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Large violation of Bell inequalities using both particle and wave measurements
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When separated measurements on entangled quantum systems are performed, the theory pre-
dicts correlations that cannot be explained by any classical mechanism: communication is excluded
because the signal should travel faster than light; pre-established agreement is excluded because
Bell inequalities are violated. All optical demonstrations of such violations have involved discrete
degrees of freedom and are plagued by the detection-efficiency loophole. A promising alternative is
to use continuous variables combined with highly efficient homodyne measurements. However, all
the schemes proposed so far use states or measurements that are extremely difficult to achieve, or
produce very weak violations. In this paper we show that large violations for feasible states can be
achieved if both photon counting and homodyne detections are used. Our scheme may lead to the
first violation of Bell inequalities using continuous-variable measurements and pave the way for a
loophole-free Bell test.

The violation of Bell inequalities has played a cru-
cial role in the foundations of quantum physics, since it
provides a testable criterion to rule out classical mech-
anisms as the origin of quantum correlations [1]. More-
over, it is also an important test for future applications,
since it provides device-independent assessment of the
performance of some quantum tasks like key distribu-
tion [2] or randomness generation [3].

In experiments, violations have been demonstrated
so far only for measurement on discrete degrees of free-
dom [4]. The countless optical realizations have used
several encodings, the most frequent ones being po-
larization [5, 6] or time-bins [7]. Light can easily be
sent at large distances, so the locality loophole can be
closed; but the detection loophole [8] remains open due
to the joint effect of losses (both in the coupling be-
tween the source and the optical link, and in the link
itself) and of limited efficiency of the photon counters.
When energy levels of ions and atoms are used, fluo-
rescence measurements are very efficient but slow: the
detection loophole can be closed [3, 9], but it is prac-
tically impossible to think of separating these systems
far enough to close the locality loophole. Entangle-
ment swapping between light and atoms was proposed
several years ago in order to combine the best of both
worlds [10], but its full implementation has yet to be
reported [11].

Another path towards a loophole-free Bell test con-
sists in using only light, but measuring rather contin-
uous degrees of freedom, exploiting the high efficiency
of homodyne measurements. However, this path has
proved harder than expected: no experimental viola-

tion of Bell inequalities (let alone loophole-free ones)
involving homodyne measurements has been reported
to date. One of the main problems is that for the
simplest states that can be produced (having positive,
usually Gaussian, Wigner functions), homodyne mea-
surements produce statistics that do not violate any
Bell inequality. Some theoretical schemes have shown
however that violations are indeed possible, however
they require either measurements [12, 13] or states [14–
17] that are practically unfeasible. Only in 2004 a
proposal was put forth [18, 19], in which homodyne
measurements on a feasible state, followed by suitable
data processing, lead to a violation S ≈ 2.046 of the
Clauser-Horne-Shimony-Holt (CHSH) inequality S ≤ 2
[20]. Such a small violation, however, is hardly observ-
able in the presence of imperfections, and has indeed
not yet been achieved experimentally.

Recently, Ji and coworkers gave a new twist to the
problem: they conceived of a test in which both pho-

ton counting and homodyne measurements are per-
formed on both sides [21]. The idea proved powerful,
as their inequalities are violated by the simple state
1√
2
(|1〉|0〉 + |0〉|1〉), where |0〉 and |1〉 refer to states

of well defined photon-number. This state can be ob-
tained, for instance, by sending one photon through a
beam-splitter. However, these inequalities are not Bell
inequalities in the most general sense, since they rule
out only a particular class of classical models and thus
cannot be used for device-independent assessment [22].

Here, we study schemes in which both Alice and Bob
alternate between counting and homodyne measure-
ments, then locally post-process their data to extract
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bits and check the CHSH inequality. We show that a
significant violation S ≈ 2.25 can be achieved by the
state

|Ψ2〉 =
|2〉A|0〉B + |0〉A|2〉B√

2
, (1)

where again |0〉 and |2〉 refer again to states of well
defined photon-number. This state can be created
by having two heralded single photons from down-
conversion sources bunch on a beam-splitter, in a
Hong-Ou-Mandel setup [23].

The setup under study is sketched in Fig. 1. Alice
and Bob can perform two measurements each: one is
the photon number N ; the other is the X quadrature.
The measurement results are then processed to obtain
bits a, b ∈ {−1,+1}, where a and b label Alice and
Bob’s outcomes respectively. We describe these bin-
ning procedures for the case of Alice, those of Bob are
identical. When measuring N , Alice sets a = +1 if the
result is N > 0 and a = −1 if the result is N = 0:
this binning is simply the direct outcome of a perfect
threshold detector. As for the X measurement, Alice
divides the real axis in two disjoint regions and sets
a = +1 if x ∈ A+ and a = −1 if x ∈ A− = R \ A+.
These sets can still be quite complicated in general;
here it will be sufficient to consider very simple sets,
namely A+ = B+ = [−z, z], where z remains to be
chosen.

Using these measurements, we focus on the CHSH
inequality, which reads

S = EXX + EXN + ENX − ENN ≤ 2, (2)

where Ejk = P (a = b|jk) − P (a 6= b|jk) is the ex-
pectation value of the measurements j and k after
the binning. Now we are going to show that this in-
equality can be violated by measuring the state (1).
The statistics of the four pairs of measurements are
easy to write down. In fact, when both Alice and
Bob measure N , their bits are always different, hence
ENN = −1. When Alice measures N and Bob mea-
sures X : if a = +1, Bob’s state is |0〉, whence his
measurement of X is described by the density function
|〈x|0〉|2 = |φ0(x)|2 where φ0(x) = 1

π1/4 e
−x2/2; simi-

larly, if a = −1, Bob’s statistics are described by the
density |〈x|2〉|2 = |φ2(x)|2 where φ2(x) =

1
(4π)1/4

(2x2−
1)e−x2/2. The case when Alice measures X and Bob
measures N is symmetric. Finally, when both Alice
and Bob measure X , their statistics are described by
|〈xA, xB|Ψ2〉|2 = |Ψ2(xA, xB)|2 where Ψ2(xA, xB) is
obtained by replacing the state |k〉 with φk(x) in (1).
All in all, the probabilities are given by the following

measurementsourcemeasurement

A.

Laser

Beam Splitter Crystal DetectorMirror

B.

D1 D2

FIG. 1: Sketch of the setup. A. A source sends a pho-
tonic entangled state to two space-like separated locations.
In these locations each subsystem is subjected to one of
two measurements: number of photons (photon counting)
or quadrature (homodyning) measurements. In this way
both “wave” and “particle” characteristics of the systems
are tested. B. The state (|0〉|2〉 + |0〉|2〉)/

√
2 violates the

CHSH Bell inequality in the previous scenario and can be
created as follows: two pairs of photons are created in differ-
ent non-linear crystals by parametric down conversion. The
detection of one photon of each pair at detectors D1 and
D2 heralds the presence of the other two photons, which are
sent to a beam splitter. The Hong-Ou-Mandel interference
in the beam splitter makes the photons bunch, resulting in
the desired two-photon state.

expressions:

P (a, b|NN) = (1− ab)/4 ;
P (a, b|XN) = 1

2

∫

Aa dx|φm(b)(x)|2 ;
P (a, b|NX) = 1

2

∫

Bb dx|φm(a)(x)|2 ;
P (a, b|XX) =

∫

Aa dx
∫

Bb dy|Ψ2(x, y)|2,
(3)

where m(+1) = 0 and m(−1) = 2. Substituting these
statistics into (2), one obtains a value of S for any
choice of z. The maximal violation of the CHSH in-
equality is S ≈ 2.25 for z ≈ 0.83 (see Fig. 2).

So far, we have proved that an ideal realization of
the state (1) would lead to a large violation of CHSH
for ideal detectors. Let us now introduce two devia-
tions from the ideal case and study the robustness of
the result (for simplicity, all the parameters below are
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FIG. 2: Value of the CHSH expression S as a func-
tion of the parameter z for ideal detectors. The full
line is for the state |Ψ2〉 given in (1). The dashed lines are
for ρ given in (4), describing a lossy line with transmittivity
t = 0.95, 0.9 and 0.85 respectively. Inset: the density func-
tions |φ0(x)|2 (blue) and |φ2(x)|2 (purple), with the choice
z ≈ 0.83 (dotted vertical lines) for the maximal violation
S ≈ 2.25; notice that this value of z allows one to discrim-
inate the density functions with high probability. This is
important to attain a high violation of CHSH since it al-
lows to maximize the correlations between the X and N
measurements.

supposed to be the same for Alice and Bob).

First, we introduce the transmission t of the optical
paths between the sources and the detectors. This pa-
rameter includes the coupling from the source into the
transmitted mode and the subsequent possible losses in
the channel. The ideal state |Ψ2〉 reaches the detectors
with probability t2. With probability 2t(1− t), one of
the two photons is lost. In this case, the state at the
detector becomes ρ1 = 1

2 (|10〉〈10|+ |01〉〈01|), because
the photon lost in the environment would identify the
path. Finally, with probability (1 − t)2, both photons
are lost and the state at the detector is just |00〉. The
final state measured is therefore

ρ = t2|Ψ2〉〈Ψ2| + 2t(1− t) ρ1 + (1− t)2|00〉〈00|. (4)

Second, while keeping the measurement X fully effi-
cient, we attribute a quantum efficiency η < 1 to the
threshold detector used to perform the measurement
N . We stress that no post-selection will be performed
on the data: each event in which the threshold detector
does not fire will be counted as a = −1, respectively
b = −1. The final result is shown in Fig. 3 (see also Ap-
pendix). Our scheme is more sensitive to losses on the
line than to losses on the threshold detector: this was
expected, since the former affect both measurements
while the latter affect only the N measurements. For
a transmission of t = 90%, a detection efficiency of
η ≈ 86% can be tolerated. Though these are demand-

ing features, they are within reach of current technol-
ogy [24, 25]. These numbers are also comparable to
the most favorable feasible schemes known to date for
discrete variables, where the figure of merit is ηt [26].
In contrast, here the losses correspond to the imperfec-
tions of the state (since they act on the same degree of
freedom as the measurements) while for discrete vari-
ables the imperfections of the state are an additional
problem.

0.8 0.85 0.9 0.95 1
0.7

0.75

0.8

0.85

0.9

0.95

1

t
η

Violation

No violation

FIG. 3: Values of the parameters t (transmission of
the optical links) and η (quantum efficiency of the
threshold detectors) for violation of the CHSH in-
equality. The curve supposes that, for each t, the optimal
choice of z for the binning is made. If there are no losses in
the line, the detector efficiency can be as low as η ≈ 71.1%;
conversely, for perfectly efficient detectors, one can tolerate
a transmission t ≈ 84%.

The combination of counting and homodyne mea-
surements can be applied to many more scenarios.
A natural question is whether other states, among
those that are feasible in laboratories today, violate
the CHSH inequality. It turns out that the two-mode
squeezed state

|ψ〉 =
√

1− λ2
∑

n

λn|n〉|n〉 (5)

violates a version of CHSH for some values of λ, pro-
vided (say) Bob’s homodyne measurements is in the
complementary quadrature P . Although the violation
found is small (S ≈ 2.05 for λ ≈ 0.83 and z ≈ 0.86),
it is remakable, since this state is Gaussian and eas-
ily produceable in the lab. Note also that the amount
of violation is similar to the best value previously re-
ported with a feasible state [18, 19]. The latter, how-
ever, used a more complicated state, obtained from
(5) by photon subtraction in each arm. We could not
find any violation for the states (here unnormalized)
|1〉|0〉+ |0〉|1〉 [27] and |α〉| − α〉+ | − α〉|α〉 (|α〉 being
a coherent state of amplitude α) [28].

In conclusion, we have presented a feasible scheme
to observe a large violation of Bell inequalities with
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continuous-variable measurements. The key element
has been to combine both photon counting and ho-
modyne measurements in the same Bell test. The ex-
perimental implementation of our scheme seems feasi-
ble with present day technology, though probably chal-
lenging: for instance, homodyne measurements require
a sufficiently long coherence time of the signal; so, if
the state |Ψ2〉 is implemented using down-conversion
sources as we propose, the bandwidth of the photons
must be narrow enough. Nevertheless, homodyne mea-
surements on one and two-photon states coming from
down-conversion have been reported [29]. Finally, our
work opens new possibilities for a loophole-free Bell
test, and we hope that it will stimulate further research
in this direction.

Appendix.– In order to study the effect of the lim-
ited efficiency η, we rewrite the CHSH inequality in
the Clauser-Horne form [30], which is equivalent for
no-signaling distributions:

− p(aX = +)− p(bX = +) + p(+ + |XX) (6)

+ p(+ + |NX) + p(+ + |XN)− p(+ + |NN) ≤ 0.

Here, p describes the observed statistics. Now, p(+ +
|NN) = 0 because one of the modes is always empty
(we are neglecting spurious counts here). The first
line can be re-written as p(− − |XX) − 1 and there
is no effect of η, so one just has to compute this quan-
tity for ρ along the same lines as we did for |Ψ2〉
above. Finally, consider p(+ + |NX), the case for
p(+ + |XN) being symmetric. If the state is |Ψ2〉,
one has p(+ + |NX,Ψ2) = [1 − (1 − η)2]P (+ + |NX)
where P (+ + |NX) is given in (3), because there are
two photons reaching the detector. If the state is
ρ1, one has p(+ + |NX, ρ1) = η P (+ + |NX): in-
deed, Alice finds aN = +1 with probability η

2 and
prepares the state φ0(x) on Bob’s side. When the
state is |00〉, Alice never finds aN = +1. All in all,
p(+ + |NX) = tη(2 − tη)P (+ + |NX). Thus the con-
dition for (6) to be violated becomes

tη ≥ 1−
√

1− 1− p(−− |XX)

P (+ + |NX) + P (+ + |XN)
. (7)

Note that t enters in the r.h.s. of this equation through
p(− − |XX) evaluated for ρ. So, contrary to the
schemes using discrete variables, the effects of t and
η are not identical. Ultimately, one has to resort to
numerical evaluation to find the best value of z for
each case.
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