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We establish methods for quantum state tomography based on compressed sensing. These methods are

specialized for quantum states that are fairly pure, and they offer a significant performance improvement

on large quantum systems. In particular, they are able to reconstruct an unknown density matrix of

dimension d and rank r using Oðrdlog2dÞ measurement settings, compared to standard methods that

require d2 settings. Our methods have several features that make them amenable to experimental

implementation: they require only simple Pauli measurements, use fast convex optimization, are stable

against noise, and can be applied to states that are only approximately low rank. The acquired data can be

used to certify that the state is indeed close to pure, so no a priori assumptions are needed.
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The tasks of reconstructing the quantum states and

processes produced by physical systems—known respec-

tively as quantum state and process tomography [1]—are

of increasing importance in physics and especially in

quantum information science. Tomography has been used

to characterize the quantum state of trapped ions [2] and an

optical entangling gate [3] among many other implemen-

tations. But a fundamental difficulty in performing tomo-

graphy on many-body systems is the exponential growth in

the state space dimension. For example, to get a maximum-

likelihood estimate of a quantum state of 8 ions, Ref. [2]

required hundreds of thousands of measurements and

weeks of postprocessing.

Still, one might hope to overcome this obstacle because

the vast majority of quantum states are not of physical

interest. Rather, one is often interested in states with special

properties: pure states, states with particular symmetries,

ground states of local Hamiltonians, etc., and tomography

might be more efficient in such special cases [4].

In particular, consider pure or nearly pure quantum

states, i.e., states with low entropy. More precisely, con-

sider a quantum state that is essentially supported on an

r-dimensional space, meaning the density matrix is close

(in a given norm) to a matrix of rank r, where r is small.

Such states arise in very common physical settings, e.g., a

pure state subject to a local noise process [5].

A standard implementation of tomography [6,7] would

use d2 or more measurement settings, where d ¼ 2n for an
n-qubit system. But a simple parameter counting argument

suggests that OðrdÞ settings could possibly suffice—a

significant improvement. However, it is not clear how to

achieve this performance in practice, i.e., how to choose

these measurements, or how to efficiently reconstruct the

density matrix. For instance, the problem of finding a

minimum-rank matrix subject to linear constraints is NP-

hard in general [8].

In addition to a reduction in experimental complexity,

one might hope that a postprocessing algorithm taking as

input only OðrdÞ % d2 numbers could be tuned to run

considerably faster than standard methods. Since the out-

put of the procedure is a low-rank approximation to the

density operator and only requires OðrdÞ numbers be

specified, it becomes conceivable that the run time scales

better than Oðd2Þ, clearly impossible for naive approaches

using dense matrices.

In this Letter, we introduce a method to achieve such

drastic reductions in measurement complexity, together

with efficient algorithms for postprocessing. The approach

further develops ideas that have recently been studied under

the label of ‘‘compressed sensing.’’ Compressed sensing [9]

provides techniques for recovering a sparse vector from a

small number of measurements [10]. Here, sparsity means

that this vector contains only a few nonzero entries in a

specified basis, and the measurements are linear functions

of its entries.When themeasurements are chosen at random

(in a certain precise sense), then with high probability two

surprising things happen: the vector is uniquely determined

by a small number ofmeasurements, and it can be recovered

by an efficient convex optimization algorithm [9].

Matrix completion [11–13] is a generalization of com-

pressed sensing from vectors to matrices. Here, one recov-

ers certain ‘‘incoherent’’ low-rank matrices X from a small

number of matrix elements Xi;j. The problem of low-rank

quantum state tomography bears a strong resemblance to

matrix completion. However, there are important differ-

ences. We wish to use measurements that can be more

easily implemented in an experiment than obtaining ele-

ments )i;j of density matrices. Previous results [11–13]
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cannot be applied to this more general situation. We would

also like to avoid any unnatural incoherence assumptions

crucial in prior work [11].

Our first result is a protocol for tomography that over-

comes both of these difficulties: it uses Pauli measurements

only, and it works for arbitrary density matrices. We prove

that only Oðrdlog2dÞ measurement settings suffice. What

is more, our proof introduces some new techniques, which

both generalize and vastly simplify the previous work on

matrix completion.

In a real experiment, the measurements are noisy, and

the true state is only approximately low rank. We show that

our method is robust to these sources of error. We also

describe ways to certify that a state is nearly pure without

any a priori assumptions.

Finally, we present fast algorithms for reconstructing the

density matrix from the measurement statistics based on

semidefinite programming—a feature not present in earlier

methods for pure-state tomography [4,6,7]. Reconstructing

a low-rank density matrix for 8 qubits takes about 1 min on

an ordinary laptop computer.

While our methods do not overcome the exponential

growth in measurement complexity (which is provably

impossible for any protocol capable of handling generic

pure states), they do significantly push the boundary of

what can be done in a realistic setting [14].

Matrix recovery using Pauli measurements.—We con-

sider the case of n spin-1=2 systems in an unknown state )
[15]. An n-qubit Pauli matrix is of the form w ¼ N

n
i¼1 wi,

where wi 2 f1; ,x; ,y; ,zg. There are d2 such matrices,

labeled wðaÞ, a 2 ½1; d2*. The protocol proceeds as fol-

lows: choose m integers A1; . . . ; Am 2 ½1; d2* at random

and measure the expectation values tr)wðAiÞ. One then

solves a convex optimization problem: minimize k,ktr
[16] subject to

tr, ¼ 1; trwðAiÞ, ¼ trwðAiÞ): (1)

Theorem 1 (low-rank tomography)—Let ) be an arbi-

trary state of rank r. If m ¼ cdrlog2d randomly chosen

Pauli expectations are known, then ) can be uniquely

reconstructed by solving the convex optimization problem

(1) with probability of failure exponentially small in c.
The proof is inspired by, but technically very different

from, earlier work on matrix completion [11]. Our methods

are more general, can be tuned to give tighter bounds, and

are much more compact, allowing us to present a fairly

complete argument in this Letter. A more detailed presen-

tation will be published elsewhere [17].

Proof.—Here we sketch the argument and explain the

main ideas; detailed calculations are in the supplementary

material [18].

Note that the linear constraints (1) depend only on the

projection of ) onto the span of the measured observables

wðA1Þ; . . . ; wðAmÞ. This is precisely the range of the

‘‘sampling operator’’ R: )! d
m

P

m
i¼1 wðAiÞtr)wðAiÞ.

(Note that E½Rð)Þ* ¼ ).) Indeed, the convex program

can be written as min,k,ktr s.t. R, ¼ R). Evidently,

the solution is unique if for all deviations , :¼ ,# )
away from ) either R, ! 0 or k)þ,ktr > k)ktr.
We will ascertain this by using a basic idea from convex

optimization: constructing a strict subgradient Y for the

norm. A matrix Y is a strict subgradient if k)þ,ktr >
k)ktr þ trY, for all , ! 0. The main contribution below

is a method for constructing such a Y which is also in the

range ofR. For thenR, ¼ 0 implies that, is orthogonal

to the range of R, thus trY, ¼ 0 and the subgradient

condition reads k)þ,ktr > k)ktr. This implies unique-

ness. (In fact, it suffices to approximate the condition.)

Let E be the projection onto the range of ), let T be the

space spanned by those operators whose row or column

space is contained in range ). Let P T be the projection

onto T, P?
T onto the orthogonal complement. Decompose

, ¼ ,T þ ,?
T , the parts of , that lie in the subspaces T

and T?. We distinguish two cases: (i) k,Tk2 > d2k,?
T k2,

and (ii) k,Tk2 . d2k,?
T k2 [16].

Case (i) is easier. In this case, , is well approximated by

,T and essentially we only have to show that the restriction

A :¼ P TRP T of R to T is invertible. Using a noncom-

mutative large-deviation bound (see Refs. [18,19]),

Pr½kA# 1Tjj> t*< 4dre#t2<=8 (2)

where < ¼ m=ðdrÞ [16]. Hence the probability that kA#
1Tk> 1

2
is smaller than 4dre#<=32 ¼: p1. If that is not the

case, one easily sees that kR,k2 > 0, concluding the

proof for this case.

Case (ii) is more involved. A matrix Y 2
spanðwðA1Þ; . . . ; wðAmÞÞ is an almost subgradient [20] if

kP TY # Ek2 . 1=ð2d2Þ; kP?
T Yk< 1=2: (3)

First, suppose such a Y exists. Then a simple calculation

(see Ref. [18]) using the condition (ii) shows thatR, ¼ 0
indeed implies k)þ ,ktr > k)ktr as hinted at above. This

proves uniqueness in case (ii). The difficult part consists in

showing that an almost subgradient exists.

To this end, we design a recursive process (the ‘‘golfing

scheme’’ [17]) which converges to a subgradient exponen-

tially fast. Assume we draw l batches of <0rd Pauli
observables independently at random (<0 will be chosen

later). Define recursively X0 ¼ E,

Yi ¼
X

i

j¼1

RjXj#1; Xi ¼ E# P TYi; (4)

Y ¼ Yl. Let Ri be the sampling operator associated with

the ith batch, and Ai its restriction to T. Assume that in

each run kAi # 1Tk2 < 1=2. Denote the probability of

this event not occurring by p2. Then

kXik2 ¼ kXi#1 # P TRiXi#1k2 ¼ kð1T #AiÞXi#1k2
. 1=2kXi#1k2;

so that kXik2 . 2#ikX0k ¼ 2#i
ffiffiffi

r
p

. Hence, Y ¼ Yl fulfills

the first part of (3), as soon as l 1 log2ð2d2
ffiffiffi

r
p Þ. We turn to

the second part. Again using large-deviation techniques

[18] we find kP?
T RiXi#1k . 1=ð4 ffiffiffi

r
p ÞkXi#1k2 with some
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(high) probability (1# p3). Therefore:

kP?
T Ylk .

X

l

j¼1

kP?
T RjXj#1k . 1

4

X

1

j¼0

2#l <
1

2
; (5)

which is the second part of (3).

Lastly, we have to bound the total probability of failure

pf . p1 þ p2 þ p3. Set <0 ¼ 64@½1þ lnð8dlÞ*, which

means that m ¼ drðlndÞ2Oð1Þ coefficients will be sampled

in total. A simple calculation gives pf . e#@. h

In the remaining space, we address the important aspects

of resilience against noise, certified tomography, and

numerical performance. Owing to space limitations, the

presentation will focus on conceptual issues, with the

details in [21].

Robustness to noise.—Realistic situations will differ

from the previous case in two regards. First, the true state

)t may not be low rank, but only well approximated by a

state ) of rank r: k)t # )k2 . "1. Second, due to system-

atic and statistical noise, the available estimates for the

Pauli expectations are not exactly tr)twðaÞ, but of the form
tr!wðaÞ for some matrix!. Assume kR!#R)tk2 . "2
(in practical situations, "2 may be estimated from the error

bars associated with the individual Pauli expectation val-

ues). In order to get an estimate for )t, choose some C 1 1

and " 1 Cð
ffiffiffiffiffiffiffiffiffiffiffiffi

d2=m
p

Þ"1 þ "2, and solve the convex program

mink,ktr; subject to kR,#R!k2 . ": (6)

Observation 1 (robustness to noise)—Let )t be an ap-

proximately low-rank state as described above. Suppose

m ¼ cdrlog2d randomly chosen Pauli expectations are

known up to an error of " as in (6), and let ,? be the

solution of (6). Then the difference k,? # )tktr is smaller

than Oð"
ffiffiffiffiffi

rd
p

Þ. This holds with probability of failure at

most 1=C2 plus the probability of failure in Theorem 1.

The proof combines ideas from Ref. [13] with our argu-

ment above [22]. The main difference from the noise-free

case is that, instead of using trY, ¼ 0, we must now work

with jtrY,j . 2kYk2E. With this estimate, Observation 1

follows from the noise-free proof, together with some

elementary calculations [18]. We remark that the above

bound is likely to be quite loose; based on related work

[23] and more natural noise models, we conjecture that the

robustness is substantially stronger thanwhat is shown here.

Certified tomography of almost pure states.—The pre-

ceding results require an a priori promise: that the true

state )t is E1 close to a rank-r state. However, when per-

forming tomography of an unknown state, neither r nor E1

are known beforehand. There are a few solutions to this

quandary. First, r and E1 may be estimated from other

physical parameters of the system, such as the strength of

the local noise [5].

Another approach is to estimate r and E1 from the same

data that are used to reconstruct the state. When r ¼ 1, this
approach is particularly effective to facilitate entirely

assumption-free tomography. This is because E1 is related

to the purity Tr)2, which has a simple closed-form

expression in terms of Pauli expectation values. See

Ref. [18] for details. We get:

Observation 2 (certified tomography).—Assume that the

unknown physical state is close to being pure. Then one

can find a certificate for that assumption, and reconstruct

the state with explicit guarantees on the reconstruction

error, from Oðcdlog2dÞ Pauli expectation values. The

probability of failure is exponentially small in c.
Finally, when the state is approximately low rank but not

nearly pure (r > 1), one may perform tomography using

different numbers of random Pauli expectation values m.

Whenm is larger than necessary (corresponding to an over-

estimate of r), we are guaranteed to find the correct density
matrix. When m is too small, we find empirically that

the algorithms for reconstructing the density matrix fail to

converge.

A hybrid approach to matrix recovery.—Here we de-

scribe a variant of our tomography method that makes

the classical postprocessing step (i.e., solving the convex

program (1) to reconstruct the density matrix) faster. This

method also uses random Pauli measurements, but they are

chosen in a structured way. Any Pauli matrix is of the

form wðu; vÞ ¼ N

n
k¼1 i

ukvkð,xÞukð,zÞvk for u, v 2 f0; 1gn.
We choose a random subset S 3 f0; 1gn of size

Oðrpoly logðdÞÞ, and then for all u 2 S and v 2 f0; 1gn,
measure the Pauli matrix wðu; vÞ. We call this the ‘‘hybrid

method’’ because it is equivalent to a certain structured

matrix completion problem. This fact implies that certain

key computations in solving the convex program (1) can be

implemented in time OðdÞ rather than Oðd2Þ [24].

However, the hybrid method is not covered by the strong

theoretical guarantees shown earlier, though it does give

accurate results in practice (when combined with twirling

by unitary k-designs [25] to ensure incoherence). For a

more complete discussion, see Ref. [18].

Numerical results.—We numerically simulated both the

random Pauli and hybrid approaches discussed above. For

both approaches, we used singular value thresholding

(SVT) [24]. Instead of directly solving Eq. (6), SVT mini-

mizes Jk,ktr þ k,k22=2 subject to jtrð,#!ÞwðAiÞj . E,
which is a good proxy to Eq. (6) when J dominates

the second term; the programs are equivalent in the limit

J ! 1 ([provided Eq. (6) has a unique solution] [24].

Estimating the second term for typical states suggests

choosing 2Jr 5 1; we use J ¼ 5. To simulate tomography,

we chose a random state from the Haar measure on a d6 r
dimensional system and traced out the r-dimensional an-

cilla, then applied depolarizing noise of strength K. We

sampled expectation values associated with randomly

chosen operators as above, and added additional statistical

noise which was i.i.d. Gaussian with variance ,2 and mean

zero. We used SVT and quantified the quality of the re-

construction by the fidelity and the trace distance for

various values of m, each averaged over 5 simulations.

This dependence is shown in Fig. 1. The reconstruction is

remarkably high fidelity, despite severe undersampling and
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corruption by both depolarizing and statistical noise [26].

Using the hybrid method with 8 qubits on a rank 3 state plus

K ¼ 5% depolarizing, and statistical noise strength

,d ¼ 0:1, we typically achieve 95% fidelity reconstruc-

tions in under 10 seconds on a modest laptop with 2 GB of

RAM and a 2.2 GHz dual-core processor using MATLAB—

even though 90% of the matrix elements remain un-

sampled. Increasing the number of samples only improves

our accuracy and speed, so long as sparsity is maintained.

Using truly randomly chosen Pauli observables (instead

of the hybrid method) slightly increases the processing

time due to the dense matrix multiplications involved: in

our setup about 1 min. However, this method achieves even

better performance with respect to errors, as seen in Fig. 1.

The simulations above show that our method works for

generic low-rank states. Lastly, we demonstrate the func-

tioning of the approach in the experimental context of the

state ) found in the 8 ion experiment of Ref. [2]. To

exemplify the above results, we simulated physical mea-

surements by sampling from the probability distribution

computed using the Born rule applied to the reconstructed

state ). This state is approximately low rank, with 99% of

the weight concentrated on the first 11 eigenvectors. The

standard deviation per observable was 3=d. Fewer than

30% of all Pauli matrices were chosen randomly. From

this information, a rank ¼ 3 approximation , with fidelity

of 90.5% with respect to )was found in about 3 min on the

aforementioned laptop.
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FIG. 1 (color online). Average fidelity and trace distance vs

(scaled) number of measurement settings m for random states of

n ¼ 8 qubits, so d ¼ 2n. As discussed in the text, the sampled

states had rank r ¼ 3, depolarizing noise of 5% and Gaussian

statistical noise with , ¼ 0:1=d. Both the random Pauli and

hybrid approaches are shown.
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