n,m)∑

lb=0

|lb |=lb

4
1−(la+lb)

n\(la+lb),m\(la+lb)
.

(B3)

In order to proceed further, let us for the moment specialize

to the lossless case ηa = ηb = 1, where the above formula

simplifies to

〈C〉 − c0 =
N∑

n,m=0
n 6=m

Cnm

1∑

n=0

|n|=n

1∑

m=0

|m|=m

α∗
nαm41

n,m. (B4)

4 needs to be a positive semidefinite operator, and by

the completeness constraint 4m,n = δm,n, whenever n = m.

Because diagonal blocks of 4 (corresponding to n = m) are

proportional to identity, it implies that none of the off-diagonal

blocks of4 (corresponding ton 6= m) can have a singular value

of larger than 1. This can be proven as follows. Let us assume

that for a certain block (m,n) (n 6= m), the largest singular

value λ > 1, and let |vm〉,|wn〉 be the normalized left and right
singular vectors corresponding to a singular value λ, |vm| = m,

|wn| = n. Defining |z〉 = |vm〉 − |wn〉, we calculate

〈z|4|z〉 = 〈vn|4|vn〉 + 〈wm|4|wm〉 − 2Re〈vn|4|wm〉
= 2(1− λ) < 0, (B5)

which contradicts the positivity semidefiniteness of 4.

Because all singular values of any (n,m) block of

4 are smaller than 1, the following inequality holds:∑1
n=0

|n|=n

∑1
m=0

|m|=m

α∗
nαm4n,m 6 α∗

nαm, αn =
√∑1

n=0

|n|=n

|αn|2. This
leads to a bound on the cost function in the lossless case,

〈C〉 − c0 >

N∑

n,m=0
n 6=m

Cnmαnα
∗
m, (B6)

proving that one can achieve optimality by restricting oneself

to indistinguishable photons.

Returning to Eq. (B4), we see that we can apply a similar

argumentation making use of positive semidefiniteness of

the 4
(la ,lb)
m,n =

∑min(n,m)
la=0

|la |=la

∑1−max(n,m)
lb=0

|lb |=lb

4
1−(la+lb)

m\(la+lb),n\(la+lb)
opera-

tor. We notice that the completeness constraint again implies
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a block structure of 4(la ,lb) with respect to m = |m|,n = |n|,
with diagonal elements of diagonal blocks (n,n) now being∑n

la=0

|la |=la

∑1−n
lb=0

|lb |=lb

1 = (
n

la
)(

N−n

lb
). This implies that themaximum

singular value of any (m,n) block of 4(la ,lb) is constrained by

(
min(n,m)

la
)(

N−max(n,m)

lb
). As a result, we obtain the following

bound:

〈C〉 − c0 >

N∑

n,m=0
n 6=m

min(n,m)∑

la=0

N−max(n,m)∑

lb=0

Cnmγ la ,lb
n

× γ la lb
m

(
min(n,m)

la

)(
N −max(n,m)

lb

)
|αn||α∗

m|

>

N∑

n,m=0
n 6=m

min(n,m)∑

la=0

N−max(n,m)∑

lb=0

Cnmγ la ,lb
n γ la lb

m

×

√(
n

la

)(
m

la

)(
N − n

lb

)(
N − m

lb

)
|αn||α∗

m|.

(B7)

Recalling that β la ,lb
n =

√
(

n

la
)(

N−n

lb
)γ la ,lb

n , it is evident that

the above equation is identical to Eq. (A4), which was

obtained for the indistinguishable case. This completes the

proof that the optimal estimation is indeed achievable using

indistinguishable photons.

APPENDIX C: ADAPTIVE MEASUREMENT SCHEMES

Let us describe a general structure of adaptive measurement

schemes performed on N subsystems. Let {5(1)
i1

} be a POVM
performed on the first copy. Depending on the measurement

result i1, a POVM {5(2)
i2
(i1)} is performed on the second

copy. In general, a POVM performed on the kth copy

{5(k)
ik
(i1, . . . ,ik−1)} depends on all previous measurement re-

sults. The adaptive measurement mathematically corresponds

to a POVM:

5i = 5i1,...,iN = 5
(1)
i1

⊗ · · · ⊗ 5
(N)
iN
(i1, . . . ,iN−1), (C1)

where 5i can be treated as a single global POVM with

measurement results indexed by i . This shows that, for distin-

guishable subsystems, optimization of estimation strategy over

global POVMs covers also the case of adaptive measurements.

Moreover, we have proved in Appendix B that the optimal

phase estimation can be realized using indistinguishable

subsystems. Therefore, the bounds derived in this paper, which

assume a global POVM on indistinguishable photons, indeed

hold also for all adaptive measurement strategies.
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