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Abstract. Relativistic causality has dramatic consequences on the measur-

ability of nonlocal variables and poses the fundamental question of whether

it is physically meaningful to speak about the value of nonlocal variables at

a particular time. Recent work has shown that by weakening the role of the

measurement in preparing eigenstates of the variable, it is in fact possible to

measure all nonlocal observables instantaneously by exploiting entanglement.

However, for these measurement schemes to succeed with certainty, an infinite

amount of entanglement must be distributed initially and all this entanglement

is necessarily consumed. In this work, we sharpen the characterization of

instantaneous nonlocal measurements by explicitly devising schemes in which

only a finite amount of the initially distributed entanglement is ever utilized.

This enables us to determine an upper bound to the average consumption for the

most general cases of nonlocal measurements. This includes the tasks of state

verification, where the measurement verifies if the system is in a given state,

and verification measurements of a general set of eigenstates of an observable.

Despite its finiteness, the growth of entanglement consumption is found to

display an extremely unfavourable exponential of an exponential scaling with

either the number of qubits needed to contain the Schmidt rank of the target state

or the total number of qubits in the system for an operator measurement. This

scaling is seen to be a consequence of the combination of the generic exponential

4 Author to whom any correspondence should be addressed.
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scaling of unitary decompositions combined with the highly recursive structure

of our scheme required to overcome the no-signalling constraint of relativistic

causality.
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1. Introduction

The formal compatibility of quantum mechanics with special relativity is highly nontrivial [1]

and is in many ways quite miraculous [2]. Perhaps the most well-known difficulty in combining

these formalisms arises from the so-called ‘collapse’ of a quantum state associated with the

measurement process, and in particular the instantaneity of this change. This problem is

highlighted in its most simple form by considering two observers, Alice and Bob, who are

spacelike separated. Conventional wisdom holds that any self-adjoint operator that can be

defined for Alice and Bob’s joint system is measurable in principle [3]. But in fact, most

such operators represent nonlocal variables, meaning that they cannot be written in the form

A ⊗ B, where A and B are self-adjoint operators acting on Alice and Bob’s local Hilbert spaces,

respectively. Earlier on, it was recognized that if such nonlocal variables were instantaneously

measurable, in the standard sense in some Lorentz frame, then violations of relativistic causality

arise (see figure 1 for a description of this effect for ideal measurements on two separated spin-

1/2 particles). In 1931, Landau and Peierls [4] claimed that this observation implied, quite

generally, the impossibility of measuring any nonlocal variable at a well-defined time, and even

New Journal of Physics 12 (2010) 083034 (http://www.njp.org/)
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Figure 1. (a) In a scenario envisaged by Landau and Peierls a particle is initially

localized at a point A and is subject to an ideal momentum measurement at some

later time t = t0. The effect of this measurement is to instantaneously collapse

the particle’s wavefunction into a momentum eigenstate which subsequently

redistributes the particle’s probability amplitude throughout all space. There

is then a nonzero probability of finding the particle at a location B which is

spacelike separated from A. (b) A simpler formulation of this causality violation

can be framed using spin- 1

2
particles (see section 2). Here we consider a device

that can perform an instantaneous ideal measurement of the magnitude of the

total spin squared J 2 = ∑

k=x,y,z(σ
A
k + σB

k )
2 of two spacelike separated spins.

Depending on the local outcomes a and b via some function f , the state after the

measurement will be projected into one with a well-defined value J 2 = f (a, b).

(c) If such a measuring device exists it would violate relativistic causality.

Suppose Alice and Bob prepare a state |↑A〉|↑B〉 in the distant past and arrange

to measure J 2 at time t0. If just prior to the J 2 measurement at time t0 − ε Alice

flips her spin, then a measurement of σB
z by Bob just after the J 2 measurement

at time t0 + ε will yield ↑ and ↓ with equal probability. Since the time interval

2ε can be made arbitrarily small, Alice can use the J 2 measurement to send

superluminal signals.

went so far as to postulate a new uncertainty principle to this effect. Thus, a common consensus

arose that it only made sense to speak of local variables as observables in relativistic quantum

mechanics.

It was only in 1980 that this conjecture was finally refuted by Aharonov and Albert [5, 6]

who explicitly constructed a scheme for measuring certain nonlocal variables (e.g. the Bell

operator; see section 2) instantaneously without contradicting causality. In contrast to previous

studies, their measurement scheme explicitly introduced entangled probes whose quantum

correlations enable nonlocal properties of the system to become correlated to local properties

of the measuring device. This means that by combining the correlated local outcomes of the

two observers, at some point in the future when their light cones have intersected, the final

nonlocal measurement result can be revealed. Their discovery had serious implications for the

notion of states and observables in relativistic quantum mechanics. It immediately disproved

the previously held covariant state reduction postulate [7] whose validity was dependent on

only local variables being measurable. It also showed that no covariant succession of states at a

given time can be associated with the system, since observers in different Lorentz frames will

have conflicting accounts of the reduction process, which cannot be reconciled within any single

covariant state history. This far-reaching conclusion culminated in their proposing that to take
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account of changes to a state vector, induced by local or nonlocal measurement processes, it

is required that the wavefunction ceases being a function of spacetime and instead becomes a

functional on the set of spacelike hypersurfaces [8, 9].

Further work [10] then detailed explicit methods for measuring nonlocal variables such

as A + B and modular sums like (A + B)mod a, where a is a desired eigenvalue. It was

later proven in generality by Popescu and Vaidman [11] that any conceivable measurement

requires the erasure of local information (within the relevant degrees of freedom) in order

to be compatible with causality. For a standard nondemolition measurement, to satisfy this

additional requirement there is a dramatic restriction on what is measurable. For the case

of two spin- 1

2
particles, causality limits the measurability of operators to those with either

trivial direct product eigenstates or maximally entangled Bell states. The measurability of the

latter is permitted, because the reduced density matrix of either spin is always proportional

to the unit matrix. A surprising consequence of this result is that even nonlocal variables

with product eigenstates (see equation (8) in section 6.1) are not measurable [12], showing

further that standard quantum measurements can be nonseparable in a way not entirely captured

by the notion of entanglement5. The information erasure theorem [11] indicates that causal

measurement schemes for almost all nonlocal variables cannot be a standard von Neumann

measurement. Such measurements leave the system undisturbed if it was in an eigenstate of

the observable before the measurement and play a dual role of both observing a quantity

and preparing the system in an eigenstate of the corresponding observable [14, 15]. It is now

recognized that this framework, which was the basis of the Landau and Peierls conjecture, is

too restrictive to decide whether a nonlocal variable attains the status of a physical observable.

Instead an operator’s measurability should be determined in a broader paradigm of verification

measurements [16]–[18]. A verification measurement can confirm with certainty whether the

system is in an eigenstate of an observable at a given time, but does not necessarily leave the

system in an eigenstate after it is completed. These measurements are therefore destructive and

nonrepeatable.

Recent work in the context of gauge theories has further highlighted the fundamental

implications of how measurability is defined [19]. In particular for gauge theories, which are

used to describe all elementary particles, it is common to characterize gauge field configurations

by Wilson loop operators. These manifestly nonlocal quantities are taken to be basic observables

in gauge theory. Yet it was shown that the nondemolition measurement of spacelike Wilson

loops in a relativistic non-Abelian gauge theory violates causality and that instead only

verification measurements are possible [19]. From a different perspective, it has also been

shown recently that the use of additional ancillary resources can dramatically alter the properties

of nonlocal measurements, for example by revealing Bell-inequality violations in delocalized

single-particle mode entanglement that would otherwise be prohibited by super-selection

rules [20]–[22]. Indeed, by moving both to verification measurements and exploiting ancilla

it has been found that there are no causal restrictions on what variables can be measured.

Firstly, using methods devised for remote probabilistic rotations [23], it was shown that all

observables of two spin-1

2
particles can be measured instantaneously [16]. Secondly, a method

based on teleportation [24] was devised which demonstrates the instantaneous measurability

of all observables for multipartite systems of arbitrary dimension [17, 25]. These studies have

5 This situation is in contrast to the usual nonlocality without entanglement scenario where the constraint is on

quantum resources and unlimited classical communication is assumed [13].
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therefore answered affirmatively that the instantaneous measurement of all nonlocal variables6

can be achieved without contradicting quantum mechanics and causality. Thus, in principle, all

nonlocal variables are valid physical observables and so within this framework the conventional

wisdom is reestablished.

A critical ingredient in these measurement schemes is entanglement. However, since the

main aim of those schemes [16, 17] was disproving causal restrictions, they were not concerned

with limiting the amount of entanglement consumed. As a result, to guarantee success in the

most general cases, these schemes require an unlimited supply of entanglement to be initially

distributed between Alice and Bob, and all of this entanglement is necessarily consumed.

Here we go beyond this by systematically addressing the latter issue, namely the entanglement

consumption. Firstly, we explicitly devise a scheme which significantly optimizes that devised

by Vaidman in [17], where only a finite amount of the initial entanglement is ever consumed on

average. This enables us to sharpen the charaterization of instantaneous nonlocal measurements

by quantifying the cost of nonlocal measurement tasks. Specifically, we determine an upper

bound to the average consumption for state verification, where the measurement verifies if the

system is in a given state, and for the verification measurement of a general set of eigenstates

of an observable. Secondly, it is straightforward to show from our scheme that by only allowing

a finite amount of the initial entanglement, in addition to a finite average consumption, the

measurement can still proceed with certainty but will suffer a bounded error on its statistics.

The structure of this paper is as follows. In section 2, we lay out the framework we shall

use in this study, and describe the approach to nonlocal measurements taken with specific

attention paid to the Bell measurement example. This is followed in section 3 by a brief review

of teleportation as an ingredient in instantaneous protocols and an outline of the pioneering

work by Vaidman [17]. The main component of this work, what we call rotation chains, is

introduced in section 4. In this section, the protocol for a single chain is described in detail

and is shown to have a finite average entanglement consumption. In addition, it is explained

how these chains can be concatenated to implement arbitrarily complex nonlocal unitaries and

the scaling of the average entanglement consumption with the number of chains is also found.

The remainder of the paper then utilizes these tools for several nonlocal measurement problems.

Firstly, in section 5 it is applied to state verification measurements starting with an arbitrary two-

qubit state before generalizing to an arbitrary finite-sized bipartite multi-qubit system where the

scaling of entanglement consumption with the Schmidt rank of target state is obtained. Secondly,

the state verification scheme is expanded in section 6 to enable the simultaneous verification of

any set of orthogonal eigenstates constituting a full operator measurement. Again two-qubit

observables are considered in detail, followed by a bipartite multi-qubit system where the

scaling in entanglement consumption with the system size is determined. Finally, in section 7,

we conclude and comment on open problems for future work.

2. Framework

Let us now describe in more detail the framework used within this study. We shall

exclusively consider both the principal system and measuring probes as being composed of

two distinguishable parts built up from spin- 1

2
particles (qubits) and each localized in different

6 One caveat to this, which applies to this work as well, is variables related to fermionic degrees of freedom that

are spatially delocalized [17, 26].
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regions of space occupied by Alice and Bob which are spacelike separated. While this is not

the most general scenario, it has proven to be particularly well suited for investigating quantum

measurements and nonlocality [11, 27, 28]. The local regions themselves are assumed to be

small enough to neglect causality restrictions within them but large enough compared to the

Compton wavelength to neglect relativistic effects such as pair creation. Relativistic causality

then enters due to the scale of the distances between the two parts of the system and otherwise

the formalism of nonrelativistic quantum mechanics can be used. Within this setting, we shall

consider measurement schemes that are localizable7 quantum operations. This means that they

can be composed of arbitrary local operations between the local parts of the system (we assume

that all local operations are equally easy to apply) and entangled resources that were shared prior

to the measurement but do not utilize any classical communication. Localizable operations are

manifestly causal, although curiously not all causal operations are themselves localizable [29].

In general, a nonlocal measurement requires previously arranged cooperative actions of

Alice and Bob which can be broken into three steps. In the first step, which will be seen

to be essential, suitably entangled ancilla systems must be prepared and distributed to the

parties. Secondly, each party performs a local operation, such as unitaries and ideal (irreversible)

projective measurements, on their part of the principal system and entangled ancillae. Thirdly,

the classical information extracted by both parties in the second step is transmitted to a central

location C where the readout of the result is completed8. These steps are summarized in

figure 2(a). Since the local operations that act on parts of the system and measuring device

in step two can proceed without waiting or knowing the outcomes of actions performed by the

other party they can in principle be performed in an arbitrarily small time. Thus, when we speak

of an ‘instantaneous measurement’, we are referring to the particular Lorentz frame where both

observers performed their actions at time t0. Since we are interested in examining questions of

causality, as opposed to covariance, we shall continue to use the terminology of quantum states

and confine our description to this Lorentz frame. At the end of step two, both Alice and Bob are

in possession of a set of indelible local classical bits. In accordance with the information erasure

theorem [11], these local outcomes can only specify which eigenvalue of the nonlocal variable

the system had at time t0 once they are combined later at a point C in the future light cones of

both observers. As a consequence, although the measurement was instantaneous and completed

in step two at time t0, the result is not necessarily known instantaneously by either party and

can only be reconstructed much later at step three. Despite these features nonlocal verification

measurements retain the usual requirements that (i) when the system is in an eigenstate of the

observable the outcome corresponding to that eigenstate is produced with certainty, and the

linearity of quantum mechanics then ensures that (ii) for a general superposition of eigenstates

the corresponding eigenvalues are observed with the appropriate quantum probabilities.

The features of a nonlocal measurement just discussed are best outlined by a concrete

example. In figure 2(b), a nonlocal demolition measuring scheme for the Bell operator of

7 Following earlier work [29] the relevance of our results for quantum field theory should be understood as

applying to the idealization that the external probe variables are ‘heavy’ with rapidly decaying correlations, while

the field variables are ‘light’. In this situation, the notion of localizability, which requires a strict separation between

field and probe, is credible.
8 A more general scenario can permit quantum information to be transmitted. This would enable so-called

exchange measurements [10] to occur where the principal system is swapped into the measuring device, essentially

freezing its state, and is then later measured at C . In this case the measurement has not really occurred until the

last step and its outcome did not exist at time t0.

New Journal of Physics 12 (2010) 083034 (http://www.njp.org/)
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Figure 2. (a) A depiction of the type of measurement scheme considered in

this work. The scheme intends to measure a property, at a given time t0, of a

system composed of two spacelike separated parts at regions A and B. To do

so, measuring probes are prepared some time earlier, possibly in an entangled

state (signified by the wiggly line), and transported to the two locations A and

B. Once the probes arrive at these locations at time t0, local operations are

performed between the parts of the system and probe at each region, resulting

in local classical information. This information is then transmitted to a location

C where the future light cones of A and B intersect. The overall outcome of

the instantaneous nonlocal measurement is then deduced at C , but pertains to

the system at time t0. (b) As an example of such a measurement scheme a

circuit diagram is shown for the demolition nonlocal measurement of the Bell

operator on two qubits utilizing one maximally entangled ancilla |80〉. The

vertical dashed line delineates the two regions and highlights that all operations

in this circuit are local. In this example, both local operations correspond to a

Bell measurement. To aid the explanation of this measurement given in section 3,

we show on the left-hand side a Bell measurement composed of a unitary Ub

and single-qubit measurements [15] whose outcomes together give a binary

encoding of the overall {0, 1, 2, 3} result. For subsequent diagrams we shall

simply denote local Bell measurements by a ‘BM’ box with four outcomes and

not be concerned with its internals, be they a joint measurement projecting on to

local Bell states or the single-qubit form given above. The global outcome for

the instantaneous nonlocal Bell measurement is then designated by the addition

modulo 4 of the local results c= a⊕ b.

two qubits is shown. The Bell operator possesses the nondegenerate maximally entangled

eigenstates

|80〉 = 1√
2
(|0〉A|0〉B + |1〉A|1〉B),

|81〉 = 1√
2
(|0〉A|1〉B + |1〉A|0〉B),

New Journal of Physics 12 (2010) 083034 (http://www.njp.org/)



8

|82〉 = 1√
2
(|0〉A|0〉B − |1〉A|1〉B),

|83〉 = i√
2
(|0〉A|1〉B − |1〉A|0〉B).

For the measurement scheme shown in figure 2(b), a pair of ancilla qubits in the state |80〉
have been previously distributed. Such maximally entangled pairs will form the resource for all

of the schemes studied in this work. The measurement of the Bell operator then proceeds by

each party performing a local Bell measurement between their half of the system and ancilla

pair. Since it is a demolition verification measurement, once it is completed the local parts

of the system and ancilla are left in direct product states with equal unbiased probabilities.

Thus, in accordance with causality, local information in the relevant degrees of freedom is

erased and the local reduced density matrix is maximally mixed at all times. As a result, the

local outcomes a, b ∈ {0, 1, 2, 3} reveal no information about the global outcome in isolation.

Instead they are correlated nonlocally, with the final outcome being c= a⊕ b, where ⊕ is

modulo 4 addition. We shall explain how this measurement scheme works shortly in section 3.

While this demolition Bell-measurement scheme shares many features with the more general

schemes about to be introduced, we mention for completeness that, with the use of an additional

entangled pair and a suitable modification of the circuit in figure 2(b), a non-demolition scheme

can be devised [5, 6, 14]. The information erasure theorem [11] proves that this is the only

nonlocal variable of two qubits that possesses a non-demolition measurement scheme, because

the reduced density matrix of any of its eigenstates for either party is maximally mixed.

3. Teleportation and instantaneous nonlocal unitaries

To generalize the Bell measurement just described to a more general nonlocal measurement

scheme, it turns out to be very convenient to describe the local operations performed by both

parties in terms of the instantaneous part of the teleportation protocol [24]. In this section, we

shall describe teleportation within the framework outlined above and also detail earlier work by

Vaidman [17] that demonstrated how, through a prearranged recursive structure, it enables the

instantaneous measurement of any nonlocal variable.

3.1. Teleportation

As is well known, the teleportation [24] of an arbitrary state of d qubits |9〉 can be accomplished

by local operations and classical communication if Alice and Bob share one half of d maximally

entangled two-qubit states |80〉. This follows from the identity

|9〉A1 A2···Ad
⊗ |80〉a1b1

⊗ |80〉a2b2
⊗ · · · ⊗ |80〉ad bd

= 1

2d

∑

m

|8a1
〉A1a1

⊗ |8a2
〉A2a2

⊗ · · · ⊗ |8ad
〉Ad ad

σa|9〉b1b2···bd
.

Here we have designated a tensor product of Pauli operators9 over the system of d qubits as

σa = σa1
⊗ σa2

⊗ · · · ⊗ σad
, where a = (a1, a2, · · ·, ad) is a d-dimensional vector of outcomes

9 We will refer to tensor products of Pauli operators as a Pauli string operator or a simply as a Pauli distortion

depending on the context.

New Journal of Physics 12 (2010) 083034 (http://www.njp.org/)
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a j ∈ {0, 1, 2, 3} and we numerically index σk with σ0 = 1 while 1 7→ x, 2 7→ z and 3 7→ y.

Teleportation is then achieved by Alice measuring each pair of qubits A j , a j in the Bell basis

|8k〉 with the outcome fixing the element a j in a. Overall, this collapses Bob’s d qubits to

the state |9〉, modulo a Pauli distortion σa determined by Alice’s equiprobable measurement

outcomes a. The full teleportation protocol is finished by Alice transmitting 2d classical bits to

Bob specifying the vector of outcomes a so he can remove the Pauli distortion σa and recover

|9〉 with certainty. Since we will be exclusively concerned with instantaneous operations this

last step, which necessarily takes a finite amount of time to implement, will never be performed

and we shall from now on use the term teleportation to describe the Bell measurement part

only. The cost of instantaneity is the unavoidable presence of the equiprobable Pauli distortion

σa, which due to the identity

1

4d

∑

a

σa |9〉 〈9| σa = 1

2d
1,

preserves relativistic causality by completely scrabbling the reduced density matrix of the local

system. As we shall see, despite the distortion, teleportation can nonetheless be exploited to

achieve instantaneous nonlocal operations.

The simple instantaneous Bell measurement in fact already highlights some essential

properties of nonlocal measurements and readily allows us to identify a bipartite multi-qubit

generalization. Specifically, in figure 2(b), we can interpret Bob’s local Bell measurement (on

the right) as a teleportation of his half of the system to Alice yielding an outcome b. In a

step that will be shared by all schemes in this work he has localized their initially distributed

system. Alice can then attempt to apply a unitary that maps the locally unmeasurable set of

eigenstates into the trivially measurable direct product set |0〉|0〉, |0〉|1〉, |1〉|0〉 and |1〉|1〉. Were

Alice to apply a general unitary U , its effect would be confounded by the Pauli distortion

σb on her receiving qubit unknown to her. For a Bell measurement the required unitary Ub,

depicted in figure 2(b), is a member of a special class of unitaries in this regard. Specifically,

for a multi-qubit system with a distortion σb, there are a set of unitaries U ∈  which satisfy

Uσb = σb′U , in which a Pauli distortion σb can be propagated through them at the expense of

possibly changing to a different Pauli distortion σb′ . This set of unitaries  is called stabilizers

and can be constructed, up to a global phase, from quantum circuits containing only CNOT,

Hadamard and phase gates [15].

Since both the CNOT gate and the rotation Ry(−π/2)= exp(iπσy/4) are stabilizers, the

effect of Ub(1 ⊗ σb) in the Bell measurement is summarized as Ub, (1 ⊗ σx)Ub, (σx ⊗ σz)Ub and

(σx ⊗ σy)Ub for b= (0, 1, 2, 3), respectively. The scheme terminates, once Ub is applied, with

a measurement of both qubits in the computational basis (i.e. z-axis). Since Pauli distortions

simply map direct product states between themselves once σb has been propagated through Ub,

it induces a benign, but causality-preserving, nondeterministic mapping between the Bell and

direct product bases. This final measurement in the fixed z-axis is therefore certain to complete

the scheme.

With this observation we can immediately construct a nonlocal instantaneous verification

measurement for any operators on any number of qubits whose eigenstates are all stabilizer

states (or states that are locally equivalent to them). In addition to Bell states, this class includes

some of the most well-studied multi-qubit entangled states such as the Greenberger–Horne–

Zeilinger (GHZ) state [30], cluster states [31, 32] and more generally graph states [33]. The

entanglement consumption of stabilizer measurements, analogous to the Bell measurement,

New Journal of Physics 12 (2010) 083034 (http://www.njp.org/)
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Figure 3. A schematic diagram of a nonlocal verification measurement scheme

for any observable on 2d qubits whose complete set of eigenstates are locally

equivalent to stabilizer states. The unitaries V
†

A and V
†

B are arbitrary and account

for the local equivalence. The unitary U ∈  is a stabilizer and is applied to

the system once it has been localized by teleportation. The entire set of qubits

at Alice’s location can be measured in the z-axis to complete the scheme.

Generalization to unequal distributions of qubits and multi-party scenarios is

straightforward.

is then simply the minimum number of ebits needed to localize the system. A schematic

diagram of a stabilizer measurement protocol is given in figure 3. For the most general nonlocal

measurements the unitary U required will not be a stabilizer. Our goal is therefore to devise a

scheme that, after the system has been localized by teleportation, enables U to be applied while

still propagating any Pauli distortions to the end. As we shall see, for arbitrary unitaries U , this

is a highly nontrivial and expensive task.

3.2. The Vaidman scheme

The general nonlocal measurement scheme devised by Vaidman [17] starts in the same way as

Bell measurement in figure 2(b) by Bob teleporting his half of the system to Alice. Without any

loss of generality, we focus on a system of two qubits. Since Alice and Bob’s aim is to measure

some nonlocal variable O with eigenstates |o1〉, |o2〉, |o3〉 and |o4〉, they devise a unitary U

transformation that maps these eigenstates to the measurable direct product basis as

U |o1〉 = |0〉|0〉, U |o2〉 = |0〉|1〉,
U |o3〉 = |1〉|0〉, U |o4〉 = |1〉|1〉.

Given the system was initially in that state |9〉AB, the state of Alice’s qubit A and the ancilla

qubit a1, representing the receiving qubit of the teleportation from Bob, is now in a state

σb1
|9〉Aa1

. The first step of the scheme is for Alice to simply apply U to qubits A and a1. With

a probability of 1/4, Bob’s teleportation will be non-distorting with b1 = 0 and Alice would

have successfully mapped the eigenstates of O to the measurable direct product basis. For the

other three distortions, the resulting unitaries Uσx , Uσy and Uσz will not in general map the

eigenstates to the direct product basis (unless of course U happens to be a stabilizer). Since Alice
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Figure 4. (a) At the start of the Vaidman scheme, Bob teleports his half of

the system to Alice who then applies the unitary U between her half and the

teleported qubit. Since Alice does not know whether this action was successful

she teleports the entire system back to Bob. (b) A cluster mentioned in the main

text. Given Bob has a state Vl−1|9〉 with some accumulative unitary Vl−1 applied

to it, he can teleport the entire system to Alice who can apply a correction Ul and

teleport it back. If Bob’s teleportation is nondistorting so b= b′ = 0, then Alice

has successfully corrected the returned state. (c) A tree diagram of the Vaidman

scheme. The root of the tree is the initial step of the scheme depicted in (a).

The hatched boxes spawning from the root represent clusters identical to that

depicted in (b). Depending on his teleportation outcomes, Bob traverses the tree

structure utilizing only a specific path of clusters corresponding to his history of

outcomes (e.g. illustrated by the arrow). See the main text for a more detailed

description of the scheme.

has no knowledge of b1, she has no choice but to teleport the entire system of two qubits back

to Bob. For brevity we shall from now on call a complete teleportation of the system, regardless

of the number qubits, a channel. This initial step of the scheme is shown in figure 4(a).

At Bob’s side he expects the return of the system and on the fortuitous occasion that his first

teleportation gave b1 = 0 he can be assured that Alice successfully applied U to |9〉 leaving his

two ancilla qubits b2 and b3 in the state σa1a2
U |9〉b2b3

. Just as with the Bell measurement scheme

the final mapping is to the trivial direct product basis modulo a subsequent Pauli distortion.

Thus, despite the fact that Bob has no knowledge of the outcomes a1 and a2, he can go ahead
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and immediately measure the qubits in the z-axis completing the verification measurement of O .

For the cases where b1 6= 0, Bob knows that Alice did not apply U in isolation. To allow Alice

the opportunity to correct this mistake the scheme from here on adopts a tree-like structure. The

root of this tree is the first teleportation just described. Above this there are now three branches

each labelled by the possible distorting values b1 might take. Each branch leads to a cluster

whose structure is illustrated in figure 4(b). A cluster simply contains a teleportation channel

for Bob to send back the system to Alice and a corresponding channel for Alice to return it.

Depending on the actual value of b1, Bob traverses the corresponding branch of the tree and

sends the system back to Alice via the channel in that branch’s cluster. He will never act on

clusters in any other branch of the scheme.

At the receiving end of the incoming channel in each of the three clusters, Alice will have,

if the cluster was used, a state σb2b3
σa1a2

Uσb1
|9〉. She can now infer the value of b1 from the

cluster’s label. Under the assumption that Bob’s teleportation in that cluster was nondistorting,

so b2 = b3 = 0, she can devise a correction unitary U1(b1), dependent on b1, obeying

U1(b1)σa1a2
Uσb1

= U.

Thus, with a probability of 1/16, Alice will undo the previous unitary and distortions and

map the eigenstates of O to the direct product basis. To complete the cluster, she teleports

the resulting two-qubit system back to Bob via a corresponding return channel as shown in

figure 4(b). Since Alice does not know which, if any, of the clusters were used she must perform

this b1-dependent correction on all three clusters.

The situation for Bob is now identical to the first round but with a smaller probability of

success. If b2 = b3 = 0, then as before he can immediately measure the incoming qubits on the

cluster he used and complete the measurement. For the other 15 possible distorting outcomes,

Bob knows Alice’s correction will have failed. To overcome this failure, the same strategy is

applied. Each of the clusters in the first level of the tree spawns 15 new branches, one for each

possible distortion by Bob’s previous teleportation, again leading to a new cluster. From his

current position in the tree Bob now traverses the appropriate branch dependent on b2, b3 and

teleports the system back to Alice through the channel in that branch’s cluster. For Alice the

situation is now that she has 45 incoming channels to operate on since she has no knowledge

of Bob’s actual path through the tree. For each cluster in this second level, she can continue to

guarantee a 1/16 chance of success by again devising a unitary U2(b1, b2, b3) obeying

U2(b1, b2, b3)σa4a5
U1(b1)σb2b3

σa1a2
Uσb1

= U.

The labels on the tree structure provide Alice with a complete history of distortions that

Bob would have induced had he traversed those branches and this is essential for her to be

able to construct a correction. The only knowledge Alice lacks is the nature of Bob’s last

teleportation and her correction only works on the assumption that it is nondistorting. The

scheme therefore continues in the same way following an exponentially growing tree structure,

depicted in figure 4(c). The measurement is completed once Bob has performed a nondistorting

teleportation.

So long as this scheme is repeated to infinite depth it can, quite remarkably, ensure that at

some point along the path traversed by Bob the unitary U is applied with certainty, modulo some

proceeding Pauli distortions. At this termination point Bob can then complete the measurement.

The cost of achieving this task, however, is unbounded. In particular, the division of labour is

highly skewed since Alice must operate on all branches, whose number grows exponentially
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with the level, and unlike Bob has no termination condition. This means that the infinite amount

of entanglement that was initially distributed to form the scheme’s tree structure is necessarily

consumed without exception. In return for this effort, however, Alice has complete control of the

unitary U eventually implemented and need only decide what it is immediately before she starts

her actions. The scheme generalizes straightforwardly for d qubits but with a probability of

success 4−d at each level and 4d − 1 new branches spawning to the next level. Additionally, since

Alice does all the correction work, the scheme can be readily adapted to work with any number

of parties [17]. This is a property shared with stabilizer measurements since there only one party

is needed to perform the stabilizer circuit. The Vaidman scheme provides a constructive proof

that an instantaneous measurement scheme, which is guaranteed to succeed, can be devised

for any nonlocal variable and nonetheless be compatible with both quantum mechanics and

causality. For the remainder of this work we describe a scheme, based on a simple but significant

modification of Vaidman’s, that can similarly be used to measure any nonlocal variable and is

guaranteed to succeed, but consumes only a finite amount of entanglement on average.

4. Finite consumption scheme

The essential adjustment we make to Vaidman’s scheme is that rather than attempting to apply

the desired unitary U directly at each step, we instead decompose U into a sequence of simpler

unitaries and attempt to apply these individually in separate rounds of the scheme. These

simpler unitaries are Pauli rotations Rj(θ)= exp(−iθσj/2)= cos(1

2
θ)1 − i sin( 1

2
θ)σj involving

the exponential of a Pauli string operator σj, introduced earlier in section 3.1, by an angle θ . In

this section, we will concentrate on implementing Pauli rotations and give explicit examples of

decomposing general unitaries U in terms of them later when we discuss specific applications in

section 5 and section 6. Despite Pauli rotations not being stabilizers (aside from when θ = π/2),

they do have extremely advantageous properties with respect to Pauli distortions. As we shall

now describe, this can be exploited to yield a scheme where both parties have local termination

conditions and only a finite amount of the initial entanglement is ever consumed.

4.1. Pauli rotation chain

The basic component of all our measurement schemes is a rotation chain, which applies a

single Pauli rotation Rj(θ) designated by an angle θ and a nontrivial vector j specifying the

Pauli string known to both parties. A rotation chain is composed of a sequence of teleportation

channels in which the entire system of d qubits is teleported together back and forth in an

alternating direction between Alice and Bob, as depicted in figure 5. The starting point of a

rotation chain is the familiar situation where one party, say Alice, possesses the entire system.

Initially, when the system was distributed, it was in some state |9〉; however, the actual state of

the system at Alice’s location contains a Pauli distortion σb1
|ψ〉 defined by a vector b1 known

only to Bob. This distortion is taken to have arisen from earlier teleportations (such as previous

rotation chains as described shortly in section 4.2) and so we take all 4d possible vectors b1

as equiprobable10. As we have seen, the presence of this distortion generally results in 4d − 1

different errors if Alice tried to apply the complete unitary U directly. In a rotation chain, Alice

10 For Bob’s initial teleportation which localizes the system, σb1
has zero elements for all of Alice’s qubits and so

is only equiprobable over a subset of 4d/2 strings. However, since Alice will attempt to apply a Pauli rotation on

the entire system, the effect of this type of σb1
is identical.
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Figure 5. A schematic diagram of a Pauli rotation chain used to implement a

unitary Rj(θ). As a result of previous teleportations Alice possesses the entire

system, but in a state σb1
|9〉, where b1 is known only to Bob. As a result, she

cannot be certain that she has applied Rj(θ) directly to the state |9〉. The scheme

depicted shows that by exploiting a sequence of directed teleportation channels

the entire system can be bounced back and forth between Alice and Bob such

that there is a probability of 1

2
at each step that either party possesses a state

Rj(θ)|9〉 modulo a proceeding Pauli distortion. This strategy is a bipartite multi-

qubit generalization of a similar single-qubit scheme presented in [17]. See the

main text for a more detailed description of the scheme.

instead applies Rj(θ) and only one of two possibilities occurs:

Rj(θ)σb1
|9〉 =

{

σb1
Rj(θ)|9〉, for b1 ∈ c(j),

σb1
Rj(−θ)|9〉, for b1 ∈ c̄(j).

(1)

Since j 6= (0, 0, . . . , 0), and so never designates a string of identity operators, we denote here

c(j) as the set of 4d/2 vectors specifying Pauli strings that commute with σj, while c̄(j) is the

other half of the total set of vectors that anti-commute with σj. In the latter case, propagation of

the rotation through the distortion σb1
results in a sign change. Thus, Alice has a probability of

1

2
, independent of d , to have implemented the correct rotation on the initial state. Moreover, the

only error she can make is to rotate in the wrong direction. Since she has no knowledge of her

success, she must teleport the entire system back to Bob via the first channel shared between

them.

At Bob’s side he immediately applies the unitary σb1
, corresponding to the initial distortion,

to the incoming qubits. If b1 ∈ c(j), then his initial distortion was commuting and the incoming
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qubits will be in a state σb1
σa1
σb1

Rj(θ)|9〉, where σa1
is a new distortion induced by Alice’s

teleportation. Bob therefore knows that the incoming qubits have had, modulo a subsequent

distortion, the correct rotation applied to their initial state. He then keeps these qubits ready

for further operations (see section 4.2) or a measurement. His actions for this chain are then

terminated. If b1 ∈ c̄(j) then his initial distortion was anti-commuting and he knows that Alice

performed Rj(−θ) instead. Following a strategy outlined in [34], Bob can attempt to correct

this, under a previously agreed assumption that a1 is commuting, by applying a new double

angle rotation Rj(2θ) to the qubits. This gives Rj(2θ)σb1
σa1
σb1

Rj(−θ)|9〉, which is the desired

state only if a1 ∈ c(j) is a commuting distortion. To overcome his lack of knowledge regarding

a1, Bob teleports all d qubit back to Alice via the next channel in the chain.

The situation for Alice is now identical to Bob’s just described. She immediately applies

σa1
to the incoming qubits. If a1 ∈ c(j) is commuting, she can be certain that, if it was

necessary, Bob succeeded in correcting her rotation. In this case, the state of her system is

σa1
σb2
σb1
σa1
σb1

Rj(θ)|9〉, where σb2
is a new distortion induced by Bob’s teleportation back.

This final state is of the required form so she keeps the qubits and terminates her actions in

this chain. If a1 ∈ c̄(j), Bob’s rotation causes an accumulative error of Rj(−3θ). Alice attempts

to correct this, again under the assumption that his last distortion is σb2
, by applying another

double angle rotation Rj(4θ). Note that she does not need to assume or know anything about

earlier distortions by Bob, such as σb1
, since it appears twice in the accumulative distortion.

She then teleports the qubits back via the next channel and the scheme continues. Schematic

diagrams of these steps in the rotation chain scheme are given in figure 5.

Note that both Alice and Bob have a probability of 1

2
of implementing the jointly agreed

rotation at each step and can both determine their success by local outcomes. Since the actions

of both parties terminate there is zero probability that the chain continues indefinitely and

so only a finite amount of the initial entanglement is ever consumed. A disadvantage of

joint termination is that as a rotation chain proceeds both parties lose knowledge of where

the appropriately transformed qubits finally reside. Instead the actual pathway taken by the

system is only reconstructed by the combination of Alice and Bob’s local classical records. The

manner in which the rotation chain deals with the Pauli distortions caused by teleportation is

very reminiscent of one-way quantum computing [31, 32]. There the indeterminism of single-

qubit measurements used to drive the computation produces Pauli distortions at intermediate

stages, which, via minor adjustments in the subsequent operations, are propagated to the end

of the computation. Their effect is then to simply alter the interpretation of the final output

measurements. If further rotations are required, then, as we shall show in the next section,

distortions can continue to be propagated to the end.

4.2. Concatenation of rotation chains

Let us now suppose that Alice and Bob wish to apply a further rotation Rk(ξ) to the d-qubit

state Rj(θ)|9〉. To do this, they can use a second rotation chain, which applies Rk(ξ) to the

output from the first Rj(θ). However, since the first rotation chain has multiple opportunities

for terminating successfully on both Alice and Bob’s side, a second chain must be available

separately for each of these exit points to cover all eventualities. This gives a tree structure of

concatenated chains like that shown in figure 6. Following this figure, suppose that Alice exits

the first chain first on her qth opportunity. The d-qubits she then possesses will be in a state

carrying a large accumulative distortion dependent on its history up to that point through the
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Figure 6. A schematic diagram of the concatenation of two Pauli rotation chains

used to implement a unitary Rk(ξ)Rj(θ) modulo a proceeding Pauli distortion.

For each possible exit from the Rj(θ) rotation chain there is a second Rk(ξ)

chain. The boxes containing arrows in this figure represent the entire rotation

chain protocol depicted in figure 5. Arrows that end with a × indicate that

the originating party has not participated in the protocol for this specific chain.

While both parties participate in the first chain only one of the secondary chains

has overlapping actions of Alice and Bob. In this figure, Alice exits the first

chain on her qth opportunity, while Bob exits on his pth where p > q . The

dashed ‘L’-shaped line indicates the actual path taken by the principal system

in this case. Actions performed by either party not intersecting this line do not

contribute to the final outcome, but the no-signalling restriction requires that

they are performed so that all eventualities are covered and the desired unitary is

implemented with certainty.

first chain as

σaq
σbq+1

σbq
σaq
σaq−1

· · · σb2
σb1
σa1
σb1

Rj(θ)|9〉. (2)

She can go ahead and engage these qubits with the designated second rotation chain for this exit

point which, in an identical way to the first, will apply Rk(ξ). Since the accumulative distortion

in equation (2) contains two of every previous distortion, except for σbq+1
, the criterion for
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Alice’s success in applying the second rotation Rk(ξ) is based only on Bob’s last teleportation,

via bq+1 ∈ c(k), and not on the complete history. This is in stark contrast to the Vaidman scheme.

As depicted in figure 6, both Alice and Bob must perform all the necessary steps for each

of the second chains covering all possible exit points of the other party up to the point where

they themselves exit from the first chain. This ensures that if the other party was successful

before them the overall scheme still succeeds with certainty. Since all the first chain and all

those spawning from it have zero probability of continuing indefinitely the overall scheme also

has a finite average consumption. It is also clear that this concatenation can continue, albeit at

increasing expense, for any finite sequence of rotations to be applied to the d-qubit initial state,

and still retain a finite average entanglement consumption. We now examine more precisely

what this consumption is.

4.3. Average entanglement consumption

To measure the consumption, we count the number of channels that are required on average.

A detailed description of this calculation is given in appendix A. In summary, we find that the

average channel consumption for a single rotation chain is 〈c1〉 = 5, while concatenation of

further rotation chains results in a rapid growth as 〈c2〉 = 20, 〈c3〉 = 59, 〈c4〉 = 156 and so on.

These channel averages 〈cn〉 give the average consumption of entanglement, measured in ebits,

once they are multiplied by d . By utilizing the recursive structure of the protocol the average

channel consumption 〈cn〉 can be approximated, in the limit of a large number of concatenated

rotations n, by the exponential growth

〈cn〉 ≈ Cφn, (3)

where C = (10 + 7
√

2)/4 and φ = 1 +
√

2. As shown in figure 7(b), the fit of this approximation

to the exact consumption for n > 4 demonstrates that it is very good for all but the smallest n.

We saw earlier that a rotation by an angle π/2 has the special property that Rj(π/2) is a

stabilizer. In this case, no rotation chain steps are required. More generally, a chain involving a

binary angle θ = π/2D not only implements the desired rotation when a commuting distortion

occurs, but also when a sequence of D − 1 erroneous rotations are made since the required

double angle correction reduces to Rj(π/2). Thus, for rotations with a binary angle, the chain

terminates with certainty in a finite number of teleportations [16, 17]. An example of a single

rotation chain applicable to an angle that is any odd multiple of π/32 is given in figure 7(a). The

total number of initial channels that must be available for n concatenated rotation chains, each

of length D, is finite but grows exponentially with n as

Cinit =
(D − 1)[(D − 1)n − 1]

D − 2
. (4)

In an identical way to the D → ∞ case the average consumption 〈cn〉 of this initial resource

can be computed. In figure 7(b), both Cinit and 〈cn〉 are shown for D = 3 and 7. For D 6 3 both

the initial resource and the average consumption remain below the average consumption for

D → ∞. For D > 3, the average consumption 〈cn〉 rapidly converges to the D → ∞ limit and

the initial resources grow far beyond it.

While we have shown a finite average consumption in general, a practically relevant

question arises as to what effect the restriction to finite initial resources has for general rotations.

One strategy for doing this is to simply truncate continuous angle rotation chains to some

maximum number of iterations. Indeed, if this strategy is applied to the Vaidman scheme, by

New Journal of Physics 12 (2010) 083034 (http://www.njp.org/)



18

Figure 7. (a) An example of a rotation chain for a binary angle θ = π/2D

with D = 5. The scheme is guaranteed to terminate on Alice’s second step

q = 2, since the correction is a rotation by π/2 that always succeeds modulo a

proceeding Pauli distortion. For D odd there is an outcome p = 0 corresponding

to when Bob never succeeds. (b) The average channel consumption 〈cn〉 for the

scheme performing n successive rotations of the form Rjn
(θn) . . . Rj1

(θ1). The

exact calculation of 〈cn〉 for non-binary θ j angles (i.e. infinite length rotation

chains) is shown (�) as well as the pure exponential approximation (solid line)

given in equation (3). The exact 〈cn〉 is also shown for binary angles with

D = 3 (◦) and D = 7 (×), along with the total number of initial channels Cinit that

must be available in both cases as the dashed line and dotted line, respectively.

limiting its tree depth, it results in its having a finite consumption equal to its finite initial

resources. This approach, however, introduces a possibility that the measurement will fail

completely and yield no result. Binary angle rotation chains present a more elegant means

of exploring the implications of finite initial resources for our scheme. Rather than truncating

continuous angle rotation chains, we instead consider a more interesting and relevant scenario

where the desired rotation angle is discretized to a multiple of a binary angle that matches the

maximum allowed number of iterations. Given the decomposition of the desired final unitary U

into a sequence of Pauli rotations, the new scheme performs rotations about the nearest binary

angle θ̃ = d2Dθ/πeπ/2D to the exact angle θ . In this way, we obtain a measurement scheme

constructed from finite initial resources, consuming only a fraction of those on average, which

is guaranteed to succeed at the expense of only implementing an approximation of U . Since the

finite scheme no longer maps the eigenstates of our desired observable O to the direct product

basis, a crucial question is then how much the measurement statistics of our approximation

differ from the exact case. For a single rotation Rj(θ), the error can be defined as

E(θ, θ̃)= max
|9〉

∥

∥

(

Rj(θ)− Rj(θ̃)
)

|9〉
∥

∥ ,

= max
|9〉

∥

∥

(

1 − e−(i/2)1θσj
)

|9〉
∥

∥ ,

where the maximum is taken over all normalized states |9〉 and 1θ = θ̃ − θ . The error E(θ, θ̃)

can be shown [15] to bound the absolute difference between the probabilities P and P̃ for the
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outcome of any positive operator valued measurement on Rj(θ)|9〉 and Rj(θ̃)|9〉, respectively,

as |P − P̃|6 2E(θ, θ̃). An upper bound to E(θ, θ̃) can be obtained by assuming the maximum

deviation for 1θ = π/2D+1, which gives

E(θ, θ̃)6
√

2

√

1 − cos
( π

2D+2

)

≈ π

4
2−D

and shows that the error decreases exponentially with D. For a sequence of n rotation

chains implementing the binary approximation to U , an important result from quantum

computation [35] shows that the overall error is at most the sum of the errors of the individual

rotations and so the exponential suppression of the measurement error is retained. We will now

finish this work by applying rotation chains to a variety of basic measurement problems. Our

results will mostly concentrate on the average entanglement consumption of continuous angle

rotation chains but can be equally viewed as an upper bound to the average consumption of any

finite binary angle scheme.

5. State verification measurements

Our first application of the tools developed in section 4 is to state verification measurements.

A verification of a given state |9〉 means that the measurement always yields a ‘yes’ result if

the system is in the state |9〉 and a ‘no’ result if the system is in any orthogonal state |9⊥〉. If

the initial state is a superposition, then the appropriate probabilities for ‘yes’ and ‘no’ results

follow from the linearity of quantum mechanics. No assumptions are made about the final

state of the system, so there is no requirement that |9〉 itself is undisturbed by the verification

measurement.

5.1. Two-qubit states

To begin, we present a simple scheme that performs a demolition verification of any two-qubit

state |9〉 ∈ C2 ⊗C2 split between two parties A and B. The construction of a verification scheme

for |9〉 follows from its corresponding Schmidt decomposition

|9〉 = cos
(

1

2
θ
)

|φ0〉A|φ0〉B + sin
(

1

2
θ
)

|φ1〉A|φ1〉B, (5)

where |φk〉 are Alice’s (Bob’s) local Schmidt states and we have parameterized the

corresponding Schmidt coefficients according to an angle 06 θ 6 π/2. To verify |9〉, our

scheme implements the inverse of the quantum circuit, shown in figure 8(a), that prepares |9〉
locally. Starting from the initial state |0〉A|0〉B this circuit performs a rotation Ry(θ) into the state

|31〉 = cos( 1

2
θ)|0〉 + sin( 1

2
θ)|1〉 for qubit A, applies a CNOT gate Ucn between the pair of qubits

controlled by A and is then followed by the product of single-qubit unitaries VA ⊗ VB that map

the computational basis of each qubit into the respective local Schmidt basis as |k〉 7→ |φk〉, with

k ∈ {0, 1}.
To invert this, the verification scheme therefore starts with Alice and Bob performing the

local unitary transformations V
†

A and V
†

B . Bob then teleports his half of the system B to Alice

leaving qubit A and her ancilla qubit a in her possession in the distorted state σ0bV
†

A ⊗ V
†

B |9〉Aa
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Figure 8. (a) A local circuit that constructs an arbitrary two-qubit state |9〉
from a standard initial state |0〉|0〉. Firstly, a rotation Ry(θ) is applied to

qubit A forming a single-qubit state |31〉 composed of a superposition with

real amplitudes corresponding to the Schmidt coefficients of |9〉. This is then

followed by a CNOT gate controlled by qubit A and then two arbitrary single-

qubit unitaries VA and VB are applied, which rotate the computational basis into

the required local Schmidt basis of |9〉. (b) A nonlocal instantaneous verification

of the state |9〉 essentially reverses the circuit shown in (a). In step (i), the

inverses of the local unitaries VA and VB are applied and the qubit B is teleported

to Alice. In step (ii), Alice then applies the CNOT and measures out the received

qubit. The most complicated step is (iii) where the rotation Ry(−θ) is applied

to qubit A. This is implemented via a single-qubit rotation chain followed by a

measurement of the successful output.

described by his Bell measurement outcome b. This is shown in figure 8(b) and is labelled as

step (i). Alice now applies a CNOT gate between qubits A and a. Since the CNOT gate is a

stabilizer any distortion can be propagated past it at the expense of spreading the distortion over

the control qubit. Regardless of this, Alice can be certain that she has implemented, up to a

distortion, UcnV
†

A ⊗ V
†

B |90〉 = |31〉A|0〉a and disentangled qubit A from qubit a. She can then

measure qubit a completing step (ii) in figure 8(b). The distortion σ0b ensures that the outcome

reveals no information to Alice.

Alice must now map the remaining qubit A, with certainty, into the z-axis so it too can

be measured. To achieve this, she needs to apply a rotation Ry(−θ). Her situation is identical

to the scenario considered in section 4.1 and can be readily dealt with using one single-qubit

rotation chain as shown in step (iii) of figure 8(b). The average entanglement 〈e〉 consumed by

this nonlocal two-qubit state verification scheme has no dependence on the value of θ except

when it is a binary angle. In particular, for a maximally entangled state with θ = π/2, precisely

1 ebit is required, while the partially entangled states with θ = π/4 or θ = π/8 need precisely 2

and 3 ebits to be verified, respectively. Binary angles θ = (2m − 1)π/2D, with m integer, have

a consumption

〈eD〉 = 6 + 22−D + 2−D/2

{

7√
2

[−1 + (−1)D] − 5[1 + (−1)D]

}

. (6)

For any angle θ that is not binary 〈e〉 = 6 ebits on average and is independent of the entropy of

entanglement of the state |9〉. As expected, this consumption is the asymptotic limit D → ∞
of equation (6).
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Although this measurement scheme was devised to verify a single state |9〉, the ‘no’ results

do in fact verify a special set of states in the orthogonal complement,

|91〉 = cos
(

1

2
θ
)

|φ0〉A|φ1〉B − sin
(

1

2
θ
)

|φ1〉A|φ0〉B,

|92〉 = sin
(

1

2
θ
)

|φ0〉A|φ0〉B + cos
(

1

2
θ
)

|φ1〉A|φ1〉B,

|93〉 = sin
(

1

2
θ
)

|φ0〉A|φ1〉B − cos
(

1

2
θ
)

|φ1〉A|φ0〉B,

(7)

which are related to |9〉 in the same way that the Bell states are related to |80〉. The scheme

is therefore a verification measurement of an operator possessing these states, along with |9〉,
as eigenstates. When θ = π/2 the scheme is the demolition verification measurement of the

Bell operator already presented in figure 2(b). We shall consider shortly in section 6 the more

complicated task of simultaneously verifying an arbitrary set of eigenstates.

5.2. Bipartite multi-qubit states

The verification scheme for two-qubit states can be generalized for any state |9〉 ∈ A ⊗ B

split between two parties A and B, where  A = (C2)⊗ v and  B = (C2)⊗w are tensor products

of qubits. Again the scheme operates by performing a nonlocal unitary U , which maps |9〉
to a locally measurable state as U |9〉 7→ |0, 0, . . . , 0〉, modulo Pauli distortions. As with

two qubits the scheme focuses on the Schmidt decomposition of |9〉, which now takes the

form

|9〉 =
χ

∑

α=1

λα |φα〉A |φα〉B,

where χ 6min (2v, 2w) is the Schmidt rank designating the number of nonzero λα Schmidt

coefficients satisfying
∑

α λ
2
α = 1, and |φα〉 are Alice’s (A) or Bob’s (B) local Schmidt states.

Before starting the verification scheme, Alice and Bob use this canonical form for the target

state to determine local unitaries V
†

A and V
†

B , which can be applied to their v- and w-qubit

subsystems, respectively, to map their local Schmidt states into the computational basis. For

either party, this takes the form

V † |φα〉 = |Eα, 0, · · · , 0〉,

where Eα is a d = dlog2(χ)e dimensional binary vector representing the integer index α and

|Eα〉 is a d-fold tensor product of the σz eigenstates |0〉 and |1〉. The action of the V ’s on the

orthogonal complement to the subspace spanned by the local Schmidt states |φα〉 can be defined

arbitrarily. The resulting state |ψ〉 = V
†

A ⊗ V
†

B |9〉 is then entirely contained in the smallest

possible subspace of the original (v +w)-qubit system composed of two equal-sized d-qubit

subsystems at A and B. Once this initial compression is performed the remaining v− d and

w− d qubits at Alice and Bob’s location containing (some of) the orthogonal complement to

|ψ〉 can be immediately measured in the computational basis. Any outcome other than |0〉 for

each qubit indicates an immediate ‘no’ result.
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Having mapped the target state |9〉 to |ψ〉, the scheme then continues by implementing the

inverse of the circuit which locally constructs |ψ〉 from the 2d-qubit initial state |0, 0, . . . , 0〉.
Specifically this construction circuit begins by creating a superposition state |3d〉 on the first d

qubits (generalizing |31〉 from earlier) of the form

|3d〉 =
∑

Ex
λEx |Ex〉,

where λEx are the real Schmidt coefficients of |9〉 indexed by the d-dimensional binary vector Ex
and appropriately padded with zeros if necessary. This type of superposition state can be formed

by a cascade F0
1 F1

2 F2
3 · · · Fd−1

d of so-called uniformly controlled rotations (see appendix B

and [36] for details) about the y-axis acting on the first set of d qubits. Once the state

|3d〉 ⊗ |0, . . . , 0〉 has been generated, a staircase sequence of CNOT gates is applied between

pairs of qubits from the first set of d and the second set of d (see figure C.1). This then constructs

the canonical Schmidt form for the state |ψ〉 as

|ψ〉 =
∑

Ex
λEx |Ex〉 ⊗ |Ex〉.

A more detailed description of this circuit is given in appendix C where it is shown explicitly

for d = 4 qubits in figure C.1.

Given this construction circuit the verification scheme proceeds with Bob teleporting his

d qubits to Alice. She then implements the sequence of CNOT gates locally on the 2d qubits

in her possession. Since this part of the circuit is a stabilizer it is guaranteed to succeed but

will propagate Pauli distortions originally confined to the ancilla qubits receiving Bob’s half

of the system to Alice’s half. This leaves a state of the form σj|3d〉 ⊗ |0, . . . , 0〉 in Alice’s

possession, but with only Bob knowing j. Since the CNOTs have successfully disentangled the

two halves the qubits originating from Bob are now in a product state in the computational basis

and can be measured immediately. Alice is now left with her d qubits, which require the final

sequence of uniformly controlled rotations to be applied. The decomposition of the cascading

sequence of uniformly controlled rotation into Pauli rotations requires 2d − 1 distinct gates

(figure B.1(b) shows this decomposition for F2
3 ), which, as expected, is identical to the number

of independent rotation angles defining |3d〉. The scheme then implements these rotations by

concatenating rotation chains. The complete nonlocal verification scheme for |9〉 is shown in

figure 9.

Combining the scaling in the number of rotations with that of the average consumption

〈cn〉 for concatenated rotations in equation (3) yields an exponential of an exponential scaling

〈e〉 = Cdφ2d−1 ebits,

with the minimum number of qubits d required to contain the Schmidt rank of the target state

|9〉. While this consumption lacks any dependence on the values of the angular parameters

(excluding binary angles), it does depend on the entanglement in |9〉 as measured by the

Schmidt rank. Note that the choice of unitary U that can implement a verification of a single

state |9〉 is not unique. However, the choice made in this scheme is unique in the sense that

it is defined only by the nonlocal parameters of the target state itself and is therefore the

most economical. Also, similar to the two-qubit case, this state verification scheme is also a

verification measurement of a special operator whose complete set of eigenstates spanning the

orthogonal complement also happens to be mapped to locally measurable states.
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Figure 9. The nonlocal verification scheme for a state |9〉 ∈ (C2)⊗v ⊗ (C2)⊗w.

After performing local unitaries V
†

A and V
†

B that map the target state |9〉 to a 2d-

qubit state |ψ〉 and measuring out the orthogonal complement, Bob teleports his

d qubits to Alice. Following the inverse of the circuit in figure C.1 Alice performs

a sequence of CNOT gates between her d qubits and those received from Bob,

with the latter being measured immediately afterwards. Alice then inverts the

sequence of uniformly controlled rotations in the y-axis that produce |3d〉 via

2d − 1 concatenated d-qubit rotation chains. Note that although the concatenated

rotation chains are drawn sequentially they should be understood as forming a

massively recursive structure. The output from the final chain is then measured.

We have also ignored here the optimization that successive sets of rotation chains

act on smaller number of qubits due to the structure of the circuit in figure C.1.

6. Instantaneous measurements of nonlocal operators

We now generalize the measurement schemes introduced so far to perform a simultaneous

demolition verification of each of the nondegenerate eigenstates of an arbitrary nonlocal

observable O . Our strategy is again to implement a nonlocal unitary U that maps each eigenstate

of O into a different computational basis state which is then locally measurable. Unlike the

state verification scheme, which is already a special class of operator measurement, here we are

interested in complete generality.
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6.1. Two-qubit observables

Before outlining a scheme for the most general case, we first describe some schemes for special

classes of eigenstates for two qubits. A particularly interesting class of observables is those with

a twisted eigenbasis,

|90〉 = |0〉A|0〉B,

|91〉 = |0〉A|1〉B,

|92〉 = |1〉A

[

sin
(

1

2
θ
)

|0〉B + eiϕ cos
(

1

2
θ
)

|1〉B

]

,

|93〉 = |1〉A

[

cos
(

1

2
θ
)

|0〉B − eiϕ sin
(

1

2
θ
)

|1〉B

]

.

(8)

Despite these eigenstates being product states, it has been shown that if ideal measurements

of this basis were possible it would allow violations of causality [12, 17]. Unlike the direct

(or untwisted) product basis, a verification measurement of the twisted product basis requires

entanglement [17]. As seen in figure 10(a), the circuit that generates this basis locally can

straightforwardly yield the nonlocal measurement scheme in figure 10(b) which utilizes just one

single-qubit rotation chain. The average entanglement consumption for this basis is dependent

on the eigenstate requiring 〈e〉 = 4 ebits for |90〉 and |91〉 (where no rotation is needed), or

〈e〉 = 6 ebits for |92〉 and |93〉. In this way, the measurement of the twisted basis is very

similar to the eigenbasis in equation (7) encountered for state verification. There the eigenbasis

was composed of equally but partially entangled eigenstates and needed 〈e〉 = 6 ebits for all

eigenstates. The consumption for entangled eigenstates, however, grows quickly even with a

slight generalization. For instance, adding an identical relative phase eiϕ to all of the basis states

in equation (7) necessitates the concatenation of two single-qubit rotation chains (first for the

z-axis and second for the y-axis) and elevates the consumption to 〈e〉 = 21 ebits. Generalizing

further gives an eigenbasis composed of partially but unequally entangled eigenstates with

differing relative phases, as

|90〉 = sin
(

1

2
θ1

)

|0〉A|0〉B + cos
(

1

2
θ1

)

eiϕ1|1〉A|1〉B,

|91〉 = cos
(

1

2
θ1

)

|0〉A|0〉B − sin
(

1

2
θ1

)

eiϕ1|1〉A|1〉B,

|92〉 = sin
(

1

2
θ2

)

|0〉A|1〉B + cos
(

1

2
θ2

)

eiϕ2|1〉A|0〉B,

|93〉 = cos
(

1

2
θ2

)

|0〉A|1〉B − sin
(

1

2
θ2

)

eiϕ2|1〉A|0〉B,

described by four real parameters. From the local preparation circuit shown in figure 10(c),

which contains two uniformly controlled rotations, a total of four Pauli rotations are required

(one for each parameter). The corresponding nonlocal measurement scheme is shown in

figure 10(d). The first three rotations require two-qubit chains, whereas the last acts only on

the second qubit and so can be reduced to a single-qubit chain. Following the calculation in
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Figure 10. (a) A local circuit that constructs the twisted basis set |9k`〉 from the

computational basis |k〉|`〉. Here the indices k and ` are bits that together as k`

are a binary representation of the {0, 1, 2, 3} index used in equation (8). Firstly,

a controlled rotation Ry(θ) is applied to form the twist and then another rotation

Rz(ϕ) is performed to introduce the phase. (b) The nonlocal measurement

scheme that performs the inverse of (a). The phase can be removed locally by

Bob, while the final controlled rotation Ry(−θ) can be replaced by a classical

control. If a rotation is required, it is implemented by a rotation chain with the

output being measured in the z-axis. (c) The local circuit that constructs a general

partially entangled basis set from |k〉|`〉. Dependent on the state |k〉 the second

qubit is rotated about the y- and z-axis by different angles according to two

uniformly controlled rotations, followed by a CNOT gate that entangles them.

The uniformly controlled rotations can be decomposed into the sequence of

Pauli rotations shown. (d) The nonlocal measurement scheme that performs the

inverse of (c). A concatenated sequence of two-qubit rotation chains is applied

implementing the inverse of the Pauli rotation decomposition in (c). Note that

the final rotation is applied to one qubit only.

appendix A, the average entanglement consumption for the measurement of this eigenbasis is

〈e〉 = 224 ebits.

To devise a scheme to deal with the most general eigenbasis, we require a circuit composed

only of Pauli rotations, each of which can be handled with rotation chains, that can build a

general SU(4) unitary U . For two-qubits this can be accomplished by using the so-called Cartan
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decomposition [34, 37] of an SU(4) unitary as

U = (VA ⊗ VB) e(i/2)ξ1σ1⊗σ1e(i/2)ξ2σ2⊗σ2e(i/2)ξ3σ3⊗σ3 (WA ⊗ WB),

where VA, VB, WA and WB are single-qubit SU(2) gates, and π/2> ξ1 > ξ2 > |ξ3|> 0. The

Cartan decomposition has been extremely popular in recent work [38]–[40] on quantum circuits,

since it beautifully exposes the nonlocal content of any two-qubit unitary. Rather than needing

to consider all 15 real parameters the classification of two-qubit unitaries reduces to the three

coordinates (ξ1, ξ2, ξ3) and allows the set of locally inequivalent gates to be characterized

geometrically as points within a tetrahedron [39]. In the context of nonlocal measurements,

the first pair of unitaries WA and WB can be trivially applied by each party locally before the

start of the scheme. If the last pair of single-qubit unitaries are then decomposed as a sequence

of rotations V = Rz(α)Ry(β)Rz(γ ), we see that the U is expressed entirely in terms of Pauli

rotations. Furthermore, since our final measurement after U will be in the z-axis, the latter Rz

rotation for either of the local V unitaries is not necessary. This leaves seven real parameters

relevant for the nonlocal measurement.

To compute the average entanglement consumption in this most general case, we perform

one optimization. Rather than simply concatenating seven two-qubit rotation chains (which

would consume 2〈c7〉 + 1 = 4719 ebits on average), we instead split up the qubits after the

three nonlocal gates and perform the final two single-qubit rotations on them separately and

simultaneously11. A simple modification of the calculation in appendix A shows that this

splitting gives a consumption equivalent to five two-qubit rotation chains and so the average

entanglement consumption for the most general two-qubit observable is 2〈c5〉 + 1 = 787 ebits.

Finally, recall from section 4.3 that the average consumptions quoted above are upper-bounds

to those that would be attained if the angles involved were binary. For example the twisted basis

measurement instead consumes at most an average of 〈e〉 = 3 ebits if θ = (2m − 1)π/8, where

m is an integer.

6.2. Bipartite multi-qubit observables

The situation for mapping the eigenstates of a nonlocal d-qubit observable to the computational

basis is less clear due to the lack of an optimal quantum circuit construction for arbitrary

SU(2d) unitaries. On general grounds, an exponential number of one-parameter Pauli rotations

is expected to be required, since an SU(2d) unitary is defined by 4d − 1 reals. However, as

the two-qubit case illustrates, not all these parameters are relevant for nonlocal measurements.

Recent work [36] on quantum circuits allows us to identify (although not optimally) some of

these redundant local parameters and, moreover, provides an explicit construction of such a

circuit decomposition in terms of Pauli rotations. By exploiting a cosine–sine decomposition

recursively, a circuit composed only of uniformly controlled rotations was devised in [36].

So far for d > 4 qubits this construction represents the most efficient circuit decomposition in

terms of the number of CNOT and elementary single-qubit gates needed. For our purposes, the

important aspects of this construction are that an SU(2d) unitary can be formed from a circuit of

2d+1 − 2 uniformly controlled rotations Fd
d−1, alternating between the y- and z-axes, followed by

a cascade of d uniformly controlled rotations F0
1 F1

2 . . . Fd
d−1 involving sequentially decreasing

numbers of qubits and all in the z-axis. To illustrate this a complete decomposition [36] of

11 Splitting the qubits up can only be done once they never need to interact again. Once separated the qubits progress

along different pathways through the scheme and no party knows precisely where the actual pair are located.
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Figure 11. The quantum circuit for an arbitrary d = 3 qubit SU(2d) unitary U

in terms of 17 uniformly controlled rotation gates (see [36] and appendix B

for more details of these gates). The first 2d+1 − 2 = 14 gates alternate between

rotations in the z- and y-axis. The last d gates, which are shaded, are all in the

z-axis and for nonlocal measurements where U is to map our desired eigenstates

to the direct product basis, this final cascade of gates can be ignored.

a d = 3 qubit gate is shown in figure 11. If this type of decomposition is used in a nonlocal

measurement scheme, then the final cascade (shaded in the example in figure 11) can be ignored

since all qubit measurements terminating the circuit are performed in the computational basis.

As shown in appendix C, each Fd−1 gate requires 2d−1 Pauli rotations, equal to the number

of reals defining it. Thus, using this circuit construction, 4d + 2d concatenated d-qubit rotation

chains are needed to implement an arbitrary SU(2d) unitary. An exponential of an exponential

scaling with the number of qubits d again arises for the average entanglement consumption 〈e〉
for a nonlocal measurement of a bipartite multi-qubit observable.

7. Conclusions

In this work, we have studied in detail the average entanglement consumption for both nonlocal

state verification and operator measurements. The approach applied was similar to that of earlier

work [17] where teleportation was employed to first localize the system and then used in a

multi-round protocol to implement the mapping U from a general set of states into a locally

measurable set. The central advancement here is that in contrast to previous schemes [16, 17]

this can be done by consuming only a finite amount of entanglement on average, even in the

most general cases, while continuing to succeed with certainty. The reason for this is that

the application of U is broken up into a sequence of Pauli rotations Rj(θ). By expressing

teleportation in terms of Pauli distortions, a decomposition of this type has the privileged feature

that distortions at each step either leave the operation Rj(θ) intact or produce only one type of

failure, namely Rj(−θ). This enabled us to construct a rotation chain scheme with a bipartite

termination condition that applies Rj(θ)with certainty and consumes only a finite amount of the

initial entanglement on average. Moreover, we showed how rotation chains can be concatenated

forming a recursive structure that permits arbitrarily complex sequences of them to be applied

while retaining a finite average consumption overall. As an aside this result also shows

that bipartite distributed quantum computation can be performed instantaneously with only a

finite average entanglement consumption. Interesting comparisons with distributed cluster state

one-way quantum computation could be made [31, 32].

Despite the finiteness of the entanglement consumption, its growth is found to display an

extremely unfavourable exponential of an exponential scaling with either the Schmidt rank of

the state to be verified, or size of the system on which the nonlocal observable acts. While

this scaling is scheme dependent, there is good reason to believe that it is fundamental to the
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underlying problem. Indeed, both the complexity of constructing circuit decompositions of a

general unitary and the recursive protocol required to overcome the no-signalling constraints

individually display exponential scaling. Whether causality forces any conceivable nonlocal

measurement scheme to have this combination of scalings is an open problem.

Our aim here has been to prove that general nonlocal measurements can be accomplished

with certainty while consuming on average only a finite amount of entanglement. While

achieving this, the resulting scheme has not been proven to be optimal. Specifically, the

consumption in our schemes has no dependence on the actual value of the various rotation

angles that appear, beyond the special case of binary angles. Instead, the consumption is always

averaged over integer units of ebits and the resulting measure of complexity of the required

unitary is coarse-grained to simply counting the number of nontrivial rotation angles specifying

it. It is possible that a more efficient scheme can be devised where the entangled resources

are qubit pairs that are partially entangled, in a way that is linked to the rotation angles,

thereby providing a tailored resource and an angle-dependent entanglement consumption even

for continuous angles.

Another important deficiency of the schemes presented is that they do not yet represent

a practical deterministic measurement procedure due to the infinite amount of entanglement

that needs to be initially distributed. Here a finite average consumption arises, because we have

introduced termination conditions for both parties. The requirement for an infinite amount of

initial distributed resources appears to be of a different origin, namely the continuous real

parameters that appear in the problem. An important exception to this was shown to occur

for angles that are binary fractions of π where only a finite amount of initial entanglement

is needed [16]. The measurement of the Bell operator is an extreme example of this. Using

this result we considered the experimentally relevant case where arbitrary rotation angles are

discretized to binary angles. We showed that this results in nonlocal measurement, which is

still certain to succeed, but requires only finite initial resources. The resulting measurement

performed is an approximation to the exact one and we bounded the error of this procedure.

Although not proven it appears unlikely that an exact protocol exists for the most general

measurement which succeeds with certainty and requires only a finite amount of initial

entanglement. Finally, unlike Vaidman’s scheme [17] and stabilizer measurements, our rotation

chain methods do not easily generalize to more than two parties and so an interesting open

problem is whether all multi-party nonlocal measurements can be done with a finite average

entanglement consumption.
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Appendix A. Computing the average entanglement consumption

In this section, the calculation of the average entanglement consumption for the rotation chains

used in our scheme is described. We first calculate the average number of channels (complete
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teleportations of the system) required for the implementation of a single rotation. Using this

result and the recursive structure of the scheme, we then calculate the average consumption

for two rotations and finally generalize this to an arbitrary number of rotations concatenated

together.

A.1. A single rotation chain

Following the discussion in section 4.1, we consider a chain where Alice possesses the entire

system initially and begins the protocol as in figure 5. The probability that Alice terminates

at her qth step while Bob terminates at his pth step is given by ( 1

2
)p+q . The consumption of

channels is governed by the last party to terminate and is denoted by c1. If Alice terminates last

and at her qth opportunity, then the total number of channels used will be c1 = 2q and, hence,

even. Likewise Bob terminating last at his pth opportunity gives a consumption c1 = 2p − 1 and

is odd. Note that a rotation chain has a minimum consumption of two channels and consequently

for Bob to terminate last we require p > 2. The average number of teleportations 〈c1〉 is then

easily calculated as a sum of the case when Alice exits the chain first and the case when Bob

exits the chain first, as

〈c1〉 =
∞
∑

q=1

q
∑

p=1

(

1

2

)q+p

2q +

∞
∑

p=2

p−1
∑

q=1

(

1

2

)q+p

(2p − 1)= 5.

In order to calculate the average consumption when two rotation chains are concatenated, we

need to introduce two more average consumptions of a single chain. Specifically, we define 〈a1〉
as the average consumption when only the initiating party is actually performing any actions on

the chain and likewise 〈b1〉 for the case where only the receiving party is performing any actions

on the chain. These are readily computed as

〈a1〉 =
∞
∑

q=1

(

1

2

)q

2q = 4, and 〈b1〉 =
∞
∑

p=1

(

1

2

)p

(2p − 1)= 3.

In the next two subsections we shall generalize these quantities to 〈an〉, 〈bn〉 and 〈cn〉 to

designate the corresponding average consumptions for n chains concatenated where only the

initiating party, only the receiving party, or both parties are performing actions from the start,

respectively.

A.2. Two rotation chains concatenated

As with a single chain, the consumption for two concatenated rotation chains breaks into two

cases depending on whether Alice or Bob exits the first chain last. In figures 6 and A.1, the latter

situation is illustrated with Alice exiting the first chain on the qth opportunity, while Bob exits

on his pth, with p > q. Up to her exit point Alice must play the role of the receiving party on all

the second chains Bob has available to him at his exit points. Since, for this case, Bob has not

used any of these chains Alice consumes q〈b1〉 channels on average through these redundant

actions. Similarly, Bob must be a receiving party for all p − 1 of Alice’s second chains up to

his exit point p consuming (p − 2)〈b1〉 + 〈c1〉 channels on average, with the 〈c1〉 accounting for

the fact that one second channel (the qth) was used by both parties. At his exit point Bob will
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Figure A.1. Another version of figure 6 but with the consumption quantities

〈a1〉, 〈b1〉 and 〈c1〉 labelled for the appropriate second chains. The independent

actions of Alice and Bob are shaded for the case where Bob exits the first chain

last. The dashed ‘L’-shaped line indicates the actual path taken by the principal

system and lies where their actions overlap.

consume a further 〈a1〉 channels for the second chain which only he acts on. Finally, since Bob

exits last (so p > 2) the consumption of channels in the first chain will be 2p − 1. Performing

the analogous counting of channels for the opposite case where Alice exits the first chain last

and averaging over all the exit points p, q of the first chain with probabilities (1

2
)q+p gives

〈c2〉 = 5 + 〈c1〉 + 〈a1〉 + 2〈b1〉 = 20.

It is clear from this that the quantity 〈r2〉 = 〈a1〉 + 2〈b1〉 represents the cost of recursion within

the protocol, which in this case doubles the consumption from that expected for two independent

rotation chains. We can similarly compute the one-party consumptions for two rotations as

〈a2〉 = 4 + 〈a1〉 + 2〈b1〉 and 〈b2〉 = 3 + 〈a1〉 + 〈b1〉.

A.3. Concatenating n rotation chains

The generalization to n concatenated rotation chains can be computed straightforwardly by

using the recursive structure of the protocol. The calculation proceeds in an identical way to
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two chains except that each second chain itself is now regarded as a sequence of n − 1 chains.

This gives the linked recurrence relations for the component consumptions

〈cn〉 = 5 + 〈cn−1〉 + 〈an−1〉 + 2〈bn−1〉,
〈an〉 = 4 + 〈an−1〉 + 2〈bn−1〉,
〈bn〉 = 3 + 〈an−1〉 + 〈bn−1〉.

After denoting the recursive consumption as 〈rn〉 = 〈an−1〉 + 2〈bn−1〉, we see that it obeys a

closed recurrence relation 〈rn〉 = 3〈rn−1〉 − 〈rn−2〉 − 〈rn−3〉. Given the recursive consumptions

〈r1〉 = 0, 〈r2〉 = 10 and 〈r3〉 = 34, a closed solution for 〈rn〉 can be found as

〈rn〉 = Aφn + B

(−1

φ

)n

− 7,

where A = (3 + 2
√

2)/2, B = (3 − 2
√

2)/2 and φ = 1 +
√

2. For all but the smallest n, the

recursive consumption 〈rn〉 is well approximated by only the first term and so, as might be

anticipated, displays a pure exponential growth with n. Since the total average consumption is

〈cn〉 = 5n +
∑n

k=1〈rk〉, it also displays a pure exponential scaling asymptotically as

〈cn〉 ∼ A

(

n
∑

k=1

1

φk

)

φn ≈ Cφn,

where C = (10 + 7
√

2)/4. As shown in figure 7 this approximation to the exact consumption is

already very good once n > 4.

Appendix B. Uniformly controlled rotations

We make repeated use of a special sequence of multi-qubit controlled rotation gates, which,

following the nomenclature of [36], is called a uniformly controlled rotation. This gate is

denoted as F k
n (a,

Eθ) and signifies a k-fold controlled rotation of some qubit n about the three-

dimensional axis a by one of the 2k different rotation angles contained in Eθ = (θ1, θ2, . . . , θ2k ).

The uniformly controlled rotation where qubits 1, . . . , n − 1 are the controls and qubit n is the

target has a matrix representation

Fn−1
n (a, Eθ)=







Ra(θ1)

. . .

Ra(θ2n−1)






.

This gate is motivated by its easily interpreted action, namely it can be seen to implement

a different rotation angle on qubit n dependent on each of the 2n−1 basis configurations of

the control qubits. In figure B.1(a), the circuit defining F3
4 is shown. For our applications

we shall exclusively consider rotations in either the y-axis F k
n (y) or z-axis F k

n (z) and we

will frequently use a construction that decomposes such F k
n ’s into 2k single-parameter Pauli
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Figure B.1. (a) The circuit of multi qubit controlled rotations that constructs

the uniformly controlled rotation F3
4 (a,

Eθ) about an axis a defined by an eight-

component vector of angles Eθ . The gate symbol we use for a uniformly controlled

rotation is on the left with grey circles. (b) A decomposition in terms of

Pauli rotations is shown for a uniformly controlled rotation F2
3 (y,

Eθ) about the

y-axis and defined by a four-component vector Eθ . The corresponding Pauli

rotation angles given are related to the four angles in Eθ as ξ1 = −(θ1 + θ2 +

θ3 + θ4)/8, ξ2 = (θ2 − θ1 − θ3 + θ4)/8, ξ3 = (θ3 + θ4 − θ1 − θ2)/8 and ξ4 = (θ2 +

θ3 − θ1 − θ4)/8. This decomposition readily generalizes to uniformly controlled

rotations involving larger numbers of qubits.

rotations. Specifically for a uniformly controlled rotation F k
n (y,

Eθ) this construction involves

performing a single-qubit rotation Ry on qubit n, followed by two-qubit rotations Rzy between

each of the k control qubits and qubit n, followed by three qubit rotations Rzzy between every

pair of the k control qubits and qubit n, and so on until a final rotation Rzz···zy is performed

involving all the k control qubits and qubit n. For this example, the Pauli strings for the

rotations always specify a σy on qubit n and σz on any of the k control qubits. Each of the 2k

rotations involves a different rotation angle that itself is a linear combination of the angles in Eθ .

A detailed example of this decomposition for a single F2
3 (y) gate is given in figure B.1(b), while

in figure 10(b) a decomposition for the pair of gates F1
2 (y)F

1
2 (z) is depicted.

Appendix C. Constructing a Schmidt superposition state

For bipartite multi-qubit state verification in section 5.2, a circuit is required that generates a

normalized state in a superposition of all 2d computational basis states with arbitrary real am-

plitudes. Such a superposition state can be parameterized in terms of 2d − 1 angles 06 θ j 6 π

with amplitudes given by

λEx = cos
(

1

2
2[1]

x1

)

cos
(

1

2
2[2]

x1x2

)

· · · cos
(

1

2
2[d ]

x1x2···xd

)

,
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Figure C.1. The quantum circuit for constructing the state |ψ〉 composed of

eight qubits. The first part of the circuit constructs the four-qubit state |34〉
using a cascade of uniformly controlled rotations. The resulting state |34〉 is

a normalized superposition of each of the 24 computational basis states with

real amplitudes parameterized by the 15 angles θ0, . . . , θ14. These angles are

chosen to be the Schmidt coefficients of the target state |ψ〉. The final part of

the circuit performs a sequence of CNOT gates between the first four qubits and

an additional four creating the canonical Schmidt form for |ψ〉. This circuit can

be readily generalized to larger numbers of qubits. In particular, the structure of

the first part of the circuit is based on taking the previous k − 1 qubits in the

state |3k−1〉, adding qubit k in the state |0〉 and performing a further uniformly

controlled rotation F k−1
k . The resulting k qubits are then expanded to the state

|3k〉 and an additional 2k−1 angles are introduced into its parametrization. See

appendix C for more details.

where the angles 2 are defined from θ via

2
[1]
0 = θ0 2

[2]
00 = θ1 2

[3]
000 = θ3 · · ·

2
[1]
1 = θ0 −π 2

[2]
01 = θ1 −π 2

[3]
001 = θ3 −π

2
[2]
10 = θ2 2

[3]
010 = θ4

2
[2]
11 = θ2 −π 2

[3]
011 = θ4 −π

2
[3]
100 = θ5

2
[3]
101 = θ5 −π

2
[3]
110 = θ6

2
[3]
111 = θ6 −π.
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For example, when d = 1 this reduces to λ0 = cos( 1

2
θ0) and λ1 = sin( 1

2
θ0), while for d = 2

we have λ0 = cos(1

2
θ0) cos( 1

2
θ1), λ1 = cos( 1

2
θ0) sin( 1

2
θ1), λ2 = sin( 1

2
θ0) cos( 1

2
θ2) and λ3 =

sin( 1

2
θ0) sin( 1

2
θ2). This parameterization of coefficients naturally arises from a sequence of

uniformly controlled rotations defined in appendix B. The construction of a state |3d〉
is then achieved by a cascade of uniformly controlled rotations, all around the y-axis,

involving an incrementally increasing subset 1, . . . , k of the d qubits as F k−1
k giving a circuit

F0
1 F1

2 F2
3 . . . Fd−1

d . In figure C.1, the circuit building |34〉 is shown. This figure also shows that

as each successive qubit k is added it becomes entangled with the subset of k − 1 qubits in the

state |3k−1〉 previously rotated, leaving an enlarged total state |3k〉 that is completely defined

by the 2k − 1 independent angles θ j .
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