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Abstract: We present a fully integrated, ready-for-use quantum random

number generator (QRNG) whose stochastic model is based on the ran-

domness of detecting single photons in attenuated light. We show that often

annoying deadtime effects associated with photomultiplier tubes (PMT)

can be utilized to avoid postprocessing for bias or correlations. The random

numbers directly delivered to a PC, generated at a rate of up to 50 Mbit/s,

clearly pass all tests relevant for (physical) random number generators.
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1. Introduction

Random numbers are essential for a number of applications starting from lottery games, crypto-

graphic applications such as generation of secure keys, or random numbers for secure personal

identification, all the way to numerical simulations in physics. When calculated by algorithmic

generators they are fully deterministic and necessarily exhibit a huge but finite period. Though

they are quite frequently employed, care has to be taken for many applications [1, 2]. On the

contrary, physical random number generators (RNG) avoid periodicity typical in algorithmic

ones as their output results from generically stochastic processes. Measurements sample these

processes pointwise in time, for example the Johnson noise in a resistor [3], the telegraph signal

deduced from noisy Zehner diodes [4] or, more recently in an optical implementation, the phase

noise fluctuation of a laser system [5, 6]. However, according to the laws of classical physics

all these sources of noise are governed by perfectly deterministic dynamics. Only the complex-

ity of the often chaotic evolution makes it impossible to predict the bit sequence with today’s

technology. Quantum physics provides inherent randomness and nondeterminacy. First designs

of quantum random number generators used the spontaneous decay of radioactive nuclei as a

non-deterministic quantum process [7]. Yet clearly photonic implementations are the tool of

choice, as well developed optical components enable reliable and fast generation of random

bits. First optical setups [8, 9] used the randomness of the detection of a single photon behind

a beamsplitter. The registration of the photons in one or the other output of the beamsplitter

was associated with the bit values ’0’ or ’1’, respectively. In these experiments different detec-

tion efficiencies of both detectors or the imperfect splitting ratio of the beam splitter lead to a

preference of ’0’ or ’1’ and dead time effects caused correlations between consecutive bits. To

remove the resulting bias and correlations, manipulation of efficiencies, post-processing algo-

rithms and reduction of the sampling rate had to be used, which all significantly decreased the

output rate. More recently a variaty of QRNGs was developed using different types of quantum

randomness [8, 10, 11, 12, 13, 14, 15]. They all exhibit specific advantages, but often also one

or the other disadvantage like low data rates, poor quality of raw random numbers either due to

the bias or correlations along the bit sequence, and/or complex implementations. It should be

also emphasized, that the standard test suites have to be used with care since they usually are
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Fig. 1. Schematic of the setup (left) and picture of the fully integrated quantum random

number generator (right). The main components are a light emitting diode (LED) mounted

on the entrance window of a photomultiplier tube (PMT). The electrical pulses from the

PMT are amplified (AMP) and fed into a threshold discriminator (ST). The signals are

counted and processed by the FPGA, the resulting random bits are transferred to a PC via

a USB connection. The total dimension of the housing is 22x16x8 cm3.

not optimized to detect typical problems of (quantum) physical RNGs such as bias, short time

fluctuations, correlations and dropouts [16, 17]. Ultimately, the quantumness of random num-

ber generators might be certified in a device independent manner by Bell’s theorem, currently

though only at very low rates [18].

Here we present an optical QRNG, whose randomness is based on the very principles of

quantum physics. The compact setup consists of a light source with stabilized intensity attenu-

ated to the single photon level and one single photon detector. The detection events are counted

during a sampling time interval τs and are interpreted as ’0’ for an even number of counts,

whereas an odd reading corresponds to ’1’. According to fundamental laws of quantum optics

the probability distribution of the number of photons in a sampling interval should follow a

Poissonian distribution with mean µ for a constant intensity light source [19], fully analogous

to radioactive sources for low µ . This fact would cause a considerable bias between the num-
ber of ’0’s and ’1’s in the random bit sequence. However, as we demonstrate below, dead time

effects of the photomultiplier together with the read-out electronics allow to eliminate the bias

even for very fast generation of random bits. In addition to passing standard test suites [20, 21]

for the evaluation of a physical random number generator [16] a stochastic model is required

[17, 4]. Based on the concept outlined above here we describe the essential ingredients of such

a model as well as the relevant tests of our implementation, clearly showing its suitability as a

high rate optical QRNG.

2. Principle and setup

In the optical setup (Fig. 1) the constant light source is provided by a light emitting diode

(LED) driven in cw-mode with digital feedback stabilization to about 1 ‰. The photon dis-

tribution emitted by the LED could be influenced by the Coulomb blockade effect inside the

p-n-junction of the LED [22, 23], but, given the very weak coupling to the detector on the order

of 10−8, this effect can be neglected and the resulting distribution of photons falling on the

detector is essentially Poissonian [24, 25]. To achieve high rates of random numbers we use

a photomultiplier tube (PMT) instead of often used avalanche photodiodes (APD), as the long

dead time of the latter on the order of 50−1000 ns, characteristic for Geiger-mode operation,

would significantly reduce the rate of random bits. Alternatively one might consider self differ-

encing readout of APDs [26]. A PMT on its own has no such dead time in the single photon

detection regime. There, the generation of a photoelectron and its subsequent amplification in

the electron multiplier stages is in principle independent from any preceding processes. Yet,
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the time of flight distributions of the photoelectrons and of the secondary electrons inside the

PMT-module lead to an electrical pulse width on the order of a few nanoseconds (see inset in

Fig. 2). A threshold discriminator used to convert the analog output pulse of the PMT into a

digital signal can distinguish two pulses only, if they are separated by about the pulse width.

This leads to an effective dead time τd , which even is extendable in the high intensity regime
where more and more pulses start to overlap [27]. In order to finally produce the random bits the

output of the discriminator circuit is fed into an FPGA logic (Spartan 3, clock speed 50 MHz).

There, the counter, the periodic sampling procedure and on-the-fly functionality tests [17, 4]

are implemented, and the random bits are transmitted to a PC via a USB connection.

Let us analyze the consequences of the dead time effects on the performance of the QRNG.

For fully independent detection events with a mean rate of µ within the sampling interval τs,
the probability to register n clicks is given by a Poisson distribution (Fig. 2)

P(n,µ) =
µn

n!
e−µ . (1)

This distribution becomes modified when using a PMT. Due to the (extendable) dead time

the initially Poissonian distribution of absorbed photons is significantly distorted by a factor

depending on the mean number of registered events µr and the ratio between sampling time τs
and dead time of the PMT τd . It is given by [27, 28]

P(n,µr) =
µn
r

n!
e−µr

︸ ︷︷ ︸

·

K−n

∑
k=0

(−µr)
k

k!
eµr

·

(
(1− (k+n−1)

τd
τs

)
)n+k

︸ ︷︷ ︸

, (2)

Poisson extendable dead time modification

with K

K =

⌈
τs
τd

⌉

being the maximum detectable number of photons within the time interval τs. Figure 2 displays
the change in the distribution relative to the Poisson distribution if the number of counts is close

to K. While the mean decreases from µ to µr = µ · exp(−µτd/τs) the probability for obtaining
higher number of events is drastically reduced.

As the output of the QRNG results from an even/odd number of detection events within the

sampling time interval, any change in the distribution of counts will influence the statistics of

the random bits, and can cause artefacts, most remarkably bias or correlations. The probability

for the random bit ’0’ (p0) and ’1’ (p1) can be calculated from Eq. (2). A bias b results from an

unequal number of ’0’s and ’1’s and is given by

b =
1

2
− p1 =

1

2
−

∞

∑
n=1,3,...

P(n,µ). (3)

Clearly, the asymmetry of the Poisson distribution results in a bias, which only slowly reduces

with increasing mean photon number. Thus, for this type of QRNG, postprocessing or sampling

over longer times would become necessary. Both measures reduce the output rate of random

bits. The dead time modified distribution Eq. (2), however, exhibits significantly different sym-

metry properties. Figure 3 compares the bias Eq. (3) resulting from the modified distribution

Eq. (2) with the one due to a Poisson process. We observe that the bias of the modified distribu-

tion rapidly drops to and oscillates around 0, and is smaller by orders of magnitude over a wide

range of mean number of detections. In the implementation of the generator this enables one

to choose high rates with negligible bias and without serious sensitivity on fluctuations of the

illumination intensity.
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Fig. 2. Normalized distributions of detected photon numbers (calculated). The black line

shows the distribution for a Poisson process with mean µ = 4.8, i.e. without considering
dead time effects. The red graph shows the expected distribution for an (extendable) dead

time of the PMT of τd = 2.7 ns and a sampling interval of τs = 20 ns. This results in a

strongly modified distribution, now with a mean µr = 2.51 (see text). Lines are guide to
the eyes. The inset exhibits the origin of the extendable dead time, where overlapping PMT

pulses are not resolved anymore by the threshold electronics.
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3. Evaluation and tests

Physical RNGs require new evaluation methods particularly in order to monitor the continuity

of the stochastic process [16, 17]. For that purpose online tests for a coarse functionality in-

spection [16] are implemented in the FPGA logic and regularly performed on strings of 1 Mbit

at intervals of one minute. These tests include the monobit-test and a chi-square test analyzing

bias and statistics of 4-bit patterns, respectively, as well as a total-failure test. So far no excess

fluctuations or degradation in the quality of the random bits was observed by these test routines.

To evaluate the performance of the actual implementation we have first analyzed the depen-

dence of the bias on the mean number of detections (Fig. 4a) using 8 Gbit bit strings in order to

obtain a statistical uncertainty as small as 3.2 ·10−5 (dashed line). For sampling time intervals
τs of 20,40 and 80 ns these measurements are compared to the theoretical predictions. From
these measurements also the minimal dead time τd was extracted to be τd = 2.7 ns by fitting
the bias Eq. (3) to the data points.

The experimental result shows good agreement with the theoretical predictions and the ef-

fect of the extendable dead time reducing the bias was clearly verified. At higher detection rates

(µr/τs) some deviation was caused mostly by the fact that this rate is beyond the specifications
of the PMT (< 50 ·106 events/s). Nevertheless, operating the QRNG around the first zero cross-

ing of b enables one to obtain a performance consistent with what is to be expected for finite

samples.

In addition, an important parameter of random numbers is the interdependence between con-

secutive bits. Contrary to algorithmic ones, physical random number generators are particularly

susceptible to short time fluctuations, which easily can cause correlations. For that reason a

dedicated analysis of the serial correlation coefficient SSCl depending on the bit distance l of

a bit sequence b1 . . .bN [29] has to be performed in addition to applying conventional random

number test suites.

The correlation analysis of a 40 Gbit random bit string taken at a sampling interval of 20 ns

and a mean photon number of µr = 1.41 is shown in figure 4b. For all bit distances l we observe
small values below 2 · 10−5. This fully complies with the statistical predictions as, albeit the

magnitude of this sample, there are finite size effects which cause fluctuations of the SCCl ,

even for perfectly uncorrelated data of the same magnitude.

For further evaluation, bit strings of 1 Gbit obtained at a rate of 50 Mbit/s were analysed

with two batteries of statistical tests: The “Statistical Test Suite” (STS) [20] from NIST and the

“DieHarder” (DIE) test suite [21] for the same operating parameters as before.

The STS battery consists in total of 15 independent tests. Each individual test, resulting

in p-values evaluated on 1 Mbit substrings, is performed 1000 times. A p-value gives the

probability that a perfect random number generator would produce the actual one or a worse

result. A final χ2 test is applied on the p-value distribution of each individual tests which

results in a total p-value (see Fig. 5). In order to appraise these results a significance level

α is chosen. A typical value for this parameter is α = 1%, (labeled by the black line in Fig.

5). P-Values above this significance level indicate that the test is passed by the bit sequence

generated by the QRNG.

The “DieHarder” battery of tests is a collection of 19 individual tests. Unlike in the STS tests,

here a final Kuiper Kolmogorov-Smirnov Test [30] is performed giving p-values for each test

separately. Again, the same level of significance is applied also to these results. The p-values

from all tests are clearly above the significance level and therefore all the tests of the two test

suites analysing the randomness of the output of our QRNG are passed.
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Serial correlation coefficient SCCl of a single 40 Gbit string, collected with a sampling
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(b). The statistical error levels shown in the plots are the 3-σ variance of the bias b or the

SCCl to be expected for an ideal random bit sequence with finite sample length.
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Fig. 5. Typical results of the standard statistical test suites STS (a) and Dieharder(b) for

a typical sequence of 40 Gbit. Without processing, the p-values are routinely above the

significance level confirming the quality and the reliability of the QRNG
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4. Conclusion

In this contribution we have presented a ready-for-use random number generator, whose ran-

domness directly originates from the randomness of quantum physics. Remarkably, the usually

quite irksome dead time effects of a PMT turned out to be very positive for the performance

of the QRNG. They significantly reduced the bias value of the random bits and enabled stable

operation at very high rates. The implementation as a compact setup directly connected to

a PC via a USB interface yielded a random bit-stream at a unprecedented rate of 50 Mbit/s,

which was collected and analysed continuously over several days without any variation of the

properties of the random bits observed. The random bit strings obtained routinely passed all

the conventional test suites as well as on-the-fly monitoring. In particular, we could confirm the

essential elements of a stochastic model for this QRNG and obtained pair correlations and the

bias within the statistical limits. The system is easily scalable to even higher rates by simply

implementing a multi-channel photomultiplier tube, thereby forming the ideal equipment for

today’s demanding applications such as numerical simulations, conventional cryptography, or

novel, high rate quantum cryptography systems.
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