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We study analytically the performance of twin Fock states states in quantum metrology, showing that the

Heisenberg limit for phase estimation can be attained with photon number resolving detectors when there are

no losses. In a realistic scenario, involving not only losses in the interferometer, but also imperfections in state

preparation and detection, we show that these states deliver close to the maximal possible precision. Our analysis

identifies the tradeoffs among these types of imperfections in a demonstration of performance surpassing the

standard quantum limit. In particular, we find the losses in the interferometer to be the least damaging to

surpassing the standard quantum limit; the worst being detector imperfections.
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Measurements can be made more precise by using sen-

sor designs based on quantum mechanics rather that clas-

sical physical principles. The proximate cause of this

enhanced precision is the reduced measurement noise

enabled by quantum entanglement. The realization of

these advantages therefore hinges upon the preparation

of particular nonclassical states that encode the sensor

state parameter in such a manner as to allow its deter-

mination with exquisite precision [1]. Given a quantum

state, the ultimate limit on the attainable precision is pro-

vided by the quantum Cramer-Rao bound via the quan-

tum Fisher information [2]. Early theoretical efforts in

quantum metrology centered around designing quantum

states that saturate this bound.

A paradigm for quantum enhanced measurement is

optical interferometry, in which the phase difference be-

tween two field modes is to be estimated. A schematic

of such a sensor is shown in Fig. (1). When the num-

ber of input photons is fixed, and there are no losses,

the quantum states minimizing the QCRB are so-called

N00N states, consisting of a superposition ofN photons

in one mode and none in the other [3]. A number of epx-

erimental works have explored the capabilities of these

states. [4, 5] Unfortunately, N00N states are exponen-

tially more vulnerable to losses than classical states, and

quickly lose their capacity for enhanced sensing. This

motivated the search for states that are optimized to be

resilient to losses [6–8]. Rudimentary experimental stud-

ies have also been undertaken with such states [9].

The optimal states for lossy phase estimation [6–8]

are, not surprisingly, dependent on the exact value of

the loss parameter. Consequently, no universal scheme

for their preparation is possible. Additionally, this maxi-

mum precision assumes the ability to perform on the final

quantum state certain optimal measurements, given by

the eigenvectors of the so-called symmetric logarithmic

derivative (SLD), which captures the differential changes

in the state along a trajectory generated by the parameter.

Such a measurement always exists [2], but is in general

prohibitively complex, because not only does it involve

projections onto entangled states, but also depends on the

loss in the interferometer.

In this Letter, we concentrate on a different class

of states for optical interferometry, proposed by Hol-

land and Burnett [10]. The scheme, shown in Fig. (1),

starts with N photons in each of two modes given by

|Ψ〉 = |N〉|N〉, which can be generated in a heralded

manner with nonlinear processes like parametric down-

conversion etc. and photon-number-resolving detectors

(PNRDs) [11], incident onto a 50:50 beam splitter. The

resulting state, which we denote HB(N ), has a photon

number variance quadratic in N , thereby capable of at-

taining the Heisenberg limit for phase estimation [2]. In

contrast, N00N states require not only the generation of

N photons, but also a manipulation of these photons by

means of a complex linear-optical network [13]. The out-

put of such a network is probabilistic since it relies on a

particular detection (or nondetection) event of ancillary

photons. This success probability usually decreases ex-

ponentially with increasing photon numbers. Schemes

that can, in principle, generate N00N state with high

success probability require either very high nonlinear-

ity [14] or actively controlled cavities [15], which chal-

lenge the current technology. This decreasing probabil-

ity of production necessitates post-selection on the out-

comes to exhibit any quantum enhancements.

Recent work has demonstrated a scalable route to pre-

pare HB(N ) states, relying on production of Fock states

without complex linear-optical networks [11]. They

are more feasible in terms of laboratory resources than

N00N and optimal states, yet their performance in not

drastically diminished in the presence of losses [12].
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First, we show that for these states, the quantum Fisher

information for phase estimation can be achieved with

PNRDs. The Fisher information also allows for an ob-

jective, system-independent, resource based certificate

for our metrology scheme. Furthermore, we analytically

study the performance of these states resulting from an

imperfect preparation procedure and imperfect detectors.

Any practical implementation of quantum metrology will

inevitably have such imperfections. Finally, we identify

the range of imperfections and losses under which we

can still demonstrate an objective advantage over classi-

cal phase estimation. This allows us to pinpoint exactly

the tradeoffs involved and the bottlenecks lying in the

path of demonstrating quantum enhanced metrology un-

der realistic conditions.

We begin by calculating the quantum Fisher informa-

tion for phase estimation attainable with HB(N ) states in

an ideal interferometer (Fig. (1). After BS1,
√
2a† →

c† + d†,
√
2b† → c† − d†, and the phase shifter c† →

eiφc†,

|Ψ〉 =
N
∑

n=0

An|2n, 2N−2n〉, An =

√

2n!(2N − 2n)!

2Nn!(N − n)!
e2inφ,

(1)

where φ is the parameter to be estimated. The quantum

Fisher information quantifies the changes in the initial

state as a result of its evolution characterized by a pa-

rameter, in this case the phase. This gives d|Ψ〉/dφ ≡
|Ψφ〉 =

∑N
n=0 2nAn|2n, 2N − 2n〉, as the derivative of

the state with respect to φ and appears in the expression

for the SLD, leading to a quantum Fisher information

of [2]

J = 4(〈Ψφ|Ψφ〉 − |〈Ψ|Ψφ〉|2). (2)

Since 〈Ψφ|Ψφ〉 = N(3N + 1)/2, and 〈Ψ|Ψφ〉 = iN ,

J = 2N(N + 1). (3)

This quantity, through the quantum Cramer-Rao bound,

∆φ ≥ 1/
√
J , provides the absolute attainable preci-

sion in phase estimation [2] using HB(N ) states. The

quadratic behaviour of the quantum Fisher information

with the number of particles involved shows that we at-

tain the Heisenberg limit. The original suggestion [10]

of measuring the number difference in the two modes

after BS2 (Fig. (1)) contains no information about the

phase to be estimated [16] but a parity measurement on

one of the resulting modes provides a bound commen-

surate with Eq. (3). Parity measurements are possible

on the field mode [18], but require additional resources

including a local oscillator reference beam that is well

PNRD

PNRD

BS1 BS2

FIG. 1. A schematic interferometer involving HB(N ) states.

BS1 and BS2 are 50/50 beamsplitters, and φ denotes the phase

shift of mode c. η is the loss in the interferometer arm, while

ηp and ηd are the preparation and detection imperfections. η =

ηp = ηd = 1 denotes a perfect setup.

matched to the probe state. Our endeavor here is to in-

troduce a more reasonable set of measurements that at-

tains this limit, and is more amenable to analysis in the

presence of losses.

We show that having access to a beam splitter and PN-

RDs suffices to attain the quantum Cramer-Rao bound.

Mixing modes c and d on BS2 yields
√
2c† → p† +

q†,
√
2d† → p† − q†. Number resolving measurements

|n〉p|2N − n〉q on the two modes yields detection prob-

abilities pn = n!
(2N−n)!

[

PN−n
N (cosφ)

]2
, where 0 ≤

n ≤ N , and P l
N (·) are the associated Legendre poly-

nomials. The expression for N ≤ n ≤ 2N , is ob-

tained by substituting n → 2N − n. In fact, a simple

but interesting case is when we only make the measure-

ment |N〉|N〉. The Fisher information for this situation

is given by FN = 1
pN (1−pN )

(

∂pN

∂φ

)2

, scaling exactly

as the Heisenberg limit in Eq. (3). Thus, the Heisenberg

limit for phase estimation with lossless interferometers

can be attained with just one pair of PNRDs. This liberty

is lost when the interferometer is lossy, and/or the input

states and detectors imperfect. Then the required number

of measurements rises quadratically with N , and projec-

tion only onto |N〉|N〉 becomes suboptimal.

Lossy interferometry – Analysis of the performance of

HB(N ) states in interferometry in the presence of losses

starts with Eq. (1), the loss in a single arm of the inter-

ferometer being modeled as c† → √
ηf † +

√
1− ηe†, e

being an unaccessible environment mode. Loss is typi-

cally allied with the phase accumulation due to a sam-

ple being measured, thus motivating treatment of loss

in only one arm. Loss in both arms can be treated

similarly, but requires numerical analysis and is beyond

the scope of the current work. The subsequent state

is |Ψ〉 = 1
2N

∑N
n=0

∑2n
m=0 CnBn,m|2n − m〉f |2N −

2n〉d|m〉e, where Cn = 2n!
n!

√
(2N−2n)!

(N−n)! e2inφ, Bn,m =

ηn−m/2(1−η)m/2√
(2n−m)! m!

, and m is the number of photons lost to

the environment. Since this mode is to be traced over, we
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can rewrite the state as

|Ψ〉 =
2N
∑

m=0

|ψm〉|m〉e, (4)

with |ψm〉 = 1
2N

∑N−dm
2
e

k=0 Ck+dm
2
eBk+dm

2
e,m|2k〉d|2N−

2k〉f , for m even. For odd m, replace 2k → 2k + 1

in the ket. Note that here and henceforth, we omit the

explicit labeling of the modes for the sake of brevity.

(See Fig. (1)) Evaluating the quantum Fisher information

for phase estimation with the lossy states in Eq. (4)

is simplified by their block diagonal form. Setting

|ψ̃m〉 = |ψm〉/
√
Nm, with Nm = 〈ψm|ψm〉, we get

J =
∑2N

m=0 NmJ(|ψ̃m〉). Here J is given by Eq. (2),

and leads to

J(|ψ̃m〉) = 16

22NNm

N−dm
2
e

∑

k=0

(

k +
⌈m

2

⌉)2

C2
k+dm

2
e ×

B2
k+dm

2
e,m

(

1−
C2

k+dm
2
eB

2
k+dm

2
e,m

Nm

)

.(5)

The summation can be performed in closed form, but the

resulting expression in not very compact. We thus re-

strict our attention to some particularly interesting cases.

To start with, for N = 1,

J(N=1) = 8
η2

1 + η2
, (6)

which is the same as that obtained for two-photonN00N

states in [7], as expected, since they are identical to

HB(1) states. For higher photon numbers N00N and

HB(N ) states differ, and HB(N ) states are more resilient

to losses than the corresponding N00N states with the

same number of photons. This is shown in Fig. (2) for

N = 10, where the quantum Fisher information for

HB(10) exceeds the standard quantum limit for η > 0.45

and adheres closely to the optimal state.

Imperfect preparation – We now analyse the perfor-

mance of HB(N ) states in a more realistic situation

where their preparation and detection is not ideal. This is

more than just with an eye towards experimental demon-

stration, though that provides part of the motivation. A

more fundamental issue which is at stake is the gap be-

tween the principle and practice of quantum metrology.

To begin we model a scenario where the input state

might not necessarily be a perfect number correlated

state |N〉|N〉, as in Fig. (1). Independent of the physi-

cal nature of the probes, having exactly an equal number

of bosons in two modes is difficult to realize experimen-

tally. In an optical implementation, Fock states can be

prepared by heralding [11, 17], with less than unit ef-

ficiency. In general, we can model this situation with
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FIG. 2. Quantum Fisher information for phase estimation as

a function of the transmissivity η for 20 input photons. Blue

(Dotted): Standard quantum limit, Red (Dashed): HB(10)

states, Black (Solid): N00N states, Green (Dot-Dashed): Op-

timal states [7]. Inset: Quantum Fisher information for phase

estimation as a function of the photon number N for η = 0.9

(top) ,and η = 0.6 (bottom).

ideal Fock state sources followed by a beam splitter of

transmissivity ηp in each mode before it is incident on

the 50:50 beam splitter. Such a beam splitter leads to

|N〉 → ρ ≡ ∑N
n=0

(

N

n

)

ηnp (1 − ηp)
N−n|n〉〈n|. The

state after the 50:50 beam splitter isU(ρa⊗ρb)U †, where

U = eiπ(a
†b+ab†)/4. The phase accumulation opera-

tor is given by P = eiφa
†a. Number resolving mea-

surements on the two modes at the interferometer out-

put give pmn = 〈m,n|U(P ⊗ Ib)U(ρa ⊗ ρb)U
†(P ⊗

Ib)
†U †|m,n〉. Note that the number of photons in the in-

terferometer could now be less than 2N. Also, pmn = 0

if m + n > 2N . The resulting classical Fisher in-

formation is, in general, a function of the phase to be

estimated φ. The maximum is attained for φ = 0,

and given by Fmax
ηp

= 2N(N + 1)ηN+1
p . Interestingly

enough, the minimum is attained for φ = π/2, giving

Fmin
ηp

= 2N(N + 1)η2Np .

Imperfections all around – Finally, we address the sce-

nario where the detectors are imperfect as well. This sit-

uation is modeled, once again, by placing beam splitters

in front of our number resolving detectors with trans-

missivity ηd. Though obtainable analytically in terms of

hyper-geometric functions, the cumbersome form of the

expressions for the Fisher information in the general case

discourages us from presenting them here. A simple case

is Fηp,ηd
(φ = 0) = 2N(N + 1)(ηpηd)

N+1. Indeed, the

quantum and classical Fisher information are symmetric

under exchange of ηp and ηd.

We deal with two cases, N = 1 and N = 2. These
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will demonstrate some subtle points involved in the es-

timation of the phase in a lossy interferometer involving

imperfect sources and detectors, and allow us to identify

regimes within which we can unambiguously demon-

strate quantum advantage in metrology, once again in

a lossy scenario with nonideal sources and detectors.

We begin with HB(1), which has classical Fisher infor-

mation F(N=1) = (8η2pη
2
dη

2(1 + η2) sin2(2φ))/(1 +

η4 − 2η2 cos(4φ)). The classical Fisher information

F perf
(N=1) ≡ F(N=1)(ηp = ηd = 1), where the superscript

perf denotes only perfect state preparation and detection,

is bounded from above by Eq. (6), the quantum Fisher

information, with saturation for φ = π/4. This means

that a simple adaptive technique can saturate the quan-

tum Fisher information, even in a lossy interferometer.

To judge the performance of HB(k) state in providing

genuine quantum advantage in phase estimation, we need

to surpass the corresponding standard quantum limit,

given by FSQL = 2kηηd. This is the standard quantum

limit for a classical experiment performed on an appa-

ratus identical to the quantum one, with the assumption

that the classical (coherent) state can be prepared with

certainty. The figure of merit for a quantum advantage

then reduces to

ðk =
F(N=k)

FSQL
≥ 1, (7)

which, for HB(1) leads to

ð1 =
4η2pηdη

1 + η2
> 1. (8)

An expression like this is very beneficial, as it demon-

strates the tradeoffs involved in state preparation, in-

terferometer construction, and detection imperfection,

which allows an experimentalists to direct their efforts

appropriately. For instance, if ηd < 0.5, there is no way

to beat the standard quantum limit with HB(1) states,

thereby rendering moot any discussion about the nature

of the source and the interferometer. The asymmetry be-

tween preparation and detection imperfections in the fi-

nal limitations is due to the same in the standard quantum

limit.

J(N=2) ≥ F perf
(N=2), with strict inequality for some η.

It means that for no phase can the classical Fisher in-

formation equal the quantum Fisher information for cer-

tain values of the the loss parameter, unlike the HB(1)

case. The interesting question of the quantum advantage

is again addressed by ð2 = F(N=2)/4ηηd, where the

right hand side is maximized over φ. To get an idea of the

requirements for an experiment, we find numerically that

ð2(0.687, 1, 1) ≈ ð2(1, 0.135, 1) ≈ ð2(1, 1, 0.547) ≈

0.0

0.5

1.0
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Η
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1.0
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FIG. 3. Feasibility region for beating the standard quantum

limit using HB(2) states. The bottleneck in beating the stan-

dard quantum limit is the detector imperfection, followed by

the preparation imperfection and lastly, losses in the interfer-

ometer.

1. In general, higher photon states are more resilient to

losses in the interferometer but they also put stricter de-

mands on ηp and ηd. Thus, with increasing photon num-

bers, the feasibility region would shrink along the two

axes denoting the imperfections, and extend along that

denoting the loss. Its also easy to see that this particular

pattern is universal. The detector and preparation imper-

fections are identical as far as F(N=k) is concerned, so

we can think in terms of only ηp. The attainable preci-

sion depends strongly on the input state, and ηp affects

precisely that. Thus, it is expected that ηp, and conse-

quently ηd has more stringent requirements placed on it

that η.

The complete region where ð2(ηp, η, ηd) ≥ 1 is de-

picted in Fig. (3). To experimentally realize an improve-

ment over its classical counterpart, quantum phase esti-

mation with HB states requires high-quality state prepa-

ration and detection in addition to low-loss interferom-

eters. In a realistic experiment with 95% interferom-

eter transmission, and 60% detection efficiency (at the

high end for commercially available Silicon avalanche

photodiodes), the HB(1) state preparation must be bet-

ter than ηp ≥ 0.91, which is well beyond the current

state of the art [11]. Utilizing the highest-efficiency PN-

RDs available, with detection efficiencies approaching

0.98 [19], relaxes the preparation of the HB(1) state to

ηp ≥ 0.71, which is still far from current demonstrations

of ηp ≈ 0.245 [11].

Conclusions – We have identified the tradeoffs in-

volved in a practical demonstration of quantum enhanced

metrology. This sets benchmarks for the preparation, de-

tection, and interferometer quality. A scalable route for

preparation of the HB states has been proposed, offering

advantages over the N00N and optimal states [11]. The

optimal states are marginally better than the HB states
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in their attainable precision, in spite of allowing parame-

ter dependent, nonlocal measurements at the end. It can

therefore be concluded that if one considers the whole

gamut of issues involved in a metrology setup, including

state preparation and the final measurement, and uses the

objective tool of classical and quantum Fisher informa-

tion, HB states and PNRDs provide a scalable and prac-

tically realizable setup for quantum enhanced metrology.
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