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We show how entanglement may be quantified in spin and cold atom many-body systems using

standard experimental techniques only. The scheme requires no assumptions on the state in the laboratory,

and a lower bound to the entanglement can be read off directly from the scattering cross section of

neutrons deflected from solid state samples or the time-of-flight distribution of cold atoms in optical

lattices, respectively. This removes a major obstacle which so far has prevented the direct and quantitative

experimental study of genuine quantum correlations in many-body systems: The need for a full

characterization of the state to quantify the entanglement contained in it. Instead, the scheme presented

here relies solely on global measurements that are routinely performed and is versatile enough to

accommodate systems and measurements different from the ones we exemplify in this work.
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Interacting quantum many-body systems generally ex-

hibit correlations between its constituents. At sufficiently

low temperatures, these correlations possess quantum me-

chanical features—entanglement. Compared to its classi-

cal counterpart, entanglement is extremely complex. Its

full characterization generally requires the measurement

of a number of observables that grows exponentially with

the number of constituents of the systems. The ability to

create entanglement merely by cooling an interacting

quantum many-body system provides the attractive oppor-

tunity of carrying out quantum information processing

tasks which gain their power exactly because of the com-

plex structure of entanglement. However, the very same

setting offers significant challenges, as it is much harder to

analyze theoretically and, crucially, experimentally: While

for the few-particle systems that can now be prepared in

highly controlled environments such as ion traps, it is

possible to fully characterize the state in the laboratory

by quantum state tomography [1], the situation in con-

densed matter systems is far more challenging. Firstly,

the number of subsystems tends to be much larger, the

level of control over states and Hamiltonians is more

restricted, and, crucially, the available measurements for

condensed matter systems are much less general: Local

measurements addressing individual constituents are usu-

ally not available and one has to rely on global measure-

ments such as those obtained in scattering experiments to

draw conclusions about the system. These are of course by

no means sufficient to fully characterize the state in the

laboratory. How might one still be able to say something

about the entanglement that is available? One approach

could be to, e.g., model the system with a certain quantum

Hamiltonian and compare it to a classical model. If the

predictions from the quantum model match the measure-

ment results while the classical does not, and the simulated

quantum state displays entanglement, one might conclude

that the state in the laboratory is indeed entangled. This,

however, is a fallacy. Consider the following example of

two spins [2]: Suppose one measures the correlation

h!̂z
1!̂

z
2i ! h!̂z

1ih!̂z
2i and obtains the result !1. This mea-

surement is consistent with both the maximally entangled

state jc i ¼ ðj "#i ! j #"iÞ=
ffiffiffi

2
p

and the separable state %̂ ¼
ðj "#ih"# j þ j #"ih#" jÞ=2. Hence, without further assump-

tions, one may not decide whether the state in the labora-

tory is entangled or not. A possible assumption may be that

the system is in thermal equilibrium at some known tem-

perature and that the Hamiltonian that governs the system

is known precisely. But obtaining knowledge about the

Hamiltonian experimentally is even harder than to obtain

the state itself. A technique to decide without a doubt

wether entanglement is contained in a given system should

hence not rely on knowing the Hamiltonian; it should, in

fact, not rely on any kind of knowledge about the system

other than measured data, but be able to quantify entangle-

ment by just relying on measured observables.

Here we present a scheme to quantify entanglement in

condensed matter systems that fulfils all the above require-

ments and relies only on measurements that are already

available: Neutron scattering from spin systems and time-

of-flight imaging of cold atoms. Hence, we show that it is

possible to directly—without any assumptions—measure

entanglement inmany-body systems. To this endwe exploit

the substantial body of work concerning the characteriza-

tion (which states are entangled), quantification (howmuch

of it do we have), and verification (on the basis of simple

measurements we need to answer the previous questions)

of entanglement (see [3] for a tutorial review and [4] for

an advanced and very comprehensive review) that have

been established in quantum information science. More

precisely, we combinemethods for determining the presence

of entanglement in quantum many-body systems [5,6]

with proposals for the quantification of entanglement in
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many-body quantum systems [2,7–10] to achieve an experi-

mentally accessible method for measuring entanglement.

Spin systems.—One of the standard tools to analyze con-

densed matter samples is neutron scattering; see, e.g.,

Ref. [11]. The deflected neutrons carry information about

the structural and magnetic properties of the sample, which

can be read off the differential scattering cross section [12].

The Fourier transform of the magnetic cross section gives

access to spin correlations in reciprocal space such as the

positive Hermitian observable ŜðqÞ ¼ P

&¼x;y;zŜ&ðqÞ, where

Ŝ&ðqÞ ¼
1

M

X

i;j

eiq,ðri!rjÞ!̂&
i !̂

&
j ; (1)

!̂x
i , !̂

y
i , !̂

z
i are Pauli spin matrices acting on lattice site i

located at ri, and M is the total number of spins, so the

number of lattice sites.

In the following we will show how a measurement of

observables of the type in Eq. (1) alone is sufficient to

quantify the entanglement contained in the sample. We

will consider systems comprised of spin-1=2 particles on

a lattice and set out to derive a lower bound to the entangle-

ment that is consistent with the measurement data. It will

turn out that it is possible to find a lower bound that is a

simple function of the static structure factor hŜðqÞi. Hence,
for this, no assumptions about the state are necessary; in

particular, no knowledge about the Hamiltonian is required.

In the following we present definitions and a derivation

that will lead to the central result in Eq. (3), which provides

a lower bound on the entanglement of any spin state under

investigation that can be used directly on experimental

data. Several entanglement measures may be expressed

in the form [3,13]

ECð%̂Þ ¼ maxf0;! min
Ŵ2W\C

tr½Ŵ %̂1g; (2)

whereW denotes the set of Hermitian operators that fulfil

hŴi 3 0 for separable states [14] (i.e., the set of entangle-

ment witnesses [15]) and C distinguishes the quantities: For

example, if C is the set of operators Ŵ fulfilling hŴi 4 1

for separable states, then EC is the robustness of entangle-

ment [16], for C ¼ fŴ 2 W j1! Ŵ 3 0g, EC measures

the generalized robustness of entanglement [17], and if

C ¼ fŴ 2 W j1þ Ŵ 3 0g then EC is equal to the

best separable approximation [18]. In fact, ECn;m
; Cn;m :¼

fŴ 2 W j ! n1 4 Ŵ 4 m1g, is an entanglement mono-

tone for every n;m 3 0 [13]. One can now exploit the fact

that for any choice Ŵ 2 W \ C one obtains the lower

bound ECð%̂Þ3maxf0;!tr½Ŵ %̂1g for all Ŵ 2 W \ C.

Given this expression, it is possible to arrive at

lower bounds to EC by simply constructing operators

Ŵ2W \C that are functions of observables that are

within experimental reach. This works of course for any

spin system and any observable.

In the following, we will focus on the best separable

approximation and the observable Ŝ. Consider the operator

ŴðqÞ ¼ ŜðqÞ=2! 1, for which we now show that

Ŵ 2 W \ C. We find ŴðqÞ þ 1 3 0, and for a product

state %̂ ¼ 5i%̂i, we have

hŴðqÞi ¼
X

i;&

1! h!̂&
i i2

2M
! 1þ 1

2M

X

&

$

$

$

$

$

$

$

$

X

i

eiq,rih!̂&
i i
$

$

$

$

$

$

$

$

2

;

which is non-negative as the last term is and the first term

may be bounded by using the uncertainty relation
P

&ð1!
h!̂&

i i2Þ 3 2. Hence, Ŵ 2 W \ C, i.e., for every state %̂ and

every q, the quantity

EðqÞ ¼ max

%

0; 1! 1

2M

X

i;j;&

eiq,ðri!rjÞh!̂&
i !̂

&
j i
&

(3)

provides a lower bound to the M-partite entanglement

(as measured in terms of the best separable approximation)

contained in %̂. Similar bounds may be derived for all

entanglement measures that fall into the general frame-

work of Eq. (2).

At this point, wewould like to emphasize again that EðqÞ
gives a lower bound to the entanglement for any state on

the lattice—irrespective of how it has been prepared, what

the temperature is, or what the Hamiltonian might be.

As an example, we consider thermal states of the anti-

ferromagnetic Heisenberg model

Ĥ ¼ J
X

&¼x;y;z

X

hi;ji
!̂&

i !̂
&
i (4)

on a square lattice. This model has been analyzed in great

detail in the literature (see Ref. [19] for a review) using

several analytical and numerical techniques. In Ref. [20] the

two-dimensional Heisenberg antiferromagnet copper deu-

teroformate tetradeurate has been analyzed experimentally

using extensive neutron scatteringmeasurements, and it has

been suggested—under the assumption that the system is

indeed described by Ĥ with known coupling constants and

by a comparison of a classical to a quantum description—

that entanglement is present in this system. Using EðqÞ, the
presence of entanglement cannot only be confirmed but, as

it is a lower bound to the best separable approximation, also

quantified. In Fig. 1, we show EðqÞ for a thermal state at

different values of J4 as obtained from a quantum

Monte Carlo computation (QMC) [21]. The plot shows

that entanglement is present up to fairly high temperatures;

i.e., measuring entanglement is well within experimental

reach (in [20], e.g., the samplewas at a temperature of 1.5 K

and the data well fitted by J ¼ 6:19 meV, i.e., kBT=J ¼
0:02). In addition, the plot exemplifies the quality of our

bound: The best separable approximation is upper bounded

by unity and at low temperaturesEð0Þ 6 1.EðqÞ also scales
properly with the system size: For the ground state of Ĥ
it is known that SðqÞ 7 jqj for small jqj [19], i.e., EðqÞ !
17 jqj; see also Ref. [22].

Bosons in optical lattices.—A standard measurement in

the context of ultracold atoms is the following: One

switches off all potentials, allows the atom cloud to expand

freely, and then takes an absorption image of the atoms,
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which reveals the velocity, quasimomentum, or time-of-

flight distribution of the atoms before the expansion. This

technique was used to demonstrate the Mott insulator-

superfluid transition of bosons in optical lattices [23] and

to observe Fermi surfaces of fermions in optical lattices

[24] to name just a few. We focus on the situation in which

bosons of mass m are kept in an optical lattice with lattice

constant a. After a time of flight t, the density of the atoms

reads (see, e.g., Refs. [25,26])

nðrÞ ¼
X

i;j

fi;j

'

k ¼ mr

@t

(

hb̂yi b̂ji; (5)

where

fi;jðkÞ ¼
'

m

@t

(

3

jwðkÞj2ei½kðri!rjÞþðm=2@tÞðr2
j
!r2

i
Þ1; (6)

wðkÞ is the Fourier transform of the Wannier function cen-

tered at zero, and b̂i annihilates a boson at site i located at ri.
The resulting absorption image is then the integral along the

optical axis, say, the z direction, of this density, i.e.,

nðx; yÞ ¼
X

i;j

fi;jðx; yÞhb̂yi b̂ji ¼: hn̂ðx; yÞi; (7)

where fi;jðx; yÞ ¼
R

dzfi;jð@trm Þ, fi;iðx; yÞ ¼: fðx; yÞ. We

now set out to show that

Eðx; yÞ ¼ max

%

0; hN̂i ! nðx; yÞ
fðx; yÞ

&

(8)

provides a lower bound to the entanglement in the state in

the laboratory—the main result of this section.

As we are concerned with massive particles, we will,

in the following, restrict the state space to states %̂ that have

a finite mean number of particles, tr½%̂ N̂1<1, and

commute with the particle-number operator N̂. In other

words, we are concerned with states respecting the

particle-number superselection rule (SSR)—the only

physical states allowed in this setting of indistinguishable

massive particles [27]. These states are of the form %̂ ¼
P1

N¼0 P̂N%̂P̂N ¼:
L1

N¼0 %̂N , where P̂N projects on the

sector with constant particle number N. The SSR also

restricts the allowed physical operations to operations

commuting with N̂ [27]. Consider now

E ð%̂Þ ¼ max

%

0;!
X

1

N¼0

min
Ŵ2CN

tr½%̂NŴ1
&

; (9)

where CN is the set of Hermitian operators Ŵ acting on the

subspace of constant particle number N that fulfil cN :
Ŵ 3 0 for some constant c > 0 independent of N and

tr½%̂NŴ1 3 0 for separable %̂N . Using similar methods as

in Ref. [13], it can be shown that [28] E is an entanglement

monotone under local operations and classical communi-

cation (LOCC) operations that preserve the total number of

particles, i.e., that commute with N̂ (and hence it is also an

entanglement monotone under SSR-LOCC operations—

LOCC operations that preserve the local particle number;

for a discussion of entanglement under SSR see Ref. [27]).

We now show that ŴN ¼ P̂N½n̂=fðx; yÞ ! N̂1P̂N 2 CN.

To this end let jc i be a state vector on the subspace of

constant particle number N. Then, with M being the num-

ber of lattices sites, we find

hc jn̂jc i
fðx;yÞ 4

X

i;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hc jb̂yi b̂ijc i
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hc jb̂yj b̂jjc i
q

4NM; (10)

i.e., MN : ŴN 3 0. Furthermore, for separable %̂N , we

find for i " j that tr½%̂Nb̂
y
i b̂j1 ¼ 0, and hence

tr ½%̂Nn̂1 ¼ fðx; yÞ
X

i

tr½%̂Nb̂
y
i b̂i1 ¼ fðx; yÞN; (11)

i.e., tr½%̂NŴN1 3 0. Hence, ŴN 2 CN , which implies that

! min
Ŵ2CN

tr½%̂NŴ1 3 trf%̂N½N ! n̂=fðx; yÞ1g; (12)

and thus, for all x; y, the quantity in Eq. (8) provides a

lower bound to theM-partite entanglement available in the

system. Here, nðx; yÞ ¼ hn̂ðx; yÞi is obtained in standard

time-of-flight measurements and E is a lower bound for

any state on the lattice.

As an example, we consider thermal states of the Bose-

Hubbard model on a three-dimensional cubic lattice,

Ĥ ¼ !J
X

hi;ji
b̂yi b̂j þ

U

2

X

i

n̂iðn̂i ! 1Þ !E
X

i

n̂i; (13)

where n̂i ¼ b̂yi b̂i, the summation is over nearest neighbors,

J accounts for tunneling of atoms between adjacent sites,

U is the strength of the on-site repulsion of atoms, and the

chemical potential E controls the particle number. Bosons

in deep optical lattices are well described by this model,

which displays a quantum phase transition from a Mott

FIG. 1 (color online). Lower bound E on the entanglement—

as measured in terms of the best separable approximation

(BSA)—for a thermal state %̂ ¼ expð!4ĤÞ=Z, 4J ¼ J=kBT ¼
1, of the Heisenberg model in Eq. (4). For every q, EðqÞ provides
a lower bound to the BSA. The square lattice with open bound-

ary conditions and lattice constant a ¼ 1 has 30; 30 lattice

sites, and hŜðqÞi was obtained using the generalized directed loop
QMC algorithm [29] of the ALPS package [21]. Inset shows

EðnG
16
; nG
16
Þ, n ¼ 0; 4; 6; 7 (top to bottom), as a function of the

temperature. Lines are a guide to the eye. Note that the BSA is

upper bounded by unity, a bound that EðqÞ saturates at low

temperatures and q ¼ 0.
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insulator (small J=U) to superfluid (large J=U) that was

observed in [23] via the interference pattern displayed in

hn̂ðx; yÞi. In Fig. 2, we show Eðx; yÞ for a thermal state as

obtained from a QMC computation [21]. We can see that

Eðx; yÞ increases linearly with J=U and stays finite up to

high temperatures. Hence, quantifying entanglement in

these systems is already well within experimental reach.

While the data in Fig. 2 suggest that in order to detect

entanglement the measurement precision needs to be very

high, i.e., hN̂i and nðx; yÞ=fðx; yÞ known to very high

precision, one has to keep in mind that these data corre-

spond to the deep Mott regime, which by its very nature

exhibits only a small amount of entanglement. For the

ground state on a cubic three-dimensional translationally

invariant lattice withM ¼ L3 in the deep superfluid regime

(U ¼ 0), one finds at x ¼ y ¼ 0 that hN̂i ¼ IL3 and

nðx; yÞ=fðx; yÞ ¼ IL2, where I ¼ hn̂ii, which leaves suf-

ficient room for experimental uncertainties.

Conclusion.—We have derived lower bounds to the en-

tanglement contained in lattice systems. These lower

bounds are a simple function of routinely measured ob-

servables and do not require any additional information

about the system. This makes the quantification of entan-

glement in condensed matter samples possible. Without

making any assumptions (such as the temperature, the

Hamiltonian, the way the state was created), entanglement

can be directly measured using only measurements that

belong to the toolbox for the analysis of quantum many-

body systems. The presented schemes straightforwardly

generalize to other many-body systems and observables.
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FIG. 2 (color online). Lower bound Eðx; yÞ on the entangle-

ment for a thermal state %̂ ¼ expð!Ĥ=kBTÞ=Z with constant

filling factor hn̂ii ¼ 1 of the Bose-Hubbard model in Eq. (13).

The three-dimensional cubic lattice with periodic boundary

conditions and lattice constant a ¼ 1 has 10; 10; 10 lattice

sites and hn̂ðx; yÞi was obtained using the same numerical code as

for Fig. 1. Left-hand plot shows Eðx; yÞ as in Eq. (8) for 4U ¼
1=5, J=U ¼ 0:01. Right-hand plot shows EðnG

64
; nG
64
Þ, n ¼

64; 48; 44; 36; 34; 33 (top to bottom) as a function of the tem-

perature (black lines) and of the tunneling amplitude J=U (gray

lines). Lines are guides to the eye.
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