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Private queries allow a user, Alice, to learn an element of a database held by a provider, Bob, without revealing

which element she is interested in, while limiting her information about the other elements. We propose to

implement private queries based on a quantum-key-distribution protocol, with changes only in the classical

postprocessing of the key. This approach makes our scheme both easy to implement and loss tolerant. While

unconditionally secure private queries are known to be impossible, we argue that an interesting degree of security

can be achieved by relying on fundamental physical principles instead of unverifiable security assumptions in

order to protect both the user and the database. We think that the scope exists for such practical private queries

to become another remarkable application of quantum information in the footsteps of quantum key distribution.
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I. INTRODUCTION

As telecommunication gains steadily in importance, ques-

tions of security and privacy naturally arise. Indeed, private

data are stored on a grand scale and have become a precious

commodity. Unfortunately, as a matter of principle, classical

information theory is not able to secure privacy in telecommu-

nication against an unlimited adversary. It was hence found

all the more extraordinary that quantum key distribution

(QKD) allows such “unconditionally” private communication,

provided that the two parties trust each other. However,

the more general case of communication between distrustful

parties, who wish to protect not only their common privacy

against eavesdropping but also their individual privacy against

each other, is maybe of even greater interest.

Private queries are an important problem of this type.

Imagine that a user, Alice, wants to know an element of a

database held by a database provider, Bob, but does not want

him to know which element she is interested in. Bob in turn

wants to limit the amount of information that she can gain

about the database. In particular, he does not want to just hand

over the whole database, which would trivially allow Alice

to learn her bit of interest without giving any information on

her choice away. It is not hard to imagine scenarios (e.g.,

in the financial world) where the capability of implementing

such private queries would be useful. The information stored

in the database may be both valuable and sensitive, such that

Bob would like to sell it piece by piece, whereas the mere

fact of being interested in an element of the database might

already reveal something important about Alice (e.g., that she

is thinking about buying a certain company). Of course if there

were a cheap way of realizing the task, it would also be useful

for protecting privacy in online bargaining and web search, for

example, aswell as to construct other interesting cryptographic

primitives from it [1].

The described task is also known as symmetrically pri-

vate information retrieval and as 1 out of N oblivious

transfer [2]. It has attracted much attention both in computer

science [3,4] and in quantum information. Classically, the

problem seems like a logical contradiction. How could a

database provider answer a question, which he is not supposed

to know, without giving any additional information? One

might hope that quantummechanics could solve this dilemma.

Several quantum protocols were proposed (see, for example,

Refs. [5,6]), none of which were found to offer complete

protection for both sides. Indeed, it was subsequently proven in

Ref. [7] that the described task cannot be implemented ideally,

not even using quantum physics. The essential assumption

in the impossibility proof is that the protocol is perfectly

concealing, i.e., that Bob has no information whatsoever about

which database element Alice has retrieved. Rephrased at

the quantum level this is understood as the condition that

the density matrix of Bob’s subsystem must be completely

independent of Alice’s choice. Reference [7] shows that under

this condition Alice can always implement an attack based on

the Schmidt decomposition which allows her to read the entire

database. This argument is closely linked to the well-known

impossibility proofs for quantum bit commitment [8,9].

Recently, Giovannetti, Lloyd, and Maccone [10] pointed

out that very interesting degrees of privacy are achievable

for protocols that are not perfectly concealing, because of

the possibility to catch dishonest parties due to the errors

they introduce (see also Refs. [11,13,14]. In the protocol of

Ref. [10] Alice encodes her question in a quantum state,

which she sends to Bob. She also sends a decoy state,

which gives her a chance to detect if Bob is cheating. The

security relies on the impossibility to perfectly discriminate

the nonorthogonal question and decoy states and on the

changes Bob’s measurement will introduce as a consequence.

Unfortunately the protocol is very vulnerable in realistic

situations where there are significant transmission losses,

such that Alice has to send the same question multiple

times. If some of the losses are in fact due to Bob tapping

the line, then he can learn Alice’s question without being

detected.
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II. CLAIM

In this paper we present a new approach to the private query

problem. Our protocol is explicitly not perfectly concealing in

the above sense, so that the impossibility proof of Ref. [7] does

not apply. We show that the following statements hold for our

protocol.

(1) Database security is very good. Even for relevant

multiqubit joint measurements Alice’s accessible information

is restricted to a well-defined small percentage of the database

elements. The concrete limits for different attacks are shown

in the security discussion. Moreover the additional elements

Alice learns are randomly distributed over the database and

therefore of little use to her. In general, database security

is ensured by the impossibility of perfectly distinguishing

nonorthogonal quantum states.

(2) User privacy is also very high. We study several natural

attacks and derive a simple limit on the information Bob can

obtain. In general, we show that the no-signaling principle

implies that every malicious action of Bob’s will introduce

errors and can hence be detected by Alice—systematic

cheating is impossible.

The protocol relies on QKD with changes only in the post-

processing and can hence profit frommany of the advantages of

this well understood and commercially available technology.

In comparison to Ref. [10] it offers the advantage of practical

feasibility, in particular, loss tolerance and scalability to large

databases.

Note that the incorporation of security assumptions such

as the bounded storage model [15] could make the protocol

completely secure, under the condition that those assump-

tions are fulfilled. However, even in the absence of such

assumptions, our protocol’s basic security is guaranteed by

fundamental physical principles, namely, the impossibility of

perfectly discriminating nonorthogonal quantum states and the

impossibility of superluminal communication.

It should be underlined that we do not propose an ideal

cryptographic primitive, which would furthermore allow one

to construct other ideal cryptographic primitives such as user

identification, bit commitment, and coin flipping [1], but rather

a new practical and potentially very useful application of

quantum communication.

Our protocol is similar to the proposal of Bennett et al. [5],

which can be interpreted to rely on the Bennett-Brassard 1984

(BB84) QKD [16]. It is well known that the proposal of

Ref. [5] is susceptible to a quantummemory attack by the user,

which corrupts database security entirely. The crucial point is

that Ref. [5] is perfectly concealing, hence Lo’s impossibility

proof [7] implies that the user can learn the entire database—in

this case with the help of a quantummemory.We show that this

type of attack can be forestalled by using the Scarani-Acin-

Ribordy-Gisin 2004 (SARG04) QKD scheme [17] instead

of the BB84 protocol. Then user privacy is slightly weakened,

but the quantummemory attack is no longer feasible.Moreover

the errors a cheating provider introduces largely guarantee user

privacy.

III. APPROACH

In order to better understand our approach it is very

useful to compare it to QKD. In general QKD consists

of a first phase, where a large number of quantum states

are prepared, exchanged, and measured, and then a second

phase, where Alice and Bob extract a key from the quantum

communication part with the help of an a priori chosen coding

and interpretation process. The key is then known to both Alice

andBob entirely and can be used to encrypt the actualmessage,

which is sent via a classical channel. The quantum states and

the postprocessing procedure are chosen such that the key

cannot be eavesdropped on without introducing errors, thus

protecting Alice’s and Bob’s common privacy.

The basic idea of our protocol is to useQKD in combination

with adequate postprocessing to generate an N -bit string Kf

that will serve as an oblivious key [18] for a database ofN bits.

For this purpose, Kf must be distributed in such a way that

(1) Bob knows the key entirely, (2) Alice knows only a few bits

of Kf—ideally exactly one (database security), and (3) Bob

does not know which bits are known to Alice (user privacy).

In order to use Kf to encrypt the database, Bob adds key

and database bitwise with a relative shift chosen by Alice and

sends her the encrypted database. The relative shift is needed

in order to ensure that Alice’s bit of interest is encoded with

an element of Kf she knows, so that she can decipher the bit

and thus receive the answer to her private query.

Within our approach, the case of Alice knowing exactly one

bit cannot be realized deterministically. So in generalAlicewill

know a few bits of Kf , which means that database privacy is

good but not perfect. As the number of Alice’s elements is

Poisson distributed, there is also a small probability of Alice

having no bit in the end. The protocol then needs to be repeated.

This can be done without loss of privacy for either party: The

created string Kf does not contain any information on

the database, so database security is not touched, and likewise

the shift (which maps Alice’s known key element onto the

database element she needs) is only communicated once a

correct key has been established. Of course, Alice could claim

to have obtained no element of Kf with the hope of having

more elements after a repetition. However, this strategy can be

made ineffective by choosing the parameters of the protocol

such as to make the case of Alice having no element very

unlikely (cf. also Sec. V).

As already mentioned, the generation of Kf can be based

on QKD techniques. Consider for instance four-state BB84-

type QKD. After Bob has sent the states (without further

information), Alice, choosing measurement bases at random,

will measure half of the bits she receives in the correct

basis—without yet knowing for which ones her choice was

correct.When Bob subsequently announces the bases, we have

the situation that (I) Bob knows the entire “raw key,” (II) Alice

knows half of the bits, and (III) Bob cannot know which ones

Alice has measured correctly. Alice’s limited information on

the raw key can now be further diluted by adequate processing

in order to generate the oblivious key Kf , and this is indeed

the way Ref. [5] essentially works. However, if Alice has a

quantum memory this protocol is no longer secure. She can

then store the received states and postpone all measurements

until after Bob’s announcement. By doing so, she can learn

Kf entirely—there is hence actually no database security

at all.

Fortunately this attack can be largely forestalled rather

easily if one uses a SARG-QKD scheme instead of the BB84
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protocol. The SARG04 protocol uses the same states as the

four-state-BB84 protocol. The main difference lies in the

attribution of bit values to the quantum states. Whereas in

the BB84 protocol one state from each of the two bases codes

for 0 and the other one for 1, in the SARG04 protocol it is

the basis itself that codes for the bit value. That is, if Bob

sends a state in the “up-down” basis l this signifies a 0, and
a state from the “left-right” basis ↔ means 1. During the

postprocessing Bob does not announce which basis he has

used for each qubit. Instead Bob announces the state he has

sent plus one state from the other basis (in randomorder). Alice

is thus faced with a state discrimination problem that cannot

be solved perfectly, i.e., unambiguously and deterministically

at the same time. This slight change has profound implications

for SARG04QKD [19]. Herewe show that it is also very useful

for implementing private queries. A simple protocol based on

this approach consists of the following steps.

IV. PROTOCOL

(1) Bob sends a long random sequence of qubits (e.g.,

photons) in states |↑〉, |→〉, |↓〉, and |←〉. States |↑〉 and |↓〉
code for 0, and states |←〉 and |→〉 correspond to bit value
1. For instance, to send a bit 1 Bob can prepare a qubit in the

state |→〉.
(2) Alice measures each state in the l or the ↔ basis at

random. This alone does not allow her to infer the sent bit

value.

(3) Alice announces in which instances she has successfully

detected the qubit; lost or not detected photons are disregarded.

The possibility to discard bits does not allow Alice to cheat,

because after step 2 she still has no information whatsoever on

the sent bit values (cf. step 5). As a consequence, the protocol

is completely loss independent.

(4) For each qubit thatAlice has successfullymeasured,Bob

announces a pair of two states: the one that has actually been

sent and one from the other basis, so {|↑〉,|→〉}, {|→〉,|↓〉},
{|↓〉,|←〉}, or {|←〉,|↑〉}. If |→〉 has been sent, Bob could
announce, for instance, {|↑〉,|→〉}. This is exactly as in the
SARG04 QKD protocol [17].

(5) Alice interprets her measurement results of step 4.

Depending on which basis she has chosen and which result she

has obtained she will be able to decipher the sent bit value or

not. For instance, if |→〉 has been sent and {|↑〉,|→〉} has been
announced, Alice can rule out |↑〉 only if she has measured
in the l basis and obtained the result |↓〉. She can then
conclude that the state was |→〉 and the bit value is 1. Direct
measurement as under step 2 will yield 1/4 of conclusive

results and 3/4 of inconclusive ones. Both conclusive and

FIG. 1. How to reduce Alice’s information: her information on a

sum string is lower than that on the initial strings. Question marks

symbolize bits whose value is unknown to Alice.

inconclusive results are kept. Alice and Bob now share a string

which is known entirely to Bob and in a quarter to Alice.

(6) The created string must be of length k × N (with k

being a security parameter). It is cut into k substrings of length

N . These strings are added bitwise in order to reduce Alice’s

information on the key to roughly one bit (cf. Fig. 1).

(7) If Alice is left with no known bit after step 6, the protocol

has to be restarted. The probability for this to occur can be kept

small. See also the discussion in the previous and following

sections.

(8) IfKf has been established correctly, Alice will know at

least one element of it. Suppose she knows the j th bitK
f

j and

wants the ith bit of the database Xi . She then announces the

number s = j − i in order to allowBob to encode the database

by bitwise adding Kf , shifted by s. So Bob announces N bits

Cn = Xn ⊕ K
f
n+s where Alice can read Ci = Xi ⊕ K

f

j and

thus obtain Xi . The shift will hence make sure that Alice’s bit

of interest is coded with a key element she knows so that the

private query can be completed.

V. DISCUSSION

Steps 1 to 5 of the above protocol are completely identical

to SARG04QKDwith the only difference that every bit is kept,

regardless if it is conclusive or not for Alice. SARG04 QKD

was initially conceived to make QKDmore resistant to photon

number splitting attacks when weak pulses are used instead of

single photons for the sake of practical feasibility. In our case

the use of SARG04QKDnot only provides us with the benefits

of loss tolerance, technological practicability, and conceptual

closeness to well-understood QKD, but it also prevents the

quantum memory attack that destroyed the security of the

protocol of Ref. [5]. Even using a quantum memory Alice

is always confronted with the problem of discriminating two

nonorthogonal quantum states and will hence always have

incomplete knowledge on the raw key. This lack of information

is subsequently further amplified by step 6.

Note that following the “honest” way of measuring and

interpreting her results Alice will also gain probabilistic

information on nonconclusive bits. If Alice obtains no result

it is with probability 2/3 because she has chosen the same

basis for measurement as Bob has chosen for state preparation

(which will never yield a conclusive result). Considering the

example of step 5, Alice can obtain the result |→〉 when
measuring in ↔ both if Bob sent |→〉 (then with probability
1) and if Bob sent |↑〉 (then with probability 1/2 only). So,
although |→〉 is not a conclusive result, Alice can infer that
the sent state was |→〉 (bit 1) with probability 2/3 and |↑〉
(bit 0) with probability 1/3. This additional information can

be diluted to a negligible level by the postprocessing of step 6.

After creation of the raw key of k × N bits, the string is

divided into k substrings of length N . Following the protocol,

after adding the substrings, Alice will on average know

n̄ = N ( 1
4
)k bits, where the number n follows approximately

a Poisson distribution. On the other hand, the probability P0
that she does not know any bits at all and that the protocol must

be restarted is P0 = [1− ( 1
4
)k]N ≈ e−n̄. For large N , which is

the most interesting case in practice, it is therefore possible to

ensure both n̄ ¿ N and small P0 by choosing an appropriate

value of k. For instance, for a database ofN = 50 000 elements
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TABLE I. Example of possible choices of k for different database

sizesN . We show the failure probability P0 and the expected number

of elements n̄ an honest Alice will obtain.

N

103 5× 103 104 5× 104 105 106

k 4 5 6 7 7 9

P0 0.020 0.008 0.087 0.047 0.002 0.022

n̄ 3.91 4.88 2.44 3.05 6.10 3.81

k = 7 is a choice providing Alice with n̄ ≈ 3 elements of the

final key on average whereas the probability of failure is only

about 5% (see also Table I). The case of many repetitions

(which might allow Alice to wait until she obtains a large

value of n by chance) is hence very unlikely. This is important

for the protocol’s security. Since the states sent by Bob do not

contain any information about the database, and since Alice

only chooses and communicates the shift s to Bob once she

knows at least one bit of the final key, a few repetitions will not

compromise anybody’s security. Note that even if Alice knows

n > 1 bits of the oblivious key, she has to pick a single shift

s, which means that in general she can only learn one chosen

element of the database, since the other n − 1 bits known to her
will be at random positions in the key and thus in the database.

However, the fact that Alice normally obtains additional,

less interesting bits should not be seen only as a drawback

of the protocol, as it also offers an interesting possibility to

enhance her security: Alice can buy the extra bits in question

publicly (as opposed to privately), in order to compare them

with Bob’s answers. As explained in detail in the security

section, a cheating Bob will always lose knowledge on Kf .

The errors he thus introduces will then be detectable for Alice.

This way what seems to be a flaw in the protocol can be used

to strengthen user privacy.

VI. SECURITY

We now turn to the question of which degree of privacy

our protocol offers precisely. We study the most evident

attacks and clarify the way in which two fundamental physical

principles provide the basis for the protocol’s security. While

basic attacks are studied and the essential intuition is given, a

complete security analysis remains work for the future.

A. Database security

Let us first discuss database security. In general one must

assume that Alice disposes of a quantum memory and is

hence not forced to measure directly as in step 2. Instead

she can keep the photon and, once Bob has announced the

state pair, apply the optimal unambiguous state discrimination

(USD) measurement [20,21] that will correctly tell her

which of the two announced states has actually been sent.

The success probability of the USD measurement is, for the

case of two equally likely states, bounded by 1− F (ρ0,ρ1),

where F (ρ0,ρ1) is the fidelity between the two quantum states

one seeks to discriminate. Here, Alice’s measurement will

hence only work with a success probability of 1− |〈↑ | →
〉| = 1− 1/

√
2 ≈ 0.29, only slightly more than the 0.25 of the

direct measurement. In the above example with N = 50 000

and k = 7 this will provide her with n̄ = 9.3 elements on

average—only a small gain compared to n̄ = 3 and very little

in relation to N = 50 000 for such a complex attack. So even

using a quantum memory, individual measurements will not

substantially increase her information on Kf . The reason for

this is precisely the fact that our protocol is based on SARG04

coding rather than on BB84 coding.

A more general attack is to store the received photons

in a quantum memory and to postpone all measurements

until the very end of the protocol after step 6, so that she

knows which k qubits contribute to an element of the final

key. The individual bit values of the raw key are actually

of no interest to her. So, instead of performing the optimal

individual measurement on each of the k qubits constituting

an element ofKf , Alice should perform a joint measurement.

An example for this is Helstrom’s minimal error-probability

measurement, i.e., the measurement that distinguishes two

quantum states with the highest information gain [22,23]. In

the case of two equally likely quantum states ρ0 and ρ1, the

probability to guess the state at hand correctly is bounded by

Pguess = 1
2

+ 1
2
D(ρ0,ρ1), whereD(ρ0,ρ1) is the trace distance.

For a joint Helstrom measurement on a bit of Kf one finds

this probability to scale with the number k of added qubits

as Pguess = 1
2

+ 1

2
√
2k
. So the more substrings are added to

generate the final key, the harder it is for her to guess the bit

value, i.e., the parity of the k qubits. For example, for k = 7

Alice will guess a key element correctly with 54.4% instead

of 50% for a random guess. Likewise, the success probability

of unambiguously discriminating the two k-qubit mixed states

corresponding to odd and even parity declines rapidly with

the number of qubits k (see Fig. 2). In conclusion, it is clear

that the impossibility to perfectly distinguish nonorthogonal

quantum states can effectively protect the database’s security

and prevent Alice from knowing a substantial part of it,

even when she uses perfect storage technology and realizes

the theoretically optimal joint measurements. We see that

incorporating a SARG04 state discrimination problem as

a vital part of the protocol, the Schmidt attack of Lo’s

impossibility proof can be averted. The price to pay is a

protection of the user that is not total. We now turn to the

question of user privacy.
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FIG. 2. (Color online) The upper bound on the success probability

of the joint unambiguous state discrimination (USD) measurement

on k qubits declines rapidly with k.

022301-4



PRACTICAL PRIVATE DATABASE QUERIES BASED ON A . . . PHYSICAL REVIEW A 83, 022301 (2011)

B. User privacy

As we have discussed above, a not perfectly concealing

protocol, i.e., a protocol where Bob can gain some information

on Alice’s choice, is the prerequisite to prevent her from being

able to compromise database security entirely [7]. For the given

protocol it may not be obvious at first sight howBob can access

information on Alice’s choice, in the absence of any classical

or quantum communication from her to him. It turns out that

he can indeed gather information on a bit’s conclusiveness and

hence infer if that particular bit is more or less likely to be a

key element Alice knows.

The simplest attack for Bob is to send states other than

those he announces, for instance, a state |↗〉 that is exactly
intermediate between |↑〉 and |→〉, while announcing a pair
{|↑〉,|→〉}. Alice’s probabilities to measure |↓〉 or |←〉 are
largely reduced. Indeed, she will find a probability of only

14.64% to have such a conclusive result. Likewise sending the

state |↙〉 (orthogonal to |↗〉) while announcing {|↑〉,|→〉}
will raise the probability to interpret the result as conclusive to

85.36%. Bob can thus bias the probability of conclusive results

for Alice continuously between the above limits. However,

every such attack will introduce errors, as Bob cannot predict

her outcome with certainty. In the example above, Alice

registering |↓〉 and |←〉, i.e., both bit values, are equally likely
events, andBob’s bit error ratewill therefore be as high as 50%.

This evident example shows that Bob can gain information on

the conclusiveness ofAlice’s bits butwill then lose information

on the bit values she has recorded.

The presented attack is closely related to an attack that

uses entanglement. Bob prepares a state of two qubits 1√
2
{| ↑

〉A|R0〉B + | →〉A|R1〉B}, where the first qubit is sent to Alice
and the second is kept in Bob’s register (with 〈R0|R1〉B = 0).

Bob announces having sent |↑〉 or |→〉. Once Alice has
successfully measured and accepted her qubit, Bob can decide

if he wants to measure honestly, i.e., recover the sent bit value,

or gain some information on the conclusiveness of Alice’s

measurement. In order to proceed honestly Bob measures

his register in the basis {|R0〉,|R1〉}, which tells him which

of the two announced states has actually been sent [24]. He

then knows which bit value Alice will record in case of a

conclusive outcome, but has gained no improved estimation

of the likelihood for this to happen. In contrast, measuring

in the {(|R0〉 + |R1〉)/
√
2,(|R0〉 − |R1〉)/

√
2} basis provides

him with likelihood information on the conclusiveness of

a bit, but clearly yields no information at all on the sent

bit value.

This second measurement can also be seen from another

angle. If Alice has obtained a conclusive result (probability

1/4) Bob’s register is in the state

ρc =
(

1/2 0

0 1/2

)

;

if Alice’s measurement was nonconclusive (probability 3/4)

he has

ρn =

(

1/2
√
2/3

√
2/3 1/2

)

.

As ρc 6= ρn the protocol is not perfectly concealing. Using the

criteria of Refs. [20,21] one can show that these two density

matrices cannot be discriminated unambiguously for the

single-qubit case. The best chance to guess the state correctly

is 85.36%, as for the previous attack. The second given

measurement basis does indeed constitute Helstrom’s minimal

error probability measurement [22,23] for the conclusiveness

of one of Alice’s bits. As a matter of fact, one can show that,

given an arbitrary mixed qubit state, the likelihood to measure

a conclusive result will be confined by the very same bounds

(85.36% and 14.64%). No qubit state can yield only conclusive

results upon the abovemeasurement, or yield only inconclusive

results. This individual attack is therefore optimal, yields

information on the bit’s conclusiveness, and completely erases

the bit value information from Bob’s register. This last point

means that Bob will not know Kf correctly—a cheating

Bob can then be caught when providing wrong answers

[13]. In principle these results can be generalized to joint

measurements on several qubits; however, these complicated

attacks are beyond the scope of this paper. Instead we

now clarify the conceptual reason why it is impossible for

Bob to have both the correct bit value and conclusiveness

information.

Let us suppose that Bob can gain information on the

conclusiveness of one of Alice’s elements of the raw key, either

by construction of the sent state or by some measurement

performed on his register at the end of the protocol. Let

us characterize this information by pc, the probability with

which Bob correctly guesses that Alice has a conclusive result.

(Remember that this likelihood is physically bounded by pc 6

0.8536 if a single qubit is sent.) Let us also assume that, either

by construction of the state or by some second measurement,

Bob can also guess the bit value b Alice has recorded (if

her measurement was conclusive) and is correct about it with

the probability pb. Recalling the way Alice interprets her

measurement results in step 5 of the protocol, it is clear that, if

Bob correctly guesses that Alice’s result was indeed conclusive

and correctly guesses which bit value she has obtained, then

he also correctly guesses which measurement basis she has

used for this qubit in step 2. However, since there is no com-

munication whatsoever from Alice to Bob about her choice of

basis, the no-signaling principle dictates that his probability

to guess her basis correctly has to be equal to 1/2. Otherwise

the procedure would allow Alice to send signals to Bob that

are faster than the speed of light. This immediately implies

the bound

pc × pb 6 1/2.

The inequality arises because even for inconclusive results

Bob has a chance to guess Alice’s basis correctly. This

simple upper bound illustrates the crucial point: Whenever

Bob tries to alter the conclusiveness probability of certain

bits in order to better judge which bits of Kf are (un)known

to Alice, he will necessarily lose information on the bit

value Alice records in order to comply with the no-signaling

principle. This introduces errors in Kf and hence also in the

encrypted database; i.e., he will run the risk of giving wrong

answers.

This shows that our protocol is cheat sensitive in the spirit of

Refs. [10,13]. In our scenario, Bob sells his database bit by bit.

Systematic cheating and hence giving wrong answers will ruin

his reputation as a database provider. As we alreadymentioned
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above, one can now even make use of the fact that Alice

normally obtains additional database elements. If she buys

those elements from Bob in a regular, nonprivate way, she can

use them to check Bob’s honesty [25]. By doing so, Alice has a

powerful prompt privacy check at hand. One can thus turnwhat

seems to be a flaw into an advantage, in order tomake full use of

the privacy,which, aswe have seen, is guaranteed by the impos-

sibility of superluminal communication in quantum physics.

VII. OUTLOOK AND CONCLUSIONS

The above discussion has shown that practically very

interesting levels of privacy in database queries can be

achieved for both sides. The security of the presented protocol

relies on fundamental physical principles (the impossibility

to deterministically discriminate nonorthogonal states and

the impossibility of superluminal communication), rather

than on assumptions on quantum storage limitations [15],

mathematical complexity [3], or noncommunication between

servers in multiserver protocols [4].

We have already emphasized that the protocol is completely

loss resistant. We believe that error correction is possible as

well. This requires additional classical two-way communica-

tion and still needs to be elaborated in more detail. Moreover,

it is clear that the protocol can be implemented with weak

coherent pulses as well. The acceptable amount of loss then

depends on the mean photon number per pulse, in order

to safeguard database security. High mean photon numbers

largely facilitate unambiguous state discrimination for Alice,

if one assumes that she is in control of the transmission

line. Finally, it is possible to improve database security by

more sophisticated postprocessing, e.g., by taking a couple

of strings created in our probabilistic protocol (with P0 ¿ 1)

and allowing Alice to combine them, i.e., to freely choose

relative shifts to add them bitwise. Simulations show that

she will be left with knowing exactly one bit of the final

key with overwhelming probability. Both error correction

and the described way of achieving tighter database security

complicate the security analysis due to the necessary two-way

communication.

The proposed protocol can be realized with any existing

QKD system that is compatible with the SARG04 protocol.

Besides ensuring loss tolerance, this also makes it easy to scale

up to large databases. We hope that our proposal will stimulate

further work to clarify the open questions. Besides a more in-

depth study of its security, these include the optimal classical

procedures for oblivious key generation and error correction.

We think that there is the potential for private queries to become

a genuine application of quantum information technology in

the footsteps of QKD.
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