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If a quantum system is subject to noise, it is possible to perform quantum error correction reversing the action

of the noise if and only if no information about the system’s quantum state leaks to the environment. In this

article, we develop an analogous duality in the case that the environment approximately forgets the identity

of the quantum state, a weaker condition satisfied by ε-randomizing maps. Specifically, we show that the

environment approximately forgets quantum states if and only if the original channel approximately preserves

pairwise fidelities of pure inputs, an observation we call the fidelity alternative. Using this tool, we then go on

to study the task of using the output of a channel to simulate restricted classes of measurements on a space of

input states. The case of simulating measurements that test whether the input state is an arbitrary pure state

is known as equality testing or quantum identification. We establish that the optimal amortized rate at which

quantum states can be identified through a noisy quantum channel is equal to the entanglement-assisted classical

capacity of the channel, despite the fact that the task is quantum, not classical, and entanglement-assistance is

not allowed. In particular, this rate is strictly positive for every quantum channel, including classical channels,

despite the fact that the ability to identify cannot be cloned.

I. INTRODUCTION

Quantum channels in modern quantum information the-

ory [1] are modeled as completely positive and trace-

preserving maps N : S(A) → S(B) between the state spaces

of quantum systems with Hilbert spaces A and B. The re-

quirement of complete positivity means that N is not just

positive, mapping positive semidefinite operators to positive

semidefinite operators, but that id ⊗ N is positive for the

identity map id on any S(R). This distinction plays a cen-

tral role in the geometry of entanglement because positive but

not completely positive maps can be used to identify entan-

gled quantum states [2]. This paper will take as its starting

point a similar observation about channel norms.

The Stinespring dilation theorem establishes a fundamen-

tal property of quantum channels: for every channel N there

exists an ancilla space E and an isometry V : A ↪→ B ⊗ E
such that N (ρ) = trE V ρV

† [3]. This means that quantum

noise can always be interpreted as information loss in an oth-

erwise deterministic evolution. Since E and V are essentially

unique (up to unitary equivalence), each channel N also has

an associated complementary channel N c : S(A) → S(E),
with N c(ρ) = trB V ρV

†, which is uniquely defined up to

coordinate changes of E.

In quantum Shannon theoretic error correction we try to

find two channels E and D (an encoder and decoder) such that

D ◦ N ◦ E ≈ id. For now we shall consider the encoding E
fixed, so that N ◦ E can be treated as a single channel. The

central insight of quantum error correction [4–7] is that the

existence of a decoding operation D for a channel N , i.e.

∀ρ ∈ S(RA)
∥∥(id⊗D ◦ N )ρRA − ρRA

∥∥
1
≤ ε, (1)

∗A preliminary version of this paper was presented as a contributed talk at

the 12th QIP workshop, Santa Fe (NM), 12-16 January 2009.

is equivalent to the complementary channel being completely

forgetful: for all Hilbert spaces R,

∀ρ, σ ∈ S(RA)
∥∥(id⊗N c)ρRA − (id⊗N c)σRA

∥∥
1
≤ δ,

(2)

with a universal relation between ε and δ.

Here we determine a matching duality for the weaker

property of the complementary channel being only (approx-

imately) forgetful:

∀ρ, σ ∈ S(A)
∥∥N c(ρA)−N c(σA)

∥∥
1
≤ δ. (3)

That this is a much weaker property was noticed in the con-

texts of approximate encryption and remote state prepara-

tion [8, 9]. The difference between Eqs. (2) and (3) is pre-

cisely the difference between two norms on superoperators,

the naı̈ve one inherited from the trace norm, and the so-

called completely bounded norm [7, 10, 11]. Not surprisingly,

Eq. (3) will hold provided the main channel approximately

preserves the pairwise fidelities between input pure states, a

property we call geometry preservation:

∀|ψ〉, |ϕ〉 ∈ A
∣∣‖ϕ− ψ‖1 − ‖N (ϕ) −N (ψ)‖1

∣∣ ≤ ε. (4)

In fact, the reverse is also true. Our investigations will re-

volve around the fidelity alternative, which states that a chan-

nel N is geometry-preserving if and only if its complement

N c is approximately forgetful, with dimension-independent

functions relating δ and ε. Thus, an isometry with two outputs

can preserve geometry to at most one of them. Symmetrically,

the isometry can be forgetful to at most one output. A sin-

gle choice determines which output preserves geometry and

which is forgetful; this choice gives the principle its name.

The geometry preservation property, though much weaker

than transmission of quantum information, must nonetheless

be considered a way of preserving coherence: by virtue of the

fidelity alternative, geometry preservation cannot be cloned.

Indeed, if a channel has multiple outputs, one of which is

geometry-preserving, then the rest must be forgetful.
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Via the fidelity alternative, the many known examples of

approximately forgetful channels that are not completely for-

getful also provide examples of geometry-preserving channels

that are not correctable. Most strikingly, it is possible to pre-

serve geometry while almost halving the number of qubits

from input to output [12]. In that case, the geometry of the unit

sphere in A is necessarily encoded into the eigenvectors and

eigenvalues of the much smaller output state on B. In con-

trast to quantum error correction, dimension counting reveals

the mixedness of the output state to be crucial to preserving

the geometry. Some of the geometry of the input state space

of pure quantum states is thus faithfully encoded as noise in

the output state.

Moreover, the analogy with the quantum error correction

duality can be made much stronger. There is a channel com-

munication task very similar to quantum state transmission

which is intimately related to geometry preservation: quan-

tum identification [12, 13].

Quantum identification is a cooperative communication game

between two parties – conventionally called Alice and Bob

– where Alice has a given quantum state that she encodes in

some way into the channel, and Bob only wants to simulate

measurements consisting of an arbitrary pure state projector

and its complement, which can interpreted as performing the

experiment asking “Is this the state?” [12]. The idea is that

Alice has an encoding channel E and Bob has, for every pure

state ϕ, a POVM (Dϕ, 11 −Dϕ) such that

∀|ψ〉, |ϕ〉
∣∣∣tr

(
(N ◦ E)ψ

)
Dϕ − trψϕ

∣∣∣ ≤ ε. (5)

Such an object is called an ε-quantum-ID code. (The name is

adapted from the classical case [14–16].)

Note that Bob measures the output of the channel, but the

quality of the code is measured by how well the statistics of

this measurement approximate the statistics of the ideal mea-

surement he wants to perform on the message state. While it

may seem that this is an odd way of defining a quantum com-

munication task, normal quantum error correction can also be

described this way; namely, Bob wants to be able to simu-

late all measurements on the message state. Clearly, if he can

perform quantum error correction in the usual sense, then he

can perform the simulation. But conversely, it follows from

the methods of [17–19] that if he only has two measurements

approximating generalized X and Z observables sufficiently

well, he can build a quantum error correction procedure D.

Moreover, a quantum-ID code with ε = 0 is itself a quan-

tum error correcting code; there is no difference between error

correction and identification if both tasks are to be performed

perfectly. Even the task of transmitting classical information

is conveniently reflected in this framework. In that case, Bob

only wants to simulate the measurement of the generalized Z
observable.

With this, one can define in the usual way a quantum-ID

capacity QID(N ) of many uses of the channel as the largest

rate of qubits that can be encoded and decoded as in Eq. (5)

with vanishing error – see Section III for details. Previously

it was only known that for the noiseless qubit channel id2,

QID(id2) = 2, double the value of both the the quantum and

classical transmission capacities [12].

While reasoning directly about quantum identification

codes has proved challenging, the duality between geome-

try preservation and approximate forgetfulness provides a new

approach to studying them. Up to some technical conditions,

geometry preservation is equivalent to the existence of a quan-

tum identification code. It is therefore possible to construct

quantum identification codes by finding approximately for-

getful maps. This approach is fruitful because destroying

information is a comparatively indiscriminate task. Indeed,

the analogous strategy has led to a number of straightforward

proofs of the hashing bound on the quantum capacity of a

quantum channel [18, 20–22]. Classical data is not immune

to analysis by purification either. The duality between privacy

amplification and data compression with quantum side infor-

mation has recently led to a proof in this spirit [23] of the

Holevo-Schumacher-Westmoreland theorem on the classical

capacity of a quantum channel [5, 24] .

With the fidelity alternative in hand, it is even possible to

calculate a simple formula for an amortized version of the

quantum identification capacity; it is exactly equal to the

entanglement-assisted classical capacity of a quantum chan-

nel.

A. Structure of the paper

Section II contains the formal statement and proof of the fi-

delity alternative. The duality is studied in more detail in Sec-

tion III, where forgetfulness is shown to be nearly equivalent

to quantum identification. In that section we provide a simple

statement whose proof eliminates many technical difficulties,

as well as a more flexible version that we prove from first

principles. Section IV uses the flexible version of the equiv-

alence to construct quantum identification codes for memory-

less quantum channels.

B. Notation

We will restrict our attention throughout to finite dimen-

sional Hilbert spaces. If A is a Hilbert space, we write S(A)
for the set of density operators acting on A. Also, if A
and B are two finite dimensional Hilbert spaces, we write

AB ≡ A ⊗ B for their tensor product. The Hilbert spaces

on which linear operators act will be denoted by a superscript.

For instance, we writeϕAB for a density operator onAB. Par-

tial traces will be abbreviated by omitting superscripts, such as

ϕA ≡ trB ϕ
AB . We use a similar notation for pure states, e.g.

|ψ〉AB ∈ AB, while abbreviating ψAB ≡ |ψ〉〈ψ|AB . We will

write idA for the identity map on S(A) and id2 for the identity

qubit channel. The symbol 11A will be reserved for the identity

matrix acting on the Hilbert spaceA and πA = 11A/ dimA for

the maximally mixed state on A.

The trace norm of an operator, ‖X‖1 is defined to be

tr |X | = tr
√
X†X . The similarity of two density operatorsϕ

and ψ can be measured by trace distance 1
2‖ϕ−ψ‖1, which is
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equal to the maximum over all possible measurements of the

variational distance between the outcome probabilities for the

two states. The trace distance is zero for identical states and

one for perfectly distinguishable states.

A complementary measure is the mixed state fidelity

F (ϕ, ψ) =
∥∥∥√ϕ

√
ψ
∥∥∥
2

1
=

(
tr

√√
ϕψ

√
ϕ

)2

, (6)

defined such that when one of the states is pure, F (ϕ, ψ) =
trϕψ. More generally, the fidelity is equal to one for iden-

tical states and zero for perfectly distinguishable states. We

will make frequent use of the following fundamental inequal-

ity between fidelity and trace distance of states [25, Prop. 5]:

1−
√
F (ϕ, ψ) ≤ 1

2
‖ϕ− ψ‖1 ≤

√
1− F (ϕ, ψ). (7)

Both measures can be extended to unnormalized states, but

Eq. (7) need not hold in that case. Further properties of the

distance measures are collected in Appendix A.

II. THE FIDELITY ALTERNATIVE

Our investigations will revolve around the duality between

geometry preservation and approximate forgetfulness, which

we call the fidelity alternative. The rigorous statement is as

follows:

Theorem 1 (Fidelity alternative) Let N : S(A) → S(B)
be a quantum channel with complementary channel N c :
S(A) → S(E). Approximate geometry preservation on B
implies approximate forgetfulness for E. That is,

∀|ψ〉, |ϕ〉 ∈ A ‖ϕ− ψ‖1 − ‖N (ϕ)−N (ψ)‖1 ≤ δ

implies ∀|ψ〉, |ϕ〉 ∈ A ‖N c(ϕ)−N c(ψ)‖1 ≤ 4
√
2δ1/4.

Conversely, approximate forgetfulness for E implies approxi-

mate geometry preservation on B:

∀|ψ〉, |ϕ〉 ∈ A ‖N c(ϕ)−N c(ψ)‖1 ≤ ε implies

∀|ψ〉, |ϕ〉 ∈ A ‖ϕ− ψ‖1 − ‖N (ϕ)−N (ψ)‖1 ≤ 4
√
2ε.

Note that we have dropped an absolute value sign as com-

pared to Eq. (4) since ‖ϕ − ψ‖1 ≥ ‖N (ϕ) − N (ψ)‖1 holds

automatically for all quantum channels N . (See, for example,

[26].)

The duality is a straightforward consequence of two ba-

sic results in quantum information theory. The first is that

the ability to transmit classical data in two conjugate bases is

equivalent to the ability to transmit entanglement. That obser-

vation is the basis for the stabilizer approach to quantum error

correcting codes [27]. Here we will use a clean approximate

formulation due to Renes [19]. The second result is the conti-

nuity of the Stinespring dilation of a quantum channel, estab-

lished by Kretschmann et al. [7]. Here we only need a corol-

lary, which can be interpreted as a bound on the information-

disturbance trade-off. The theorem is stated in terms of the

following norms:

Definition 2 For a linear superoperator Γ : S(A) → S(B),
let

‖Γ‖(k)� = max
‖X‖1≤1

∥∥(idk ⊗ Γ)X
∥∥
1
,

where X is an operator on C
k ⊗ A. Define ‖Γ‖� =

supk ‖Γ‖(k)� , the completely bounded trace norm [10] (also

known as diamond norm [11]).

Note that the convexity of the trace norm implies that

the supremum is achieved on a rank-one operator (if Γ is

Hermitian-preserving, in fact on a pure quantum state). Since

any operator on A can be “purified” by a system of dimen-

sion dimA, it follows that the supremum is achieved when

k = dimA.

Theorem 3 (Information-disturbance [7]) Let V : A →
B ⊗E be an isometric extension of the channelN : S(A) →
S(B) and let N c : S(A) → S(E) be the complementary

channel. Fix a state ρ ∈ S(A) and let R : S(A) → S(E) be
the channel taking all inputs to N c(ρ). Then

1

4
inf
D

‖D ◦ N − id‖2� ≤ ‖N c −R‖� ≤ 2 inf
D

‖D ◦ N − id‖1/2� .

Both infimums are over all quantum channels. ut

The proof of the fidelity alternative is now a fairly routine mat-

ter of combining these results:

Proof of Theorem 1 We begin by assuming approximate

geometry preservation. Fix |ϕ〉 ⊥ |ψ〉 in A then set T =
span(|ϕ〉, |ψ〉). Suppose that

‖N (ω)−N (ξ)‖1 ≥ ‖ω − ξ‖1 − δ

for all |ω〉, |ξ〉 ∈ A. Then if |χ±〉 = 1√
2
(|ϕ〉 ± |ψ〉), we have

‖N (ϕ) −N (ψ)‖1 ≥ 2− δ and

‖N (χ+)−N (χ−)‖1 ≥ 2− δ.

We can therefore transmit data in two conjugate bases through

N , which implies that entanglement is also faithfully trans-

mitted. In particular [19, Thm. 1] (with “guessing probability”

1−δ/2) implies that there exists a channel D : S(B) → S(T )
such that

‖(id2 ⊗D ◦N )Φ − Φ‖1 ≤ 2
√
δ,

where |Φ〉 = 1√
2
(|0〉|ϕ〉+|1〉|ψ〉). But trace norm monotonic-

ity with respect to dephasing the first system then gives

‖(id2 ⊗D ◦ N )Φ− Φ‖1
≥ 1

2

∥∥|0〉〈0| ⊗ [(D ◦ N )ϕ− ϕ]

+ |1〉〈1| ⊗ [(D ◦ N )ψ − ψ]
∥∥
1

=
1

2
‖(D ◦ N )ϕ− ϕ‖1 +

1

2
‖(D ◦ N )ψ − ψ‖1.
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Combining this with Lemma 19 in Appendix A implies that

‖D◦N−id2‖� ≤ 8
√
δ. The information-disturbance theorem

(Theorem 3) then implies that for all |ω〉 ∈ T

‖N c(ϕ)−N c(ω)‖1 ≤ 2(8
√
δ)1/2 = 4

√
2δ1/4.

Since T is an arbitrary two-dimensional subspace of A, how-

ever, the inequality must hold for all |ϕ〉 and |ω〉 in A.

For the converse, suppose that, for all states |ϕ〉, |ψ〉 ∈ A,

the inequality ‖N c(ϕ) − N c(ψ)‖1 ≤ ε holds. Fix |ϕ〉
and |ψ〉 then let Ñ c be the restriction of N c to states on

T = span(|ϕ〉, |ψ〉). Let R be the channel on S(T ) that al-

ways outputs N c(ψ). Then once more by Lemma 19 in Ap-

pendix A, ‖Ñ c − R‖� ≤ 2ε. By Theorem 3, there exists a

channel D : S(B) → S(T ) such that for all |ω〉 ∈ T ,

1

4
‖(D ◦N )ω − ω‖21 ≤ 2ε.

Applying the triangle inequality several more times gives:

4
√
2ε ≥ ‖(D ◦ N )ϕ − ϕ‖1 + ‖(D ◦ N )ψ − ψ‖1

≥ ‖ϕ− ψ‖1 − ‖(D ◦ N )(ϕ − ψ)‖1
≥ ‖ϕ− ψ‖1 − ‖N (ϕ− ψ)‖1 ,

where the final inequality used that the quantum channel D
cannot increase the trace norm. Rearranging the final expres-

sion gives the desired inequality. ut

III. QUANTUM IDENTIFICATION

Quantum identification allows a sender to transmit arbi-

trary quantum states but only allows the receiver to perform

a restricted set of measurements, namely tests to determine

whether the transmitted state consists of an arbitrary target

state. The receiver gets to choose the target state after the

sender has transmitted, so the code must work for all targets.

If the test can be performed perfectly, then quantum identifica-

tion is easily seen to be equivalent to quantum state transmis-

sion, but in the approximate setting, the tasks are not equiva-

lent.

Definition 4 [12] An ε-quantum-ID code for the channelN :
S(A) → S(B) consists of an encoding map E : S(S) →
S(A) and, for every pure state |ϕ〉 ∈ S, a POVM (Dϕ, 11 −
Dϕ) acting on S(B) such that

∀|ψ〉, |ϕ〉 ∈ S
∣∣∣ tr

(
(N ◦ E)ψ

)
Dϕ − |〈ϕ|ψ〉|2

∣∣∣ ≤ ε.

If the receiver had been able to perform the measurement

(|ϕ〉〈ϕ|, 11−|ϕ〉〈ϕ|) on the input state |ψ〉, then he would have

observed outcome |ϕ〉〈ϕ| with probability |〈ϕ|ψ〉|2. The defi-

nition therefore ensures that the receiver can simulate the mea-

surement for all input and target states.

Many variants of the definition have been proposed. In

particular, one could imagine drawing a distinction between

oblivious ID codes, in which the sender is only given a phys-

ical quantum state to send, and visible ID codes, in which the

sender knows the identity of the state she is trying to trans-

mit [12]. Entanglement assistance is also interesting and ex-

ceptionally powerful in the visible setting [28]. A different

task that is nonetheless similar in spirit is to use quantum

states as “fingerprints” for identifying classical messages in

a model where pairs of messages are to be compared by a ref-

eree [29]. For comparing quantum states, however, the simple

definition considered here is probably the most natural.

If we integrate the encoding E and noisy channel N from

Definition 4 into a single map with outputB and environment

E, we may think of the code Hilbert space S as a subspace of

B⊗E. More formally, if we let V be the Stinespring dilation

of N ◦ E , then V : S ↪→ B ⊗ E and we can identify the code

with a subspace of B ⊗ E. This identification simplifies the

notation and we will use it for the remainder of the paper.

The main result of this section is a demonstration that a sub-

space of B ⊗ E is a quantum-ID code for B iff it is approx-

imately forgetful for E. (There is a small technical caveat to

the statement: the reduced states on E must also obey a reg-

ularity condition for the reverse implication to hold, but we

will defer discussion of the details.) For the moment, let us

begin by considering the relationship between quantum iden-

tification and geometry preservation.

Lemma 5 Let S ⊆ B ⊗ E be a subspace of a tensor product

Hilbert space that is an ε-quantum-ID code for B. In other

words, suppose that, for each pure state |ϕ〉 ∈ S, there exists
an operator 0 ≤ Dϕ ≤ 11 on B such that for all pure states

|ϕ〉, |ψ〉 ∈ S,

∣∣trψBDϕ − trψϕ
∣∣ ≤ ε.

Then, for all |ϕ〉, |ψ〉 ∈ S,

F (ϕ, ψ) ≤ F (ϕB , ψB) ≤ F (ϕ, ψ) + 4
√
ε.

Proof Consider the measurement (Dϕ, 11 − Dϕ) and asso-

ciated channel M : ρ 7→ (tr ρDϕ, 1 − tr ρDϕ) which acts

on S(B). By applying the monotonicity of the fidelity under

quantum channels to trE and M , we get

F (ψ, ϕ) ≤ F (ψB , ϕB) ≤ F
(
M(ψB),M(ϕB)

)

≤
(√

trψBDϕ +
√
ε

)2

≤ F (ψ, ϕ) + 2
√
ε+ ε+ ε,

which proves the lemma. ut
The fidelity is therefore approximately preserved by quan-

tum identification codes. Geometry preservation is defined in

terms of the trace distance, however, not the fidelity. While it

is indeed the case that quantum identification codes preserve

geometry, the argument is somewhat more delicate because

applying the measurement (Dϕ, 11 −Dϕ) causes a significant

drop in the trace distance even as it leaves the fidelity nearly

unchanged. Instead, Theorem 7 will allow us to infer that
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quantum identification codes preserve geometry by virtue of

the fact that their complementary channels are forgetful.

In order to succeed at quantum identification, the following

lemma demonstrates that it is sufficient to be able to identify

orthogonal states:

Lemma 6 Let S ⊆ B ⊗ E be a subspace of a tensor product

Hilbert space such that for |ϕ〉 ∈ S there exists 0 ≤ Dϕ ≤ 11

acting on B satisfying

trϕBDϕ ≥ 1− δ and trψBDϕ < δ

whenever |ψ〉 ∈ S is orthogonal to |ϕ〉. Then S is a quantum

identification code with error probability δ + 2
√
δ.

Proof Let |ϕ〉, |ψ〉 ∈ S be arbitrary and let |ϕ′〉 be orthogonal

to |ϕ〉 in span(|ϕ〉, |ψ〉). Write

|ψ〉 = α|ϕ〉+ β|ϕ′〉.

Expanding gives

trψBP = |α|2 trϕBP + |β|2 trϕ′BP

+ αβ tr |ϕ〉〈ϕ′|(P ⊗ 11) + αβ tr |ϕ′〉〈ϕ|(P ⊗ 11),

which results in

∣∣trψBP − |α|2
∣∣ ≤ |α|2(1− trϕBP )

+ |β|2 trϕ′BP + 2|αβ||〈ϕ|(P ⊗ 11)|ϕ′〉|
≤ |α|2(1− trϕBP )

+ |β|2 trϕ′BP + 2|αβ|
√
〈ϕ′|(P ⊗ 11)|ϕ′〉

≤ δ + 2
√
δ,

where we have used the Cauchy-Schwarz inequality and the

assumption that orthogonal states in S can be well discrimi-

nated. ut
Now we are ready to state and prove our main result on

the duality between quantum identification and approximate

forgetfulness:

Theorem 7 (Identification and forgetfulness) Quantum-ID

codes and forgetfulness are dual in the following quantitative

sense. If a subspace S ⊆ B ⊗E is an ε-quantum-ID code for

B, then E is approximately δ-forgetful:

∀|ϕ〉, |ψ〉 ∈ S
1

2

∥∥ϕE − ψE
∥∥
1
≤ δ := 7 4

√
ε.

Conversely, if E is approximately δ-forgetful, then geometry

is approximately preserved on B:

∀|ϕ〉, |ψ〉 ∈ S
∥∥ϕ− ψ

∥∥
1
−

∥∥ϕB − ψB
∥∥
1
≤ ε := 4

√
2δ

If, in addition, the nonzero eigenvalues of ϕB lie in the inter-

val [µ, λ] for all |ϕ〉 ∈ S, then S is an η-quantum-ID code for

η := 3δ1/4
√
λ/µ.

Remark While it would be desirable to eliminate the eigen-

value condition at the end of the theorem, the condition is

fairly natural in this context. If the reduced states ϕE are very

close to a single state σE for all |ϕ〉 ∈ S, then all the |ϕ〉
are very close to being purifications of σE , meaning that they

differ from one another only by a unitary plus a small pertur-

bation. If σE is the maximally mixed state or close to it, then

the assumption will be satisfied. ut
Proof For the first part, recall that if S is a quantum-ID code

with error probability ε, then for each pure state |ϕ〉 ∈ S there

exists an operator 0 ≤ Dϕ ≤ 11 on B such that for all pure

states |ϕ〉, |ψ〉 ∈ S,
∣∣trψBDϕ − trψϕ

∣∣ ≤ ε.

Just as in the proof of Theorem 1, the hypothesis implies that

data can be transmitted in two conjugate bases with guessing

probability 1− ε. Running exactly the same argument as was

made in that proof gives that for all |ϕ〉, |ψ〉 ∈ S,

1

2

∥∥ϕE − ψE
∥∥
1
≤ 4

√
2(2ε)1/4 ≤ 7ε1/4. (8)

The second part is just a restatement of one direction of

the fidelity alternative, but it is a useful step on the way to

the third part, which is more challenging since it requires the

construction of the decoder, that is, the operators Dϕ.

Indeed, given |ϕ〉 ∈ S, and arbitrary |ψ〉 ⊥ |ϕ〉 in S, we

learn from the second part that

‖ϕB − ψB‖1 ≥ 2− 4
√
2δ. (9)

By Helstrom’s theorem on the optimal discrimination of ϕB

and ψB [30], there exists a projector Pϕ,ψ on B such that

trϕBPϕ,ψ ≥ 1− 2
√
2δ, trψBPϕ,ψ ≤ 2

√
2δ. (10)

The problem with using Pϕ,ψ as the decoding is that this pro-

jector may indeed depend not only on ϕ, but also on ψ. Still,

let us confirm first that if we manage to find one effect oper-

ator Dϕ that can deal with all ψ at once, then by Lemma 6

we’ll be done. Our strategy for doing so will be to first extend

Eq. (10) to all mixed states orthogonal to |ϕ〉 and supported

on S, and then use a minimax argument to extract a single

operator independent of ψ.

Lemma 17 in Appendix A can be used directly to see that

for all mixed states σ supported on S and orthogonal to ϕ,

F (ϕB , σB) ≤ λ2

µ2
maxF (ϕB , ψB) ≤ 2δ

λ2

µ2
,

where the maximization is over all |ψ〉 ∈ S orthogonal to

|ϕ〉 and the second inequality is an application of Eq. (7) to

Eq. (9). Applying Eq. (7) a second time gives

1

2

∥∥ϕB − ψB
∥∥
1
≥ 1−

√
2δ
λ

µ
.

Applying Helstrom’s theorem to ϕB and σB yields a projector

Pσ with

trϕBPσ − tr σBPσ ≥ 1−
√
2δ
λ

µ
.
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Ky Fan’s minimax theorem then ensures the existence of a

saddle point in the following two-player game [31]. One

player selects 0 ≤ P ≤ 11 while the other player selects a

state σ supported on S and orthogonal to ϕ. The strategy

spaces are therefore closed and convex. The payoff function is

1−trϕBP+tr σBP , which is linear in each argument. Thus,

the minimax theorem guarantees that there exists an operator

0 ≤ Dϕ ≤ 11 such that for all σ supported on S and orthogo-

nal to ϕ,

trϕBDϕ ≥ 1−
√
2δ
λ

µ
,

tr σBDϕ ≤
√
2δ
λ

µ
,

and applying Lemma 6 finishes the proof. ut
Unfortunately, Theorem 7 is not quite strong enough to

prove our main result on the quantum identification capacity.

To control that ratio of the largest to smallest eigenvalues of

the coding states, we need to act on them by typical projectors

that cause a slight distortion. To accomodate this complica-

tion, we will instead use the following slightly more flexible

version of the converse that behaves better with respect to the

distortion. In particular, the amount of distortion enters the

bound on the quality of the quantum-ID code in a term inde-

pendent of the eigenvalue constraint. That separation proves

to be crucial because the eigenvalues cannot be controlled in-

dependent of the distortion.

Theorem 8 Let S ⊆ B ⊗ E be a subspace and 0 ≤ X ≤ 11

an operator acting on B ⊗ E such that tr(XϕX†) ≥ 1 − ε
for all |ϕ〉 ∈ S, with 0 ≤ ε ≤ 1/15. For any state |ω〉 ∈ S,
write ω̃ = XωX†. If there exists a state Ω such that

∀|ϕ〉 ∈ S
∥∥Ω̃E − ϕ̃E

∥∥
1
≤ δ

and, in addition, the nonzero eigenvalues of Ω̃E lie in the

interval [µ, λ], then S is an η-quantum-ID code for η :=
3(30λδ/µ+ 4

√
ε)1/2.

Proof Let |ϕ〉 and |ψ〉 be orthonormal states in S. We will

begin by showing that ϕ̃B and ψ̃B can be effectively distin-

guished. To this end, consider the states

|ϑ±〉 =
1√
2
|ϕ〉 ± 1√

2
|ψ〉,

|χ±〉 =
1√
2
|ϕ〉 ± i√

2
|ψ〉,

which form two orthogonal pairs. Then

ϑ̃E± =
1

2
ϕ̃E +

1

2
ψ̃E ± 1

2

(
trB |ϕ̃〉〈ψ̃|+ trB |ψ̃〉〈ϕ̃|

)
,

χE± =
1

2
ϕ̃E +

1

2
ψ̃E ∓ i

2

(
trB |ϕ̃〉〈ψ̃| − trB |ψ̃〉〈ϕ̃|

)
,

and, by assumption,

1

2
‖ϑ̃E+ − ϑ̃E−‖1 ≤ δ and

1

2
‖χ̃E+ − χ̃E−‖1 ≤ δ.

Combining these relations reveals that ‖ trB |ϕ̃〉〈ψ̃| ±
trB |ψ̃〉〈ϕ̃|‖1 ≤ 4δ, hence by the triangle inequality,

‖ trB |ϕ̃〉〈ψ̃|‖1 ≤ 8δ. But this gives us, by virtue of

Lemma 16,

F (ϕ̃B , ψ̃B) ≤ 64δ2. (11)

To proceed as in the proof of Theorem 7, we need to show that

any |ϕ〉 ∈ S and mixed state σ supported on the orthogonal

complement of |ϕ〉 in S can also be distinguished. In order to

apply Lemma 17 in Appendix A, we will show that the largest

and smallest nonzero eigenvalues of ϕB , or equivalently, ϕE ,

are well-behaved modulo a little bit of truncation. Indeed, let

(O) and (p) be the eigenvalues of Ω̃E and ϕ̃E , respectively, in

nonincreasing order. Then
∥∥(O)− (p)

∥∥
1
≤

∥∥Ω̃E − ϕ̃E
∥∥
1
≤ δ.

Define the set

J =
{
j : (1− γ)pj ≤ Oj ≤ (1 + γ)pj

}
.

Then

γ
∑

j 6∈J
pj ≤

∑

j 6∈J
|Oj − pj | ≤ δ,

implying that
∑

j∈J
pj =

∑

j

pj −
∑

j 6∈J
pj ≥ (1− ε)− ε/γ.

Fixing γ = 1/2 implies that for each |ϕ〉 ∈ S, there is a

positive semidefinite operator ϕ̂B ≤ ϕ̃B satisfying tr ϕ̂B ≥
1− 3ε and whose eigenvalues lie in the interval [µ/2, 3λ/2].

Now let |ϕ〉 ∈ S and consider any state σ =
∑

i qiψi whose

support lies in the the orthogonal complement of |ϕ〉 in S. Let

σ̂ =
∑
i qiψ̂i. Then by Lemma 17,

F (ϕ̂B, σ̂B) ≤ 9λ2

µ2
maxF (ϕ̂B , ψ̂B)

≤ 9λ2

µ2
maxF (ϕ̃B , ψ̃B)

≤ 9λ2

µ2
64δ2 =

576λ2δ2

µ2
.

Both maximizations are over states |ψ〉 ∈ S such that 〈ϕ|ψ〉 =
0. The second inequality follows from the fact that ϕ̂B ≤ ϕ̃B

(and likewise for ψ) along with Lemma 18 while the third

arises by substituting in the result of Eq. (11). Introducing

one last decoration for our states, let ϕ̄B = ϕ̂B/ tr ϕ̂B and

likewise for σ. Applying Eq. (7) with attention paid to the

fact that ϕ̂B and σ̂B are not normalized gives

1

2

∥∥ϕ̄B − σ̄B
∥∥
1
≥ 1− 24λδ

µ

1

1− 3ε
≥ 1− 30λδ

µ
,

where the final inequality uses that ε ≤ 1/10. Applying Hel-

strom’s theorem to ϕ̄B and σ̄B implies that there exists a pro-

jector Pσ such that

tr ϕ̄BPσ − tr σ̄BPσ ≥ 1− 30λδ

µ
.
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Next we invoke Ky Fan’s minimax theorem, just as in the

proof of Theorem 7, for the payoff function 1 − tr ϕ̄BP +
tr σ̂BP , with the strategy space of the second player the con-

vex hull of states ψ̂B , where |ψ〉 ∈ S ranges over states or-

thogonal to |ϕ〉. This provides an operator 0 ≤ Dϕ ≤ 11 such

that

tr ϕ̄BDϕ ≥ 1− 30λδ

µ
and (12)

tr σ̂BDϕ ≤ 30λδ

µ
. (13)

But

∣∣ trϕBDϕ − tr ϕ̄BDϕ

∣∣ ≤ ‖ϕB − ϕ̄B‖1
≤ ‖ϕB − ϕ̂B‖1 + ‖ϕ̂B − ϕ̄B‖1
≤

√
4 · 3ε+

∣∣1− (1− 3ε)
∣∣

≤ 4
√
ε,

where the last line follows from the gentle measurement

lemma (Appendix A, Lemma 20) and the fact that ϕ̂B =

ϕ̂B/(tr ϕ̂B). Similarly, for any σ̂B =
∑

i qiψ̂
B
i a convex

combination of states arising from |ψi〉 ∈ S perpendicular to

|ϕ〉,
∣∣ tr σBDϕ − tr σ̂BDϕ

∣∣ ≤ ‖σB − σ̂B‖1
≤

∑

i

qi‖ψBi − ψ̂Bi ‖1

≤
√
4 · 3ε ≤ 4

√
ε.

Combining these estimates with the outcome of the minimax

theorem in Eq. (12) and Lemma 6 completes the proof. ut

IV. QUANTUM IDENTIFICATION CAPACITY

While it might not be possible to design low error quantum-

ID codes for any given channel, the situation becomes more

promising if many uses of the channel are allowed. In analogy

with classical and quantum data transmission, we can define

asymptotic quantum-ID codes as follows.

Definition 9 (Quantum-ID capacity [12]) A rate Q is said

to be achievable for quantum identification over N if for all

ε > 0 and sufficiently large n, there are ε-quantum-ID codes

for N⊗n with encoding domain S of dimension at least 2nQ.
The quantum identification capacityQID(N ) is defined as the
supremum of the achievable rates.

The capacity should be interpreted as the number of qubits

that can be identified per use of the channel N in the limit

of many uses of the channel. The only nontrivial channel for

which the quantum identification capacity was known prior to

this paper was the identity channel: asymptotically, a noise-

less qubit channel can be used to identify two qubits. That

is, QID(id2) = 2 [12]. As we will see below, the theory of

the quantum identification capacity is considerably simpler

when the given channel N can be used in conjunction with

noiseless channels to the receiver. This obviously increases

the capacity, so the interesting question is how much the use

of N increases the quantum identification capacity over what

would have been achievable with the noiseless channels alone.

When defining the achievable amortized rates it is therefore

necessary to subtract off two qubits for every noiseless qubit

channel used per copy of N .

Definition 10 (Amortized quantum-ID capacity) A rate Q
is said to be achievable for amortized quantum identification

over N if for all ε > 0 and sufficiently large n, there are

ε-quantum-ID codes for idC ⊗ N⊗n with encoding domain

S such that Q ≤ 1
n (log2 dimS − 2 log2 dimC). The amor-

tized quantum identification capacity Qam
ID (N ) is defined as

the supremum of the achievable rates.

The fidelity alternative is a very powerful tool for study-

ing the quantum-ID capacities. As a warm-up, the fact that

the complements of quantum-ID codes are forgetful supplies

a quick answer to an open question from [12]:

Theorem 11 If N is an antidegradable channel, that is, if

there exists channel T such thatN = T ◦N c, thenQID(N ) =
0. This is true in particular for the noiseless cbit channel id2.

Proof If N is antidegradable, then so is N ◦ E for any en-

coding map. Given a quantum-ID code for the channel N
that encodes as little as one qubit, the channel N ◦ E will

be geometry-preserving. But if N is antidegradable, then the

channel N ◦ E will be also. Hence, by the fidelity alternative,

the channel complementary to N ◦E and, by antidegradability,

N ◦ E itself would be approximately forgetful, contradicting

the assumption. ut
As usual, quantitative statements about asymptotically

achievable rates and upper bounds on the identification ca-

pacities are naturally expressed in terms of entropies. For a

bipartite density matrix ϕAB , we write

H(A)ϕ ≡ H(ϕA) ≡ − trϕA log2 ϕ
A

for the von Neumann entropy of ϕA. The mutual information

of the state ϕAB is defined to be

I(A : B)ϕ = H(A)ϕ +H(B)ϕ −H(AB)ϕ

while the coherent information and the conditional entropy

are, respectively,

I(A〉B)ϕ = H(B)ϕ −H(AB)ϕ

H(A|B)ϕ = H(AB)ϕ −H(B)ϕ.

Our main theorem on the quantum identification capacities

includes a concise formula for Qam
ID that eliminates the op-

timization over multiple channel uses.

Theorem 12 (Quantum identification capacity) For any

quantum channel N , its quantum-ID capacity is given by

QID(N ) = supn
1
nQ

(1)
ID (N⊗n), where

Q
(1)
ID (N ) = sup

|ϕ〉

{
I(A : B)ρ s.t. I(A〉B)ρ > 0

}
,



8

where |ϕ〉 is the purification of any input state to N and

ρAB = (id ⊗ N )ϕ, and where we declare the sup to be 0
if the set above is empty.

Furthermore, the amortized quantum-ID capacity equals

Qam
ID (N ) = sup

|ϕ〉
I(A : B)ρ = CE(N ),

the entanglement-assisted classical capacity of N [32].

Remark It follows from Theorem 12 that the amortized

quantum-ID capacity of a noiseless cbit channel is one. Rec-

onciling this observation with Theorem 11, which asserts

this channel’s unamortized quantum-ID capacity is zero, re-

veals that some amortized noiseless quantum communication

is necessary to achieve Qam
ID without determining how much.

In fact, inspection of the proof of Theorem 12 reveals that,

for the noiseless cbit channel id2, a zero rate of noiseless

side qubits is sufficient to achieve the maximum value of one.

These observations extend to cq-channels, so named because

they consist of a destructive measurement resulting in classi-

cal information, followed by the preparation of a state con-

ditioned on the measurement outcome. For these channels,

the entanglement-assisted capacity CE is equal to the unas-

sisted classical capacity C, also known as the Holevo capac-

ity [24, 33]. As a result, QID(N ) = 0 for all such channels

even as Qam
ID (N ) = C(N ), the latter strictly positive for all

nontrivial channels. The difference in all cases can be traced

to a sublinear amount of free quantum communication in the

amortized setting.

This effect can be viewed as an instance of (un-)locking

since the quantum-ID rate increases from strictly 0 to an ar-

bitrarily large amount by the addition of any positive rate of

quantum communication, cf. [17, 34, 35]. Unlike the previ-

ously known examples where a certain finite rate is always

required, however, here an arbitrarily small rate of extra quan-

tum communication is sufficient to bring about an unbounded

increase in the capacity. ut
The intuition behind the achievability of the rates in Theo-

rem 12 is quite simple. The structure of an amortized code is

illustrated in Figure 1. Fix a state |ϕ〉 purifying any input to

the channel N and let |ρ〉ABE be (11 ⊗ UN )|ϕ〉, where UN is

the Stinespring extension of N . The encoding will embed the

input into a random subspace of a typical subspace ofAn, pro-

ducing states highly entangled between BnC and EnF . By

arranging for EnF to be slightly smaller than BnC in the ap-

propriate sense, one ensures that the states are indistinguish-

able on the environment. By the fidelity alternative, they can

therefore be identified by Bob. Letting R = 1
n log dimC and

f = 1
n log dimF , the condition for forgetfulness to the envi-

ronment is roughly

H(B)ρ +R > H(E)ρ + f,

so f − R is chosen to be very slightly less than H(B)ρ −
H(E)ρ. Moreover, measure concentration for the choice of

random subspace will make it possible to choose the coding

subspace almost as large as the ambient space, which in qubit

Bob

Environment

UN⊗nVE

Bn

En

An

C

F

|ϕ〉 ∈ S

FIG. 1: Structure of a quantum identification code. UN⊗n and VE

are the Stinespring extensions of the noisy channel N⊗n and the

encoding operation E . The receiver, Bob, has access to the channel

output Bn as well as C, which consists of nR qubits transmitted

noiselessly from the receiver. (In the non-amortized setting, there is

no C.) The encoding map E is generally noisy, so part of its output

is transmitted to the environment.

terms has effective size

nH(A)ρ + nR+ nf.

The rate of the amortized code will therefore be

H(A)ρ +R+ f − 2R = H(A)ρ + f −R

≈ H(A)ρ +H(B)ρ −H(E)ρ.

Since ρ is pure, H(E)ρ = H(AB)ρ and the rate is precisely

the mutual information.

The detailed proof of the achievability of the rates in The-

orem 12 builds on the techniques developed in Refs. [36] and

[37] analyzing the properties of generic quantum states. The

proof will combine the following theorem, originally moti-

vated by the foundations of statistical mechanics, with the du-

ality between quantum identification and approximate forget-

fulness formulated in Theorem 7 or, more precisely, its tech-

nical variant Theorem 8.

Theorem 13 (Random versus average states [37]) Let S be

a subspace of B ⊗ E, Ω be the maximally mixed state on S,
and X any operator acting on B ⊗ E with ‖X‖∞ ≤ 1. If

|ϕ〉 ∈ S is chosen according to the unitarily invariant mea-

sure, then for all ε > 0

Pr
{∥∥trB XΩX† − trB XϕX

†∥∥
1
≥ η

}
≤ η′

where

η = ε+

√
d̃E/d̃B and

η′ = 2 exp(−Cε2 dimS).

Here C > 0 is a constant, d̃E = dim supp trB XX
† is an up-

per bound on the dimension of the support of trB XΩX† and
d̃B = 1/ tr[(trE XΩX†)2] can be thought of as the effective

dimension of B.
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Proof This is a slight modification of [37, Thm. 2]. In

the original, the theorem bounds ‖ trB Ω − trB ϕ‖1 under

similar hypotheses but η includes a correction dependent on

trXΩX†. The correction disappears if the argument is ap-

plied to ‖ trB XΩX† − trB XϕX
†‖1 instead under the as-

sumption that ‖X‖∞ ≤ 1, which ensures that the map ρ 7→
XρX† is 1-Lipschitz. ut

In order to use Theorem 13 to make statements about ran-

dom subspaces, we will use the following lemma

Lemma 14 Let f be an real-valued function on CP d (identi-
fied with rank one projectors acting on Cd) and suppose that

f is α-Lipschitz with respect to the trace norm. Let µ be the

unitarily invariant measure on CP d and µ̂ the unitarily in-

variant measure on the space of k-dimensional subspaces of
Cd. If

µ {|ξ〉; f(ξ) > η} ≤ g(d)

then

µ̂

{
S; max

|ξ〉∈S,〈ξ|ξ〉=1
f(ξ) > (1 + α)η

}
≤

(
5

η

)2k

g(d).

Proof This is a standard discretization argument. Fix a k-

dimensional subspace S0 ⊆ Cd. According to Ref. [8], there

is a trace norm η-net M for the rank one projectors on S0 of

cardinality no more than (5/η)2k. If U is distributed accord-

ing to the Haar measure ν, then US0 is distributed according

to the unitarily invariant measure. So, we find by the triangle

inequality that

µ̂

{
S; max

|ξ〉∈S,〈ξ|ξ〉=1
f(ξ) > (1 + α)η

}

= ν

{
U ; max

|ξ〉∈S0,〈ξ|ξ〉=1
f(UξU †) > (1 + α)η

}

≤ ν

{
U ; max

|ξ〉∈M,〈ξ|ξ〉=1
f(UξU †) > η

}

≤
(
5

η

)2k

µ{|ξ〉; f(ξ) > η},

where the second inequality is just the union bound over ele-

ments of the net. ut
The following theorem collects the facts we will need about

type and typical projectors. We omit their definitions, which

will not be required here and can be found in Ref. [38].

Theorem 15 (Typicality) Let |ρ〉 ∈ A ⊗ B ⊗ E and set

|ψ〉 = |ρ〉⊗n. For any δ, ε > 0 sufficiently small there exist

projectors ΠB , ΠE1 and ΠE2 on B⊗n and E⊗n, respectively,
and a projection ΠAt onto a fixed type subspace of An such

that the states

|ψt〉 =
ΠAt ⊗ 11B ⊗ 11E |ψ〉√
〈ψ|ΠAt ⊗ 11B ⊗ 11E |ψ〉

and

|ψ̃t〉 =
ΠAt ⊗ΠB ⊗ΠE2 Π

E
1 |ψ〉√

〈ψ|ΠAt ⊗ 11B ⊗ 11E |ψ〉

satisfy the following conditions forX = An, Bn, En and suf-

ficiently large n:

1. ψA
n

t = ΠAt /rankΠ
A
t .

2. ‖ψt − ψ̃t‖1 ≤ ε.

3. tr[(ψ̃Xt )2] ≤ 3(1− 3ε)−12−n[H(X)ρ−cδ].

4. 2n[H(X)ρ−δ] ≤ rankΠX ≤ 2n[H(X)ρ+δ].

5. The largest eigenvalue of ψ̃E
n

t is bounded above by (1−
3ε)−12−n[H(E)ρ−cδ].

6. The ratio of the largest to the smallest nonzero eigen-

value of ψ̃E
n

t is at most 22nδ.

where ΠA and ΠE should respectively be understood to be

ΠAt and ΠE2 Π
E
1 in property 4, and c > 0 is a constant.

Proof If ΠE2 is removed and property 6 omitted, then the

theorem is precisely a result proved in Ref. [38], with ΠE1 the

typical projector for ρ on En. ΠE2 will be a projector that

removes all eigenvalues of the reduced density operator on

En below the stated threshold. Let

|ξ〉 = ΠAt ⊗ΠB ⊗ΠE1 |ψ〉√
〈ψ|ΠAt ⊗ 11B ⊗ 11E |ψ〉

The largest eigenvalue of ξE
n

is bounded above by (1 −
3ε)−12−n[H(E)ρ−cδ] according to property 5 as stated above
and the state’s rank is at most 2n[H(E)ρ+δ] by property 4. Ap-

plying Lemma 21 to the eigenvalues of ξE
n

reveals that the

sum of all eigenvalues less than or equal to 2−2nδ/ rank ξE
n

is at most

2−2nδ

1− 3ε
≤ 2−nδ

for sufficiently large n. We can therefore letΠE2 be the orthog-

onal projection onto the direct sum of the eigenspaces of ξE
n

corresponding to eigenvalues larger than 2−2nδ/ rank ξE
n

.

Let λ be the largest eigenvalue of ξE
n

. The ratio of the largest

to the smallest eigenvalue after the application of ΠE2 will be

at most

λ

2−2nδ/ rank ψ̃E
n

t

≤ λ

2−2nδ · λ = 22nδ.

A redefinition of ε completes the proof. ut

Proof (Direct coding part of Theorem 12) The regular and

amortized cases can be handled simultaneously. Fix an in-

put state ϕ as in Theorem 12, let |ρ〉ABE be a purification of

(id⊗N )ϕ and let |ψ〉 = |ρ〉⊗n. To construct the code, we will
need to project ψA

n

to a type subspace having favorable prop-

erties. ψA
nBn

t is the Choi-Jamiolkowski state for the channel

N⊗n restricted to the type subspace At defined by the pro-

jector ΠAt . Call this channel Nt, write Ut for its Stinespring

dilation, and consider Nt ⊗ idC ⊗ idF . C will play the role

of the noiseless channel from Alice to Bob in the case of the
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amortized capacity and F will represent quantum information

discarded by Alice at the encoding stage. Our code will con-

sist of a subspace of S′ of At ⊗ C ⊗ F selected according to

the unitarily invariant measure, which then defines a subspace

S of (Bn ⊗ C) ⊗ (En ⊗ F ). Our aim will be to show that

S is likely to be approximately forgetful for En ⊗ F when C
and F are chosen appropriately, allowing for an application of

Theorem 8.

Let Ω = ψB
nEn

t ⊗πC ⊗πF be the image under Ut⊗ 11C ⊗
11F of the maximally mixed state onAt⊗C⊗F . (Recall that
πZ denotes the maximally mixed state on Z .) Define |ψ̃t〉 as
in Theorem 15 and let Ω̃ = ψ̃B

nEn

t ⊗ πC ⊗ πF . Then

ψ̃B
nEn

t = (ΠB ⊗Π2Π
E
1 )ψ

EnBn

t (ΠB ⊗ΠE1 Π
E
2 )

so forX = ΠB ⊗ΠE2 Π
E
1 , Theorem 13 states that a randomly

chosen state |ω〉 in Ut(At)⊗ C ⊗ F will satisfy

Pr
[∥∥∥Ω̃E

nF − ω̃E
nF

∥∥∥
1
≥ η

2

]
≤ η′

for ω̃ = XωX† and where, for any ν > 0,

η

2
= ν +

√
rank[ΠE2 Π

E
1 ⊗ 11F ] · tr[(ψ̃Bn

t ⊗ πC)2],

η′ = 2 exp
(
− Cν2 dim(At ⊗ C ⊗ F )

)
.

We will fix ν to be ν = 2−3nδ. So by Lemma 14, a random S
in Ut(At)⊗C⊗F chosen according to the unitarily invariant

measure will satisfy

Pr
S

[
max
|ω〉∈S

∥∥∥Ω̃E
nF − ω̃E

nF
∥∥∥
1
≥ η

]

≤ 2

(
10

η

)2|S|
exp

(
− Cν2 dim(At ⊗ C ⊗ F )

)

since the function ω 7→ ‖Ω̃EnF − ω̃EnF ‖1 is 1-Lipschitz with
respect to the trace norm. For convenience, let dimF = 2nf

and dimC = 2nR. Since dimAt ≥ 2n[H(A)ρ−δ], choosing
dimS to be 2n[H(A)ρ+R+f−8δ] will lead to

max
|ω〉∈S

∥∥∥Ω̃E
nF − ω̃E

nF
∥∥∥
1
< η (14)

with high probability for sufficiently large n provided η de-

cays at most exponentially with n.
Now let us determine how to choose f and R in order to

ensure a small value for η. Observe that by properties 3 and 4
in Theorem 15,

rankΠE2 Π
E
1 Π

E
1 ⊗ 11F ≤ 2n[H(E)ρ+δ+f ] and

tr[(ψ̃B
n

t ⊗ 1
|C|11

C)2] ≤ 3(1− 3ε)−1 · 2−n[H(B)ρ−cδ−R].

Therefore,

η ≤ ν + 3 · 2n[H(E)ρ−H(B)ρ+f−R+(1+c)δ]/2

provided ε is chosen smaller than 1/10. There are two cases
to consider:

Case 1. First suppose that I(A〉B)ρ > 0 or, equivalently,
that H(E)ρ < H(B)ρ. Under these circumstances, amorti-
zation is not required. Choosing R = 0 and f = H(B)ρ −
H(E)ρ − (7 + c)δ leads to η ≤ ν + 3 · 2−3nδ ≤ 4 · 2−3nδ.

The rate of the associated code will be

Q =
1

n
log2 dimS

= H(A)ρ +R+ f − 8δ

= H(A)ρ +H(B)ρ −H(E)ρ − (7 + c)δ − 8δ

= I(A : B)ρ − (15 + c)δ.

Case 2. Now suppose that I(A〉B)ρ ≤ 0 so that H(E)ρ ≥
H(B)ρ. In this case we set R = H(E)ρ −H(B)ρ + (7+ c)δ
and f = 0 to again achieve η ≤ 4 · 2−3nδ. This time, the rate

of the code will be

Q =
1

n
log2 dimS − 2R

= H(A)ρ +R+ f − 8δ − 2R

= H(A)ρ +H(B)ρ −H(E)ρ − (15 + c)δ

= I(A : B)ρ − (15 + c)δ.

We have established that the subspace S corresponds to a

code of the correct rate. Applying Theorem 8 to Ω̃ and the

states in S withX = ΠB ⊗ 11C ⊗ΠE2 Π
E
1 ⊗ 11F will complete

the proof. Recalling that the ratio of the largest to the smallest

nonzero eigenvalues of Ω̃E
nF is at most 22nδ, the theorem

asserts that S is a quantum-ID code with error probability at

most

3
(
30 · 22nδ · (4 · 2−3nδ) + 4

√
ε
)1/2

,

which can be made arbitrarily small for sufficiently large n.
ut

Proof (Converse for Theorem 12) We will address both the

regular and amortized capacities at the same time. Consider

an amortized quantum-ID code forn copies ofN as illustrated

in Figure 1. The Stinespring dilations ofN⊗n and E together

have three output registers: one for the channel input, one for

the transmission to Bob and one going to the environment.

Calling B̂ := BnC and Ê = EnF in the figure, the quantum-

ID code is equivalent to a subspace S ⊆ B̂ ⊗ Ê, and we can
apply our lemmas.

A key observation is that for any orthogonal pure state en-

semble {px, ϕx} on S decomposing the maximally mixed

state,

H(B̂) ≥ H(B̂|X) = H(Ê|X) = H(Ê)− o(n). (15)

The first inequality is just the concavity of the entropy func-

tion while the first equality follows from the fact that ϕx is

pure on B̂Ê. The final relation is a consequence of Theo-

rem 7: the fidelity alternative implies that if states can be iden-

tified on B̂ then they must be indistinguishable on Ê. Conti-
nuity of the von Neumann entropy in the form of the Fannes

inequality [39] shows the correction to be o(n). Thus, send-
ing one half of a maximally entangled state betweenA and an
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auxiliary space also namedA into the above circuit, we obtain

a multipartite pure state with respect to which

log2 |A| = H(A) ≤ H(A) +H(B̂)−H(Ê) + o(n)

= I(A : B̂) + o(n)

= I(A : Bn) + I(A : C|Bn) + o(n)

≤ I(A : Bn) + 2 log2 dimC + o(n).

Therefore, the amortized quantum identification capacity

is bounded above by limn→∞ 1
ng(N⊗n) where g(N ) =

max|ϕ〉 I(A : B)ρ for ρ = (id ⊗ N )ϕ. It is well-known,

however, that g(N⊗n) = ng(N ) so the limit is not neces-

sary [32].

On the other hand, in the non-amortized case, dimC = 1,
and the above Eq. (15) yields

I(A〉Bn) = I(A〉B̂) = H(B̂)−H(Ê) ≥ −o(n). (16)

To obtain the claimed formula, we need to make two obser-

vations. First, if QID(N ) > 0, then also Q(N ) > 0; this is
obtained by restricting to a two-dimensional subspace of S for

large n (and small ε), improving Eqs. (15) and (16) to

H(B̂) ≥ 1− o(1) +H(B̂|X)

= 1− o(1) +H(Ê|X) = 1− o(1) +H(Ê),

showing that the coherent information is indeed positive,

hence implying positive quantum capacity. Second, in that

case the normalized mutual information 1
nI(A : Bn) is up-

per bounded by 1
n+o(n)I(AA

′ : BnB′o(n)) + o(1), where

the A′B′o(n) system is chosen as above with positive coher-

ent information rate, such that I(AA′〉BnB′o(n)) > 0. This

shows that supn
1
nQ

(1)
ID (N⊗n) is indeed an upper bound on

all achievable rates. ut

V. CONCLUSION AND OPEN QUESTIONS

The fidelity alternative states that geometry preservation

and approximate forgetfulness are complementary properties,

much like quantum data transmission and complete forgetful-

ness. Subject to some technical conditions, geometry preser-

vation is itself equivalent to quantum identification, an opera-

tional task very much in the spirit of quantum data transmis-

sion but strictly weaker. Just as analyzing complete forget-

fulness has proved a versatile and effective tool for studying

asymptotic quantum error correction, approximate forgetful-

ness provides a new approach to asymptotic quantum iden-

tification. Indeed, by focusing on approximate forgetfulness

of the complementary channel, we have established that the

amortized quantum identification capacity is exactly equal to

the entanglement-assisted capacity.

The fidelity alternative suggests a number of possible exten-

sions, such as asking what happens if geometry is preserved

not only for pure states but for higher rank mixed states.

Would such a property have an operational interpretation and

corresponding interpretation in terms of a form of forgetful-

ness intermediate between the weak form studied here and

complete forgetfulness? It would also be interesting to under-

stand geometry preservation as a type of pseudo-isometry [40]

from projective space to the Grassmannian of subspaces cor-

responding to the supports of the mixed output states.

Meanwhile, Theorem 12 poses an entertaining and poten-

tially deep puzzle: why do amortized quantum identification

and entanglement-assisted classical communication result in

the same capacity in the absence of any known operational re-

lationship between these tasks? The theorem also leaves open

the important problem of evaluating the quantum identifica-

tion capacity formula in the unamortized case. Similarly, the

theorem fails to determine how much extra quantum commu-

nication is necessary to achieve the amortized capacity. In

particular, does there exist a channel where the required rate

is strictly positive? We do expect this to be true, but have been

unable to establish it rigorously.
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Appendix A: Miscellaneous Facts

The following results were used in various proofs but have

been collected here so as not to distract from the main line of

argument in the paper. This first pleasing little relation pro-

vides a convenient way to calculate mixed state fidelity:

Lemma 16 For pure states ϕ, ψ on a bipartite system B⊗E,

F (ϕB , ψB) =
∥∥trB |ϕ〉〈ψ|

∥∥2

1
. (A1)

Proof This is a straightforward calculation:

∥∥trB |ϕ〉〈ψ|
∥∥
1
= max

‖X‖∞≤1
|tr (trB |ϕ〉〈ψ|)X |

= max
U unitary

|tr (trB |ϕ〉〈ψ|)U |

= max
U unitary

|tr |ϕ〉〈ψ|(11 ⊗ U)|

= max
U unitary

√
F
(
(11⊗ U)ϕ(11⊗ U †), ψ

)

=
√
F (ϕB , ψB),
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invoking, successively, the duality between trace and sup

norm, the fact that the maximum is always attained at a uni-

tary, the defining property of the partial trace, and in the last

line Uhlmann’s relation [41, 42]. ut
The following lemma provides conditions under which

mixing preserves near-orthogonality.

Lemma 17 Let ρ and σi, for all i, be states on the same

Hilbert space such that there exist projectors P and Qi of
rank ≤ r, and µP ≤ ρ ≤ λP , µQi ≤ σi ≤ λQi such that

µr ≤ 1. If furthermore for all i, F (ρ, σi) ≤ ε, then

F
(
ρ, σ

)
≤ δ := ε

λ2

µ2

for every σ =
∑

i piσi in the convex hull of the σi.

Proof We use the definition of the fidelity to first obtain

ε ≥
(
tr

√√
ρσi

√
ρ

)2

≥ µ2 (trPQiP )
2
.

Invoking the definition again, we now get from this

√
F
(
ρ, σ

)
=

∥∥∥√ρ
√
σ
∥∥∥
1
≤ λ tr

√∑

i

piPQiP

≤ λr

√∑

i

pi
1

µr
µ trPQiP

≤ λr

√
ε

µr
≤ √

ε
λ

µ
,

using the concavity of the square root twice in turn [43]. ut

Lemma 18 Let 0 ≤ ρ̃ ≤ ρ and 0 ≤ σ̃ ≤ σ. Then F (ρ̃, σ̃) ≤
F (ρ, σ).

Proof Denoting unitary congruence of matrices (in particular

having the same spectrum) by ∼, we have
√
ρ̃σ̃

√
ρ̃ ≤

√
ρ̃σ

√
ρ̃ ∼ √

σρ̃
√
σ ≤ √

σρ
√
σ ∼ √

ρσ
√
ρ.

Hence, since the square root is operatormonotone [43] and the

trace is invariant under unitary basis change, tr
√√

ρ̃σ̃
√
ρ̃ ≤

tr
√√

ρσ
√
ρ, completing the proof. ut

The next lemma constrains the increase of the maximal out-

put trace norm when tensoring with a fixed-size identity trans-

formation:

Lemma 19 Let Γ : S(A) → S(B) be a linear superoperator.
Then for any t any positive integer,

‖Γ‖(t)� ≤ t ‖Γ‖(1)� .

Proof Write X , an operator on Ct ⊗A such that ‖X‖1 ≤ 1,
in its singular value decomposition as

∑
j sj |vj〉〈wj |, with

0 ≤ sj ≤ 1 and 〈vj |vk〉 = 〈wj |wk〉 = δjk . By convex-

ity (triangle inequality), ‖Γ‖(t)� is attained with a rank-one

X = |v〉〈w|, and for the following fix Schmidt decomposi-

tions |v〉 = ∑
k αk|ek〉|fk〉 and |w〉 =

∑
` β`|g`〉|h`〉. Then,

‖(idt ⊗ Γ)X‖1 =
∥∥(idt ⊗ Γ)|v〉〈w|

∥∥
1

=

∥∥∥∥∥(idt ⊗ Γ)

(
∑

k`

αkβ`|ek〉〈g`| ⊗ |fk〉〈h`|
)∥∥∥∥∥

1

≤
∑

k`

αkβ`
∥∥(idt ⊗ Γ) (|ek〉〈g`| ⊗ |fk〉〈h`|)

∥∥
1

=
∑

k`

αkβ` ‖Γ (|fk〉〈h`|)‖1 ≤ t‖Γ‖(1)1 .

where the first step is just the triangle inequality and the next

follows from the fact that ‖X‖1 =
∑
j sj ≤ 1. The final

inequality uses the fact that
∑t

k=1 αjk and
∑t

l=1 βjl are both

bounded above by
√
t since ‖αj‖2 = ‖βj‖2 = 1. ut

Remark The factor t is optimal, as the example of the matrix
transposition shows where the bound of the lemma becomes

an equality. ut

Lemma 20 (Gentle measurement [44, 45]) Let ρ be a state,

and 0 ≤ X ≤ 11 be an operator on some Hilbert space, such

that tr ρX ≥ 1− ε. Then,
∥∥ρ−

√
Xρ

√
X
∥∥
1
≤ 2

√
ε. ut

The following, final, lemma is used to argue that the small

eigenvalues of a density operator can be discarded without

causing much disturbance.

Lemma 21 Let (p1, p2, . . . , pr) be a probability density with

pi ≥ pi+1 for all i and let χ = {i; pi ≤ D/r} for some

0 ≤ D ≤ 1. Then,
∑

i∈χ pi ≤ D.

Proof Since evidently |χ| ≤ r,

∑

i∈χ
pi ≤ |χ|D

r
≤ r

D

r
= D,

and that’s it. ut
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