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We identify a large class of quantum many-body systems that can be solved exactly: natural frustration-

free spin-1=2 nearest-neighbor Hamiltonians on arbitrary lattices. We show that the entire ground-state

manifold of such models can be found exactly by a tensor network of isometries acting on a space locally

isomorphic to the symmetric subspace. Thus, for this wide class of models, real-space renormalization can

be made exact. Our findings also imply that every such frustration-free spin model satisfies an area law for

the entanglement entropy of the ground state, establishing a novel large class of models for which an area

law is known. Finally, we show that our approach gives rise to an ansatz class useful for the simulation of

almost frustration-free models in a simple fashion, outperforming mean-field theory.
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Understanding the physics of quantum many-body sys-

tems is a central goal of modern physics, as they can

exhibit exotic phenomena with no parallel in classical

physics, including topological effects and quantum phase

transitions at zero temperature. However, the very source

of their rich physics also leads to a major roadblock in their

study: The Hilbert space dimension of these systems scales

exponentially with the number of particles. This means that

brute-force numerical techniques fail even for systems of

only a handful of particles.

A key insight in the study of local quantum many-body

systems is that naturally occurring states occupy only a

small subspace of the Hilbert space which, in principle, is

available to them. Specifically, it has been realized that

ground, thermal, and dynamically evolving states are only

weakly entangled: The entanglement entropy satisfies what

is referred to as an ‘‘area law’’ [1–3]. This insight is the

basis of the density-matrix renormalization group ap-

proach and higher-dimensional analogues [4]. So success-

ful are these methods in practice that one is tempted to

boldly conjecture that all physically relevant systems will

soon be tractable to one or another of the numerical tools

we have at hand. Recent results give cause for caution,

showing that general numerical methods cannot well ap-

proximate the physics of an arbitrary local quantum sys-

tem, even in 1D; these include local glassy models where

approximating the ground-state energy is NP-hard [5],

suggesting that such systems would be intractable.

However, these results do not give much reason for prac-

tical concern thus far, as at least in 1D they rely on rather

baroque constructions (involving very large local

dimensions).

In this work, we approach the issue of the complexity or

‘‘hardness’’ of finding ground states from the other di-

rection: We establish a large class of models for which

the task of finding the ground state is easy, in that the

ground-state manifold can be described exactly and effi-

ciently. This is the class of all natural frustration-free

spin-1=2 models with nearest-neighbor interaction on gen-

eral lattices. (By the qualifier ‘‘natural,’’ we mean that all

two-spin interaction terms have excited states which are

entangled, which might be taken as implicit in the seman-

tics of an ‘‘interaction term.’’) Extending ideas of Ref. [6]

on QUANTUM 2-SAT and going beyond 1D models as in

Ref. [7], we find that the complete ground-state manifold

of such Hamiltonians can be constructed by reduction to

the symmetric subspace of a smaller system. In doing so,

we find that the resulting ground-state manifold can be

efficiently grasped in terms of tree-tensor networks. We

discuss how this allows expectation values of local observ-

ables to be computed efficiently. What is more, the ground

states satisfy an area law. Physically, we can view this work

as describing a large class of models for which an instance

of real-space renormalization provides an exact solution to

the true genuine quantum many-body model. Finally, we

see how this construction—a tree-tensor network with a

symmetric subspace as an input—can serve as an ansatz

class to simulate systems which are ‘‘close’’ to frustration-

free models, outperforming mean-field approaches in a

very simple fashion.

In our analysis, we allow for nearest-neighbor

Hamiltonians on arbitrary lattices. This could be a cubic

lattice of some dimension or, more generally, any graph,

the vertex set of which we denote by V. On this lattice, the
spin Hamiltonian H is represented as

H ¼
X

fa;bg

ha;b (1)

for terms ha;b acting on pairs of spins fa; bg $ V. By
rescaling, we may require that the ground energy of each

term ha;b is zero. The ground-state manifold M of such a

Hamiltonian may be degenerate: We identify the ground

state ) with the maximal mixture over M. (This is a pure

state only ifH is nondegenerate.) We describe properties of

the ground state ) and, more generally, the manifold M,

given H as in Eq. (1). The Hamiltonian H is frustration-
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free (or unfrustrated) if the ground-state vectors j#i 2 M
correspond to ground states of individual coupling terms,

that is, if ha;bj#i ¼ 0 holds for all ha;b and all j#i 2 M;

we say otherwise that H is frustrated.

We will call a spin Hamiltonian H natural if it contains

no isolated subsystems, and each interaction term ha;b
(considered as an operator on C2 ( C2) has at least one

entangled excited state (i.e., an entangled state orthogonal

to the ground-state manifold of ha;b). In what follows we

will consider only such natural Hamiltonians.

Frustration-free spin Hamiltonians.—Our main results

concern the class of frustration-free spin Hamiltonians H.

We show that the ground-state manifold M of such a spin

Hamiltonian on N spins has dimension at most N þ 1.
What is more, it is the image of a space of low Schmidt

measure [8] under a tree-tensor network.

First, we describe the needed components of Ref. [6], in

the language of frustration-free models. Consider a

Hamiltonian HU containing terms hu;v of rank 2 or 3. If

HU is frustration-free, the reduced state )u;v of any state

vector j#i 2 kerðHÞ is in the kernel of hu;v; we may then

consider a subspace Su;v $ H u (H v of dimension 2

which contains suppð)u;vÞ. By defining an isometry

Ru:uv:H
(fug
2 ! Su;v $ H

(fu;vg
2 ; (2)

we can reduce to a Hamiltonian on fewer spins: We let

H0
U ¼ Ry

u:uvHURu:uv ¼
X

fa;bg

Ry
u:uvha;bRu:uv: (3)

Such a spin Hamiltonian H0
U is a sum of two-spin inter-

actions (and possibly single-spin terms) of the form h0a;b ¼

Ry
u:uvha;bRu:uv. (If hu;v has rank 3, then h0u;v is a nonzero

single-spin operator acting on u alone.) If H contains

nonzero terms ha;u and ha;v, we obtain two nonzero con-

tributions h0a;u ¼ Ry
u:uvha;uRu:uv and h0a;v ¼ Ry

u:uvha;vRu:uv

in the Hamiltonian H0, each of which act on fu; ag. The
sum gives a combined term ,h0a;u ¼ h0a;u þ h0a;v in H0

U,

possibly of higher rank than either h0a;u or h0a;v [9]. If the

new HamiltonianH0
U contains terms of rank 2 or 3, we may

perform another such reduction, and so on. This reduction

procedure has the following features:

a. Preservation of the kernel dimension.—By construc-

tion, we have kerðHUÞ ¼ Ru:uv kerðH
0
UÞ. Thus, the kernels

of HU and H0
U have the same dimension. In particular, if

H0
U has any terms of full rank acting on either one or two

spins, then dim½kerðHUÞ0 ¼ 0, in which case HU is frus-

trated. If no full-rank terms are produced, each reduction

leads to an operator acting on fewer spins, until we obtain a

Hamiltonian having only terms of rank 1.

b. Arbitrariness of reduction order.—The dimension of

the kernel is preserved by these reductions. We may per-

form such reductions until we obtain a Hamiltonian which

either (i) contains only terms of rank 1 or (ii) contains a

full-rank term. The latter cannot occur in the reduction of a

frustration-free Hamiltonian; we discuss below the analy-

sis for Hamiltonians having only rank-1 terms. Thus, we

may choose any convenient reduction sequence.

The above features allow us to reduce to the special case

of a Hamiltonian H0
U (acting on a system V 0) which has

only interaction terms of rank 1. Each two-spin

Hamiltonian term h0a;b ¼ j1a;bih1a;bj may be regarded as

imposing constraints on the corresponding two-spin mar-

ginals )a;b of states j#i 2 kerðHÞ: We aim to obtain addi-

tional constraints on pairs of spins u; v 2 V0 by combining

the known constraints. To this end, Ref. [6] shows that a

state j#i which is in the kernel of two functionals h1a;bj
and h1b;cj is also in the kernel of

h10
a;cj ¼ ðh1a;bj ( h1b;cjÞð1 ( j02i ( 1Þ (4)

acting on the spins fa; cg, where j02i is the two-spin

antisymmetric state vector. For each such ‘‘induced’’ con-

straint h10
u;vj on spins fu; vg, we may add the term ~hu;v ¼

j10
u;vih1

0
u;vj to H0

U, resulting in a Hamiltonian ~HU which

has the same kernel as H0
U. (If H

0
U contains a term h0u;v 6/

~hu;v, it can be subsumed into a term ,hu;v with rank at least

2, in which case we apply a reduction Ru:uv as above.) One

may induce further constraints from the terms of ~H, until

we arrive at a ‘‘complete homogeneous’’ Hamiltonian Hc,

having only terms of rank 1, for which the constraints

h1u;vj are closed (up to scalars) under the constraint-

induction procedure of Eq. (4).

Reference [6] shows that such a Hamiltonian Hc, acting

on at least one spin and lacking single-spin operators [10],

has a ground space containing product states. Thus, the

above remarks essentially recap the following result.

Observation 1.—There is an efficient algorithm to de-

termine whether a spin Hamiltonian is frustration-free.

We now extend the above results, to obtain a strong

characterization of ground-state manifolds for natural

frustration-free systems. We note the following three addi-

tional features of the isometric contraction scheme above:

c. Tree-tensor construction.—The complete network of

isometric reductions T represents a tree-tensor network, a

special case of the multiscale entanglement renormaliza-

tion ansatz [11] which is related to real-space renormal-

ization. Each isometry Ru:uv has one free input tensor index

and two free output indices, and the sequential nature of the

reduction ensures that the network is directed and acyclic.

Thus, any spin v introduced by an isometry Ru:uv is a

‘‘daughter spin’’ of a unique parent u, leading to a treelike

structure on the tensor network T. Note, however, that T
has free input indices, corresponding to the roots of each

tree: By construction, the ground space of HU is the image

Tj0i of states j0i 2 kerðHcÞ.
d. Preservation of natural Hamiltonians.—Importantly,

the isometric reductions above preserve the class of natural

frustration-free spin Hamiltonians: That is, the mapping

ha;u ! Ry
u:uvha;uRu:uv does not decrease the rank of the

interaction on fa; ug and does not map the orthocom-

plement of the kernel to the space j4i ( C2 for any j4i.
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e. Reduction to the symmetric subspace.—As a conse-

quence of the previous feature, we may use the isometric

reductions to map any natural frustration-free Hamiltonian

to a complete homogeneous Hamiltonian Hc on a system

Vc, in which the nonzero terms ha;b ¼ j1a;bih1a;bj are

supported on entangled states j1a;bi. We show that the

kernel of such a Hamiltonian has small dimension and is

spanned entirely by product states. For an arbitrary spin

a 2 Vc, we may let La ¼ 1 and define a family of opera-

tors Lv satisfying

h1a;vj / h02ja;vð1a ( LvÞ (5)

for spins v 2 Vc and operators h1a;vj. One then finds that

C ¼
N

v2Vc
Lv is a linear isomorphism (not necessarily an

isometry) from the subspace SymmðH
(Vc

2 Þ of symmetric

states to the ground space ofHc. (This isomorphism is also

noted in Ref. [12], Sec. III A, for generic Hamiltonians

with rank-1 interactions.) As SymmðH
(Vc

2 Þ is spanned by

uniform superpositions jWki of standard basis states having
Hamming weight 0 5 k 5 nc ¼ jVcj, we have

dim½SymmðH
(nc
2 Þ0 ¼ nc þ 1. This subspace may also

be spanned by product state vectors j:0i
(nc ; . . . ; j:nc

i(nc

for any set of nc þ 1 pairwise independent state vectors

j:ji 2 H 2. Thus, any complete homogeneous (natural)

Hamiltonian Hc has a ground space spanned by vectors

j0ji ¼
O

v2Vc

ðLvj:jiÞ ¼ Cj:ji
(nc ; (6)

for some j:ji 2 H 2 as above. Coupled with the tree-

tensor structure of the isometric reductions, this character-

ization has the following consequences.

Observation 2.—For an unfrustrated spin Hamiltonian

HU, any constant k, and k-local operators A, hAi can be

efficiently computed with respect to ground states of H.

Let Hc be a homogeneous Hamiltonian acting on nc
spins, obtained by isometric reduction of an unfrustrated

Hamiltonian HU. Consider a k-local operator ~A. As

kerðHcÞ is spanned by product vectors j00i ¼

Cj:0i
(nc ; . . . ; j0nc

i ¼ Cj:nc
i(nc as in Eq. (6), we can

efficiently compute the restriction of ~A to kerðHcÞ by

evaluating

Wð ~AÞ ¼
X

nc

j;k¼0

jjih0jj ~Aj0kihkj (7)

followed by a suitable transformation. Specifically, con-

sider the operator B ¼ Wð1Þ; we have B ¼ U5Uy for

some U unitary and 5 positive and diagonal. We find

521=2Uy
X

nc

j¼0

jjih0jj ¼
X

nc

j¼0

jjih#jj; (8)

for some orthonormal basis j#0i; . . . ; j#nc
i of kerðHcÞ;

thus, the restriction of ~A to kerðHcÞ with respect to the

basis of states j#ji may be computed as

,A ¼ 521=2UyWð ~AÞU521=2: (9)

[For ~A consisting of a single k-spin term, the inner products

of Eq. (7) are products of constant-dimensional inner prod-

ucts; for ~A a sum of multiple terms, we extend linearly.] Let

T: kerðHcÞ ! kerðHUÞ be the network of isometric reduc-

tions. Then, by considering operators ~A ¼ TyAT, we may

compute the restriction ,A of such operators A to the ground

space ofHU. We may then efficiently compute expectation

values by using such matrices.

Observation 3.—Ground states of frustration-free spin

Hamiltonians HU on lattices obey an entanglement area

law.

For any contiguous subsystem A containing a spins, we

may reduce the Hamiltonian HðAÞ
U acting internally on A—

by a tree-tensor isometry TA acting on A alone—to obtain a

homogeneous Hamiltonian HðAÞ
c , acting on at most a spins.

The ground space of HðAÞ
c has dimension at most aþ 1; as

the ground space of HðAÞ
U is an isometric image of that of

HðAÞ
c , the same is true of HðAÞ

U . As HU is unfrustration, any

ground state of HU is also a ground state of HðAÞ
U ; it follows

that the Schmidt measure [8] of j0i with respect to the

bipartition V ¼ A [ ðV n AÞ is at most logðaþ 1Þ. For a
spin lattice of any dimension, we obtain an area law for

arbitrary subsystems by summing this logarithmic bound

over the number of distinct connected components.

‘‘Almost’’ frustration-free Hamiltonians.—We now

leave the rigorous exact setting and turn to the observation

that the above techniques can be used to grasp approxi-

mately frustration-free models. Observation 2, in particu-

lar, suggests a variational approach to estimating ground

energies for Hamiltonians H for which

H ¼ HU þ >HF (10)

for some > 8 1, where HU is frustration-free but the

Hamiltonian H itself is frustrated. For such Hamiltonians

H, if no phase transition is encountered, the eigenvalues

and eigenstates may differ little from those of the unfrus-

trated Hamiltonian HU (for related bounds on eigenvalues,

see, e.g., Ref. [13]). If the lowest k eigenvectors (for some

suitable 1 5 k 5 nþ 1) have a sufficiently high overlap

with the lowest k eigenvectors of HU, we may approxi-

mately sample from the low-energy eigenvectors of H by

restricting to the kernel of HU, by using the efficient

algorithm above. In particular, as this procedure is varia-

tional, estimates obtained in this way for the ground-state

energy of H are guaranteed to be upper bounds.

We may consider improvements to this ansatz which

retain more information about the ‘‘frustrating’’ compo-

nent >HF than in the tree-tensor renormalization procedure

for HU. To obtain better estimates—and to extend these

techniques to the case where > may be significantly

large—we may consider partial reductions by tree-tensor

networks, having many free input spins, and isometries

depending on the terms of the perturbed Hamiltonian H
(rather than those of HU).

If the ground-state manifold of HU is contained in a

subspace K which is spanned by product states and has
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‘‘small’’ dimension (i.e., polynomial rather than exponen-

tial in the system size, as in the case of the symmetric

subspace for ferromagnetic Ising or XXX models), we may

indeed forgo isometric reductions entirely and estimate the

ground energy of H by considering the restriction of H to

K by using the techniques described for Observation 2. In

contrast to a full tree-tensor contraction, this has the ad-

vantage of yielding exact results for the frustration-free

case > ¼ 0 while retaining more information about the

frustrating component HF. The resulting estimate for the

ground-state energy will be a linear function of >, whose
value and first derivative with respect to > agree with that

of the exact ground energy at > ¼ 0. For small > and

modest system sizes, this may yield a good estimate of

the ground-state energy of H; see Fig. 1 [14].

To obtain estimates which account for spatially decaying

correlations, we may perform a partial tree-tensor reduc-

tion with a small number of contraction layers and sample

with respect to a subspace K as described above. In each

layer, we may fix a collection of (nonintersecting) adjacent

site pairs fa; bg to contract and for each such pair fa; bg
apply some isometric contraction as described in Eq. (3).

However, rather than apply the reductions which would be

suggested by the frustration-free Hamiltonian HU, we may

use isometries

Qa:ab ¼ jc 0
a;bih0j þ jc 1

a;bih1j; (11)

where jc 0
a;bi and jc

1
a;bi are the lowest energy eigenvectors

of the interaction term ofH on sites a and b. Given a tensor
network T1 consisting of a product of such two-site opera-

tors Qa:ab, we may then consider the spin model given by

H0 ¼ Ty
1HT1 and estimate the ground energy of H0 with

respect to a low-dimension subspace or another isometric

contraction; this yields an upper bound on the ground

energy of the original Hamiltonian H.

Summary.—In this work, we have introduced a class of

spin models that can be completely solved: The entire

ground-state manifold can be explicitly given and parame-

trized by an entire symmetric subspace under a tensor

network. This class of models is expected to provide a

rich playground of exploring ideas on quantum lattice

models, complementing work that exemplifies how com-

putationally difficult it can be to approximate ground-state

energies. The considered models can also be viewed as the

parent Hamiltonian of the network, in a converse approach

taken for tree-tensor networks in Ref. [15]. The models we

consider obey area laws, establishing a class of models

beyond free systems for which this holds. It is the hope that

this work stimulates further research on models for which

tensor networks arise not only as computational but as

essentially analytical tools.
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FIG. 1 (color online). Left: Ground-state energy for XXZ
model on a trigonal lattice on a 39 3 torus, hi;j ¼ 2XiXj 2

YiYj 2 ð12 >ÞZiZj, by symmetric subspace estimate compared

to product state ansatz and exact diagonalization. The inset

shows the same model on a 69 6 torus where exact solution

is not feasible and, therefore, is replaced by an Anderson lower

bound. Right: Magnetization in z direction for Ising model in a

transverse field on a 49 4 torus, hi;j ¼ 2ZiZj, hi ¼ 2>Xi, by

symmetric subspace estimate compared to mean-field approxi-

mation (product state ansatz) and exact diagonalization.

PRL 105, 060504 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

6 AUGUST 2010

060504-4


