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We discuss the notion of quantum computational webs: These are quantum states universal for measurement-

based computation, which can be built up from a collection of simple primitives. The primitive elements—

reminiscent of building blocks in a construction kit—are (i) one-dimensional states (computational quantum

wires) with the power to process one logical qubit and (ii) suitable couplings, which connect the wires to a

computationally universal web. All elements are preparable by nearest-neighbor interactions in a single pass,

of the kind accessible in a number of physical architectures. We provide a complete classification of qubit

wires, a physically well-motivated class of universal resources that can be fully understood. Finally, we sketch

possible realizations in superlattices and explore the power of coupling mechanisms based on Ising or exchange

interactions.
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It is an intriguing fact that one can perform universal

quantum computation just by performing local measurements

on certain quantum many-body systems [1–7]. Despite enor-

mous interest in this phenomenon, our understanding of which

quantum systems offer a quantum computational speedup and

which do not is still rudimentary. Indeed, for years, the only

states known to be universal for quantum computation by

measurements were the cluster state and very close relatives

[1,2,8]. This was unsatisfactory both from a fundamental

point of view and for experimentalists who aimed to tailor

resource states to their physical systems in the laboratory. In

Refs. [6,7], a framework for the construction of new schemes

for measurement-based quantum computation (MBQC) was

introduced [further applied, for example, in Refs. [9,10]].

There, it was shown that many of the singular properties of

the cluster are not necessary for a computational speedup,

thus weakening the requirements for MBQC. This newly

found flexibility notwithstanding, it has been established that

universality is a rare property among quantum many-body

states [11]. Therefore, it would be very desirable to obtain

a full classification of the relatively few states that are

universal. While the unqualified problem still seems daunting,

in this Rapid Communication, we show that under reasonable

physically motivated constraints, a complete understanding is

possible.

The basic idea is to break up resource states into smaller

primitives, which are more amenable to analysis. Indeed, most

known states universal for MBQC come in two versions:

(i) states on a one-dimensional (1D) chain of qubits, which

have the ability to transport and to process one logical qubit

worth of quantum information [1,6,7,9,10], and (ii) two-

dimensional (2D) versions, obtained by suitably entangling

several 1D strands. We will refer to such 1D states as

quantum computational wires. They form the measurement-

based equivalent of a single qubit. Likewise, the couplings used

to form truly universal 2D resources (referred to as quantum

computational webs) are the analogs of entangling unitaries

in the gate model. To split the analysis of universal states into

wires and couplings has two advantages: (i) The primitives are

far easier to understand than the compound state they give rise

to, and (ii) in a manner reminiscent of a construction kit, wires

and couplings may be freely combined to form diverse sets of

universal resources (cf. Fig. 1).

Full classification of qubit wires. For most of what follows,

we focus on qubit systems for which we can provide a full

theory. This constitutes our main technical result. We impose

the physically reasonable requirement thatwires can be built up

from product states by means of nearest-neighbor interactions

U = e−itH (i,i+1)
in a single translationally invariant pass. Here,

the physical realizations we have in mind are atoms in an

optical lattice as in an atomic sorting device [12], settings that

exploit optical superlattices [9,13], or other architectures, such

as ones that involve interacting quantum dots [14] or instances

of networks [15]. More specifically, by a qubit computational

wire we mean

(i) a family of pure states |φn〉 of an n-qubit spin chain,

(ii) preparable from a product state |0, . . . ,0〉 by the
sequential action of a unitary gate U :

|ψn〉 = U (n,n−1) · · · U (3,2)U (2,1)|0, . . . ,0〉. (1)

(iii) In the limit of large n, the entanglement between the

left and the right half of the chain (in the sense of an area law)

approaches one ebit.

These axioms may seem surprisingly weak: Earlier, we

loosely characterized computational wires as states with the

power to transport and to process one logical qubit. It is

one central result of this Rapid Communication that any state

that fulfills (i)–(iii) is automatically useful for information

processing. In the following, we will prove the following

complete classification of qubit wires up to local-basis

changes:

Observation 1 (Classification of qubit wires). There is a

three-parameter family of computational qubit wires. A wire

is specified by an

(a) always-on operationW ∈ SU (2), which acts on corre-

lation space (see the following) after every step, independent

of the basis chosen or the measurement outcome, and a

(b) by-product angle φ, which specifies how sensitive the

resource is to the inherent randomness of measurements.
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FIG. 1. (Color online) Sketch of the primitives from which one

can built up new models for computing: (a) A general quantum

computational wire. Two different coupling schemes based on (c),

(e) an Ising-type interaction or (b), (d) Heisenberg-type or exchange

interaction (the latter is defined for cluster wires).

To make sense of this statement, first note that any |ψn〉 has
a matrix product state (MPS) representation [6,7,16]:

|ψn〉 =
∑

x1,...,xn

〈xn|A[xn−1] · · · A[x1]|0〉|x1, . . . ,xn〉, (2)

where xi ∈ {0,1} and A[0],A[1] are 2× 2 matrices.

[Equation (2) follows from Eq. (1) by setting A[x]i,j =
〈i,x|U |0,j 〉.) The auxiliary 2D vector space the matrices

A[0/1] act on is called correlation space. We very briefly

recall the basic idea of Refs. [6,7]. Let |φ(i)〉 = c
(i)
0 |0〉 + c

(i)
1 |1〉

be a local-state vector, and set A[φ(i)] = c̄
(i)
0 A[0]+ c̄

(i)
1 A[1].

Then,

(〈φ(1)| ⊗ · · · ⊗ 〈φ(n)|)|ψn〉 = 〈φn|A[φn−1] · · · A[φ1]|0〉.

Hence, a local measurement with an outcome that corresponds

to |φi〉 is connected with the action of the operator A[φi] on

the correlation space. MBQC can be understood completely in

terms of this relation between local measurements and logical

computations on correlation space [6,7]. With these notions,

the precise statement of Observation 1 is that any wire allows

for an MPS representation with matrices,

B[0] = 2−1/2W, B[1] = 2−1/2WS(φ), (3)

where S(φ) = diag(e−iφ/2,eiφ/2); see Fig. 2(a). [That is to say,

anymatrix that arises fromEq. (2) can be brought into this form

by a suitable rescaling and conjugation; see the following.]

Observation 1 goes a long way toward understanding the

structure of qubit wires. Assume that wemeasure site by site in

the computational basis. By Eq. (3), at every step, the same

always-on operation W will be applied to the correlation space,

irrespective of the measurement outcome. Some tribute must

be paid to the random nature of quantum measurements. It

comes in the form of the by-product operation S(φ), which acts

on the correlation system in case the “wrong” measurement

outcome (|1〉 instead of |0〉) is obtained. It is remarkable that
this penalty is described by a single parameter: the by-product

angle φ.1

Examples of qubit wires. The paradigmatic qubit wire is the

cluster state. Here,W = H is theHadamard gate, andφ = π is

1Note that for the definition of a qubit wire as such, we do not require

the ability to compensate randomness of outcomes by exploiting a

finite-group structure of the by-product operators.

A[0] = 2−1/2W

A[1] = 2−1/2WS(φ)
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FIG. 2. (Color online) (a)Normal formof a qubitwire, (b) entropy

of entanglement of a single site as a function of the by-product angle,

and (c) trajectory of all operations realizable in a wire with φ =
π (circle) and φ = π/2 (ellipse). Every point

√
peiδ on the curve

corresponds to the operation S(−2δ), realizable with probability p.

the highest possible value.2 Thus, we can put two well-known

properties of the cluster into a more general context: (i) In

every step, a Hadamard gate H is applied to the logical qubit,

and (ii) a wrong measurement outcome causes the application

of an extra S(π ) ' σz gate on correlation space.

Another interesting new resource where the role of the

by-product angle can be highlighted is the T resource, named

after the common notation T = S(π/2) for a phase gate. Here,

we take W = H (as for the cluster), but the by-product angle

is just φ = π/2 (so that a measurement in the computational

basis gives rise to either H or HT ). This qubit wire has a

nonmaximal entropy of entanglement of a single site with

respect to the rest of the lattice. The intuitive explanation is that

T is close to the identity, so the state of the correlation system

(and, hence, the rest of the chain) does not strongly depend on

the outcomes of local measurements on any given site.

The proof of Observation 1 will make repeated use of

the theory of MPSs [16] and of qubit channels [17]. Any

MPS can be represented with matrices such that A[0]†A[0]+
A[1]†A[1] = 1 [16]. The matrices give rise to a trace-

preserving channel ρ 7→ E(ρ) =
∑

x A[x]ρA[x]†. If one

assumes that E has a spectral gap,3 the half chains share one

ebit of entanglement iff E is unital [16]. In this case, it follows

easily from Ref. [17] that E(ρ) = p0U0ρU
†
0 + p1U1ρU

†
1 ,

with suitable Ui ∈ SU (2). From the basic theory of quantum

channels, we know that there is a unitary V ∈ SU (2) such that

p
1/2

i Ui =
∑

j Vi,jA[j ]. With that being nothing but the trans-

formation rule for MPS representations under the local-basis

change, we conclude that there is a basis in which |ψn〉 is rep-
resented with matricesA′[i] = p

1/2

i Ui . Next, anMPS does not

change if both matrices are conjugated by the same operator

X. There is an X ∈ SU (2) such that XU
†
0U1X

† = eiαS(φ) for

α,φ ∈ R. To set W = XU0X
† and B[i] = XA′[i]X† implies

B[0] = p
1/2

0 W , B[1] = p
1/2

1 eiαWS(φ). By performing the

local-basis change |1〉 7→ eiα|1〉, if necessary, we may assume
that α = 0. The fact that p0,p1 can be chosen to be 1/2 will be

explained later in amore general context. Conversely, anyMPS

with matrices as in Eq. (3) is a qubit wire. A translationally

2Note that our definition differs from the conventional one by the

action of a local Hadamard gate on every site.
3Away from (and independent of) the boundaries, an MPS is

completely specified by the matrices Eq. (3) iff the map E has a

spectral gap [16]. This is true iff W is neither diagonal nor equal to

σx . We will always implicitly assume this generic situation.
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invariant preparation scheme can easily be derived by inverting

the construction following Eq. (2).
Computation with qubit wires. So far we have shown that

one can implement some unitary operation in a quantum wire
(i.e., transport quantum information). In order to process

it, one must have some freedom to choose which operation
to apply. It will turn out—rather surprisingly—that two
coincidences conspire to make any qubit quantum wire useful
for that purpose. To that end, consider the one-parameter
family of bases:

|0θ 〉 = sin(θ )|0〉 + cos(θ )|1〉, |1θ 〉 = cos(θ )|0〉 − sin(θ )|1〉.
One may check directly that the operations A[0θ ] ∝
W [sin θ1 + cos θS(φ)] are unitary up to scaling. The two
unexpected coincidences are: (i) For any quantum wire, there
is a continuous family of projections, which gives rise to
unitary evolution, and (ii) the set these projections includes
entire bases—so that measuring in these bases corresponds to
a unitary logical computation regardless of the outcome.

Observation 2 (Unitary evolution). For any computational
wire, a measurement in any basis from the one-parameter set
{|0θ 〉,|1θ 〉} induces a unitary evolution in correlation space.
Let us investigate the realizable unitaries. Clearly, A[0θ ]

has the form WU (θ,φ), where U (θ,φ) is a diagonal matrix
with eigenvaluesλ± = sin(θ )+ cos(θ )e±iφ/2. Let δ = arg(λ+)
and p = |λ+|2. Then, U (θ,φ) = √

pS(−2δ), and basic MPS
theory yields that the corresponding measurement outcome
is obtained with probability p. Thus, for fixed φ, the set of
phase gates S(−2δ), which is realizable, forms an ellipse; see
Fig. 2(c),4 in the complex plane with parametrization:

[Reλ+(θ,φ),Imλ+(θ,φ)]T =

(

1 cosφ/2

0 sinφ/2

)(

sin θ

cos θ

)

.

Observation 3 (Phase gates). In any computational wire, an

arbitrary phase gateS(δ) can be implemented in a single step.

If we leave the issue of randomness aside for a moment,

we see that one can realize any unitary of the form U =
WS(δn)WS(δn−1) · · · WS(δ1) for some n. By invoking the

assumption (see footnote 3), every U ∈ SU (2) is of that form.

Observation 4 (Universal rotations). Except from a set

of measure zero, all computational qubit wires allow for the

implementation of any unitaryU ∈ SU (2) in correlation space.

Local properties. From MPS theory [16], one finds that the

reduced state of a single site far away from the boundary is

given by ρ =
∑

i,j tr(A[i]
†A[j ])|i〉〈j |/2. Explicitly:

ρ =

(

1 cosφ/2

cosφ/2 1

)/

2. (4)

Interestingly, we see that the always-on operationW does not

affect the local properties of the state. Hence, one can conclude

[see Fig. 2(b)]:

Observation 5 (Small entanglement in wires). Computa-

tional wires with arbitrarily low local entanglement exist.

4We can now prove the earlier claim that, in the normal form Eq. (3),

the weights of the two matrices may be chosen to be equal. That

follows from the fact that there are two perpendicular vectors that

intersect the ellipse at the same length
√

p.

Compensating randomness. In the preceding classifica-

tion, we required a qubit wire to allow for transport-

ing and processing one logical qubit. Also, we yet need

to clarify how to deal with the inherent randomness of

quantum measurements. If the always-on term W and

the by-product operator S(φ) generate a finite group B,
there is a simple and efficient possibility to cope with

randomness, introduced in Ref. [6]: Suppose we would like to

implementWS(δ) but instead obtain a measurement outcome,

which causesWS(δ′) to be realized.Now, bymeasuring several
consecutive sites in the computational basis, we effectively

implement a random walk on the finite group B in correlation
space. This random walk will visit any element of B after a fi-
nite expected number of steps. Hence, wewill obtainW−1 ∈ B
after several steps, which will yield a total evolution of

W−1WS(δ′) = S(δ′). Then, one tries to implementS(−δ′ + δ),

which is possible by Observation 4.5 It remains to be shown

how logical information in the correlation system can be

prepared and can be read out. As for preparation, note

that A[2−1/2(|0〉 − eφ/2|1〉)] ∝ |1〉〈1| has rank 1. Hence, if,
after a local measurement, the outcome that corresponds to

2−1/2(|0〉 − eφ/2|1〉) is obtained, the correlation system will

be in |1〉, irrespective of its previous state—so preparation is
possible. A readout scheme can be devised along these lines.

Observation 6 (Preparation and readout). For any qubit

wire, one can efficiently prepare the correlation system in a

known state and read out the latter by local measurements.

Ising coupling. All wires introduced so far can be coupled

to form a 2D state, universal for quantum computation.

Remarkably, there are several coupling schemes, which work

equally well for all 1D states so far introduced. Space

limitations require us to describe only one and to be somewhat

sketchy (however, all central points are explained; seeRef. [18]

for further details). The coupling scheme, depicted in Fig. 3(a),

is based on a setting where {1,2,3} and {5,6,7} belong to any
wire, and 4 has been prepared in 2−1/2(|0〉 + |1〉). One now
entangles sites {2,4} and sites {4,6} via Ising interactions in a
suitable basis. More concretely, one performs a controlled-σz

gate (CZ(2,4)) between site 2 and site 4 and then applies

W (6)
CZ
(4,6)(W (6))†, W =

(

1 1

eiφ/2 −e−iφ/2

)

2−1/2,

between systems 4 and 6. To decouple the wires, just measure

4 in the computational basis. In the case of the |0〉 outcome,
we have undone the coupling; a |1〉 outcome brings us back to
the original state, up to the action of σz on site 2 and WσzW

†

on 6. To perform an entangling gate, one measures 6 in the

σz basis and 4 in the σx basis, by getting outcomes x4,z6 ∈
{0,1}, respectively. Let us assume that x4 + z6 is even.

Choose γ,ε such that eiε/2 sin γ = 1/2(1− eiφ), and let δ

5More generally, the method sketched previously may be im-

plemented as soon as there is some basis {|0θ 〉,|1θ 〉} such that
A[0θ ],A[1θ ] generate a finite group (up to scalars). It can be shown

that, whenever one such basis exists, there is a one-parameter set of

bases with the same property.4 This gives rise to continuous families

of wires in which randomness can be compensated by the same

method.
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FIG. 3. (Color online) (a) Universal coupling scheme based on

two (Ising-type) controlled-unitary gates for arbitrary qubit wires.

For completeness, we also state the tensor network in the language

of Refs. [6,7]. (b) A coupling of cluster wires based on an exchange

interaction.

be the solution to | cos δ| = | sin δ sin γ + cos δ cos γ eiφ/2|
(which always exists). Finally, measure site 2 in the ba-

sis |ψ0〉 = e−iε sin δ|0〉 + cos δ|1〉, |ψ1〉 = −e−iε cos δ|0〉 +
sin δ|1〉. A lengthy—but, by these definitions, fully specified—
calculation shows that, if we get the |ψ0〉 outcome, then one
implements the unitary entangling operation,

V = W |0〉〈0| ⊗ {cos(δ)A[1]} + W |1〉〈1|

⊗{sin(δ) sin(γ )A[0]+ cos(δ) cos(γ )A[1]}, (5)

between the upper and lower correlation spaces. The orthog-

onal outcome and the case of odd x4 + z6 may be treated

analogously.

Observation 7 (Ising-type coupling). Arbitrary qubit wires

can be coupled with suitable phase gates.

We use the remaining paragraphs to give an outlook on

further results and ideas.

Exchange interaction coupling. By using the ideas pre-

sented earlier, one may check that cluster wires can be coupled

together by using an exchange interaction Hamiltonian:Hex =
|9−〉〈9−|, where |9−〉 = 2−1/2(|0,1〉 − |1,0〉). The topology
used here is a hexagonal lattice with additional spacings; see

Fig. 1(b). The coupling operation used to obtain a universal

resource is given by U = eiπ/2Hex [18].

Observation 8 (Exchange interaction coupling). An

exchange interaction Hamiltonian can be used to couple

cluster wires.

Bose-Hubbard-type and continuous-variable wires.Widen-

ing our scope beyond qubits,we look at bosons in optical super-

lattices [9,13], subject to aBose-Hubbard interaction (compare

also Ref. [19]). Consider the situation where the potential

forms a string of doublewells, with the right site of each double

well occupied by a single particle |9(t = 0)〉 = |0,1, . . . ,0,1〉.
In the first step, one lets the two sites of each double well

interact withH = a
†
LaR + a

†
RaL for time t = π/4,which leads

to pairs in the state |0,1〉 + i|1,0〉. Second—in the fashion of
a quantum cellular automaton—one shifts the superlattice so

that neighboring pairs that have not previously interacted are

subjected to the precedingHamiltonian. One obtains a globally

entangled state with up to three excitations per site and entropy

of entanglement between half chains of up to E(ρ) = 1.725.

If we assume the power to perform tilted measurements in

the particle number basis (or by making use of suitable

internal degrees of freedom), it easily is checked that this

Bose-Hubbard wire allows for the transport of one logical

qubit and arbitrary rotations along one axis. This is an example

of a primitive where the local Hilbert space dimension is, in

principle, infinite. Further steps toward continuous-variable

(CV) schemes could be done by considering correlation spaces

where only a subspace of superpositions of finitely many

coherent states is occupied such that the correlation space is

still finite dimensional. The framework established here forms

a starting point to study such CV computational schemes.

Observation 9 (Bose-Hubbard wires). Suitable states

preparable byBose-Hubbard interactions in superlattices allow

for the transport of one logical qubit.

Summary. We have introduced a toolbox of primitives

for constructing new quantum computational schemes. For

the qubit case, we provide a full classification. The results

constitute a further step toward the goal of understanding what

is ultimately needed for quantum computation andwhat degree

of freedom there is in designing computational schemes.
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