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Recently, the presence of noise has been found to play a key role in assisting the transport of energy and

information in complex quantum networks and even in biomolecular systems. Here we propose an experimentally

realizable optical network scheme for the demonstration of the basic mechanisms underlying noise-assisted

transport. The proposed system consists of a network of coupled quantum-optical cavities, injected with a single

photon, whose transmission efficiency can be measured. Introducing dephasing in the photon path, this system

exhibits a characteristic enhancement of the transport efficiency that can be observed with presently available

technology.
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I. INTRODUCTION

The presence of noise in quantum transmission networks is

generally considered to be deleterious for the efficient transfer

of energy or classical or quantum information encoded in

quantum states. Quantum networks, used for the transmission,

are unavoidably interacting with an external noisy environ-

ment, and this interaction significantly affects the quantum

coherence of the system evolution. It is indeed commonly

accepted that the presence of decoherence [1] is responsible for

the undesired and uncontrolled transfer of information from the

system to the environment,which in turn reduces the coherence

in quantum systems. However, recently noise has been found

to play a positive role in creating quantum coherence and

entanglement [2,3]. Motivated by fascinating experiments

showing the presence of quantum beating in photosynthetic

systems [4–6], subsequent theoretical work pointed to the idea

that the remarkable efficiency of the excitation energy transfer

in light-harvesting complexes during photosynthesis benefits

from the presence of environmental noise [7,8]. Indeed, the

intricate interplay between dephasing and quantum coherence

as well as the entanglement behavior during the noise-assisted

transport dynamics have been elucidated in more detail in

Refs. [9–12]. Perhaps even more surprisingly, the dephasing

was recently found to assist the transfer of classical and

quantum information in communication complex quantum

networks [13].

Recently, quantum optical systems have been exploited as

a promising platform to simulate quantum processes [14–16].

For example, several implementations of systems simulating

quantum random walks have been reported with linear optical

resonators [17,18], linear optical elements [19,20], fiber

networks [21], and optical waveguides [22–25]. Motivated

by these results, here we propose a quantum optical scheme

to investigate the noise-assisted excitation transfer process

through a set of coupled optical cavities. We discuss a four-site

optical network and derive the set of relevant parameters that
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rule the time evolution of the system. A detailed numerical

simulation of this dynamics, when one cavity is injected with

a single photon, is performed employing realistic experimental

parameters, showing that the presence of a suitable dephasing

process in each site of the network allows for a characteristic

increase of the excitation transfer efficiency. Furthermore, we

consider aspects such as phase stabilization of the cavities

and the implementation of dephasing, which are necessary to

observe a clear enhancement of the photon transfer rate from

one cavity to an external detector, mimicking the so-called

reaction center of the light-harvesting complexes. Finally,

we investigate how entanglement degrades during the time

evolution of the optical network.

The paper is organized as follows: In Sec. II we define

the model that describes the dynamics of the four-site optical

network analyzed in this paper, including the master equation

for the two relevant noise processes. Then in Sec. III we

perform a detailed derivation of a realistic set of parameters

for the system. In Sec. IV we report the results of a numerical

simulation of the dynamics of the network. Finally, the

conclusions and final remarks are presented in Sec. V.

II. MODEL OF THE NETWORK

In this section we describe in detail the model underlying

the dynamics of the proposed network of optical cavities. A

schematic view of this system in relation to the light-harvesting

complexes is shown in Fig. 1. Starting from the Hamiltonian

describing noninteracting cavities, one has

Ĥcav =
∑

i

h̄ωâ
†
i âi, (1)

where âi and â
†
i are the usual bosonic field operators, which

annihilate and create a photon in cavity i, and ω is the

resonance frequency, which we assume for simplicity to be

equal for all cavities. The transfer of photons between the

optical cavities is described by the following Hamiltonian

term:

Ĥint =
∑

(i,j )

h̄gij (â
†
i âj + âi â

†
j ), (2)
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FIG. 1. (Color online) Analogy between a network of coupled

optical cavities and a physical network where the excitation is carried

by electrons, such as light-harvesting complexes. (a) The single

site of the network is analogous to a single optical cavity. (b) The

electronic excitation is represented by the presence of a single photon

in the corresponding optical cavity. (c) The transfer of the excitation

between two interacting sites is analogous to the transfer of the

single-photon between two adjacent coupled cavities.

where the sum on (i,j ) extends over all the connected cavities,

and gij are the coupling constants. Moreover, we assume that

this dynamics is subject simultaneously to two distinct noise

processes acting on each optical cavity i:

(1) a dissipation process that leads to photon loss with rate

0i , described by the following Lindblad superoperator:

Ldiss(ρ̂) =
∑

i

0i(−{â†
i âi,ρ̂} + 2âi ρ̂â

†
i ), (3)

(2) a pure dephasing process that randomizes the photon

phase with rate γi given by a Lindbladian term which has the

form

Ldeph(ρ̂) =
∑

i

γi(−{â†
i âi â

†
i âi,ρ̂} + 2â†

i âi ρ̂â
†
i âi). (4)

In addition, the total transfer of the single photon is

measured in terms of photons detected on the right-hand side

output of cavity 2, which represents the so-called sink or

reaction center of the biological systems (here, a single-photon

detector), described by the Lindblad operator

Ldet(ρ) = 0det[2â
†
detâ2ρâ

†
2âdet − {â†

2âdetâ
†
detâ2,ρ}], (5)

where â
†
det describes the effective photon creation operator in

the detector and0det is the rate at which the photon irreversibly

gets the detector on the right side of optical cavity 2; see

Figs. 2, 3, and 4. Hence, the photon transfer efficiency is

measured by the quantity

psink(t) = 20det

∫ t

0

Tr[ρ(t ′)â
†
2â2] dt ′. (6)

In the following numerical simulation, we will assume that

there is a single photon initially in cavity 1. Notice that, since

FIG. 2. (Color online) Quantum simulation of noise-assisted

excitation transfer through a network of coupled optical cavities.

(a) Simplified scheme of a four-site fully connected network. The

excitation is injected at site 1, and exits from the network by coupling

of site 2 with the output sink. (b) Equivalent network of four coupled

cavities. The excitation is given by a single-photon pulse injected into

cavity 1. The right output mode of cavity 2 is the output sink channel

for the excitation.

our scheme does not involve any nonlinear process, a single-

photon experiment repeated many times exhibits the same

statistics obtained with an injected coherent state [26].

III. PARAMETERS OF THE NETWORK

In this section we discuss the experimental details of the

optical cavity network setup sketched in Fig. 2, in order

to simulate the mechanisms underlying the noise-assisted

transport phenomena. The excitation of the network, i.e., a

single photon at wavelength λ = 800 nm, is generated through

a heralded single-photon source, based on the spontaneous

parametric down-conversion process. We consider the case of

a network of dk = 1 cm long cavities. The distance between

each cavity and the central beam-splitter (BS), chosen with

transmittivity η = 0.5, is taken to be lk = 20 cm. More

specifically, cavity 1 has mirror reflectivities Rin1 = 0.9 (for

the internal mirror pointing toward the BS) and Rout1 = 0.99

(for the external mirror), cavity 2 has Rin2 = Rout2 = 0.9, while

cavities 3 and 4 have Rinj = 0.9 and Routj = 0.999. The loss

parameter of each cavity j is given by

ξj =
√

Rinj Routj e−2dj αj , (7)

where αj = 0.35 m−1, while the average number of round
trips for a photon in the cavity is given by mj = (1− ξj )

−1.
The parameters adopted for the numerical simulation are, re-

spectively, the set of coupling coefficients between the cavities

of the network, the dissipation rate, and the transmission rate

from site 2 to the output mode kdet (i.e., the detector).

A. Dissipation rate

The dissipation rate in each cavity j can be evaluated by

considering the amount of losses in mj round trips, i.e., the

average flight time of the photon in the cavity. Such a parameter

can be evaluated according to the following expression:

0j ∼
D

mj tj

mj
∑

i=0

ξ 2ij = D
1− ξ

2(mj +1)
j

(

1− ξ 2j
)

mj tj
, (8)
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FIG. 3. (Color online) Scheme of all coupling, dissipation, and

dephasing processes of the network. All sites are coupled with the

network with gkj couplings, and undergo both a dephasing process,

with rate γ , and internal losses, with rate 0j . Site 1: external losses

are reduced with a feedback system. Site 2: external coupling with

the sink. Sites 3 and 4: external losses are negligible with respect to

internal losses (0
j
out ¿ 0j ).

where ξ 2j represents the fraction of optical power which

remains confined in the cavity after each round trip, tj is

the photon flight time in one round trip, mj is the average

number of round trips for the photon in cavity j , and D is the

dissipation in one round trip only due to diffraction or coupling

with other optical modes, i.e., D = 1− e−2αj dj . Equation (8)

evaluates the fraction of optical power lost in mj round trips,

divided by the average flight time tcav = mj tj = 2dmj/c, with

c being the speed of light. In our setup, one has 0j ' 50 MHz

and D ∼ 0.007. We consider the losses between the cavities

and the beam-splitter to be negligible due to the adoption

of antireflection coating optics. Notice that the average flight

time of the photon in the cavity, i.e., tcav, is of the order of

nanoseconds and defines the time scale of the process. Hence,

the corresponding linewidth of the cavity alone, evaluated from

the spectral properties of the intracavity field, is∼2 GHz. The
linewidth of the injected photon must be much smaller than

this value, hence a narrow-band parametric down-conversion

source, such as one obtained through periodically poled

nonlinear crystals, is necessary for an efficient cavity-photon

coupling. Let us note that the presence of external mirrors

with reflectivities Rout1,2,4 < 1 introduces additive channels 0out
for losing the photon from the network in spatial modes

kout1,2,4—see Fig. 3. The dissipation rate due to such a process is

given by the fraction of optical power lost through the external

mirror in time tcav = mj tj , and can be evaluated as

0
j
out ∼

(

1− Routj

)

mj tj

mj
∑

i=0

(

Routj

)i =
1−

(

Routj

)mj +1

mj tj
. (9)

For cavities 3 and 4, such an additive dissipation channel is

of the order of 0
3,4
out ∼ 10 MHz, thus being negligible with

respect to the dissipation due to intracavity losses. For cavity 1,

we can introduce a feedback system to discard those events

which correspond to losing the photon through this channel.

This system is shown in Fig. 4 and exploits the polarization

state of the photon by inserting a Faraday rotator (FR). More

specifically, the photon with |H 〉 polarization state, after
the polarization beam-splitter (PBS), is rotated by the λ/2

waveplate and by the Faraday rotator in the polarization state

|V 〉. When the photon exits the network from the external

mirror of site 1, propagation through the λ/2 waveplate and

FIG. 4. (Color online) Experimental setup for the four-cavities

optical network. The single photon in the input mode kin is injected

into the network at site 1. The successful transfer of the excitation in

the network is given by the detection of the single photon on mode

kdet. The coupling coefficients between cavities can be changed by

varying the transmittivity and the reflectivity of the beam-splitter

(BS). The feedback system to reduce the dissipation rate 01out from

site 1 exploits the polarization degree of freedom of the photon as

described in the text. Inset (a): Sketch of an active phase stabilization

apparatus. An auxiliary laser is injected and extracted into the network

by two dichroicmirrors (DM). Themeasurement on the auxiliary laser

is used to drive a piezoelectric system which stabilizes the cavity

length. Inset (b): Introduction of dephasing rate by modulation of the

index of refraction through an electro-optical crystal.

the Faraday rotator in the opposite direction maintains its

polarization state |V 〉 unaltered. Finally, the photon is reflected
by the polarization beam-splitter and then detected. This allows

us to discard those events when the detector clicks, thus

reducing the effective dissipation term 01out. We notice that

recent papers have reported the realization of high detection

efficiency (∼75%) silicon avalanche photodiodes and super-
conducting transition edge detectors, with the perspective of

reaching a value of ηdet ∼ 90% [27,28]. The adoption of these

devices would reduce the effective dissipation 01out due to the

external mirror by a factor of 0.2, and hence in our case from

∼100 MHz without post-selection to 01out ∼ 20 MHz.

B. Coupling rate

The cross-coupling coefficients have been evaluated fol-

lowing the theory of Marcuse [29,30]. The time evolution of

the intracavity field amplitude is described by the following

set of first-order differential equations:

dAν
j

dt
= i

(

Äν
j − Ä

)

Aν
j + i

∑

σ

sνσ
j Aσ

j + i
∑

k 6=j

∑

σ

gνσ
jk Aσ

k ,

(10)

where j is the cavity index, (ν,σ ) are the mode indices, sνσ
j

and gνσ
kj are respectively the self-coupling and cross-coupling

coefficients, Äν
j is the optical frequency corresponding to the

eigenvalue of the propagation equation for the optical mode ν

in cavity j , Ä is a reference frequency corresponding to

the center of the spectrum for Äν
j , and Aν

j are the field

amplitudes. In our case, we consider only a single mode of

the electromagnetic field, and the mode indexes (ν,σ ) can be

neglected. An approximate expression for the evaluation of the
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cross-coupling coefficients is derived in Ref. [29] and reduces

here to the expression

gkj '
1

2i

(

vkvj

dkdj

)1/2

tkj , (11)

where vj are the intracavity group velocities, dj are the

cavity lengths, and tkj is the amplitude transmission coefficient

between the fields Aj and Ak in the two sites. The amplitude

transmission coefficient can be directly evaluated by analyzing

the fields in the classical limit. The calculation of this

parameter can be divided into three intermediate steps. In the

followingwe specify these calculations for our setup in Fig. 2.

1. Output field from cavity k. As a first step, we evaluate

the ratio between the intracavity field and the field at the output

of cavity k, given by

A
(k)
out

A
(k)
cav

=
√

(

1− Rink
)

(e−iδφke−αkdk ), (12)

where δφk is the phase term due to propagation inside

cavity k.

2. Intercavity field at the input face of cavity j . The field

at the input face of cavity j can be evaluated as the coherent

superposition of all possible paths of the output field from

site k, i.e., A
(k)
out. Such a quantity strongly depends on

interference effects between all possible paths that the photons

can take in the network. We restrict our treatment only

to the first-order path. The ratio between the intercavity field

and the field at the output of cavity k, i.e., Ikj = A
(k→j )
inter /A

(k)
out,

has the following form:

Ikj = inr
1

√
2
ei(φk+φj )Kkj , (13)

where nr is the number of times the photon has been reflected

by the beam-splitter, φk = 2π lk
c
νL is the phase shift due to

spatial propagation between the cavity k and the BS, νL being

the field optical frequency and lk being the distance between

the cavity k and the central BS; the form of Kkj is different

depending on whether the cavities k and j are directly linked

by the beam-splitter or not, i.e.,

Kkj =
{

1 for direct link,
1√
2

(
√

Rinq ei2φq +
√

Rinp ei2φp
)

for indirect link,

(14)

where p and q are cavity indices satisfying k 6= j 6= p 6= q.

In order to generalize the expressions of Ikj and Kkj to the

case of a BS with transmittivity η 6= 0.5, each factor 1√
2
has

to be replaced with
√

η or
√
1− η depending on whether the

photon has been reflected or transmitted by the beam-splitter.

3. Intracavity field in cavity j . The intracavity field in site

j is related to the intranetwork field at its input face according

to

E
(j )
cav

E
(k→j )
intra

=

√

(

1− Rinj
)

1− mj

, (15)

hence the coupling coefficients can be finally written as

gkj =
Ikj

2i

(

vkvj

dkdj

)1/2

√

(

1− Rink
)(

1− Rinj
)

e−iδφk

1− mj

e−αkdk .

(16)

Following these calculations, the absolute values of the

coupling rates are found to be g12 = 4.3 GHz, g13 = 5.7 GHz,

g14 = 7.6 GHz, g23 = 6.1 GHz, g24 = 4.5 GHz and g34 = 5.9

GHz. To take into account the fluctuations in the coupling

coefficients (induced by the phase fluctuations) between

experiments, we analyze also the case in which there is a

static disorder of ∼20% in the coupling rates.

C. Transmission rate

Finally, the transmission rate from cavity 2 to the output

mode kout is evaluated as above for 0j , by considering the

amount of field which is transmitted through the mirrorRout2 in

the output mode in m2 round trips. In other words, the rate at

which the photon is transferred to the detector can be evaluated

with the same expression for the external mirror dissipation

rate of Eq. (9). The numerical evaluation of this parameter

gives

0det =
1−

(

Rout2
)m2+1

m22d/c
∼ 1 GHz. (17)

D. Experimental tasks

The two main challenges for the proposed experimental

realization, shown in Fig. 4, regard the phase stability of

the cavities and the implementation of a suitable device to

introduce the necessary amount of dephasing rate. An accurate

control on the cavity length is necessary in order tomaintain the

cavities at resonance with the photon wavelength and to keep

the coupling rates constant. This phase stabilization can be

achieved by an active feedback systemworking on an auxiliary

laser superimposed with the single photon by means of a

dichroic mirror, and then measured after its passage through

the cavity [Fig. 4, inset (a)]. The parameters of this network

correspond to a low-finesse optical cavity. Hence, a length

stability of the order of few nanometers is necessary, which is

a requirement fully achievable with the current technology.

The dephasing rate inside the cavity can be introduced

by acting on the beam path, through the propagation factor

eikz. This can be done by modifying the propagation length

z or by varying the wave vector k, for instance by acting on

the index of refraction inside cavity n. The phase modulation

can then be achieved by different methods, depending on the

desired modulation rate. For a dephasing rate of the order of

1 GHz, such as the one used in the numerical simulation in

the following, an electro-optic or acousto-optic modulator can

be inserted in the cavity to shift the frequency of light [Fig. 4,

inset (b)].

IV. RESULTS OF THE NUMERICAL SIMULATION

In this section we investigate the dynamics of the optical

cavity network by using our model with the coupling rates

gij as estimated earlier, a dissipation rate set at 0j = 70 MHz

for all the sites by taking into account the different dissipative

processes, and a transfer rate to the detector of 0det = 1 GHz.

In particular, in Fig. 5 we show the cavity photonic population

as a function of time in both cases of local dephasing (with

rate 1 GHz) and no dephasing. The introduction of dephasing

reduces the destructive interference between all the possible
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FIG. 5. (Color online) Site 1 population behavior and transfer

efficiency vs time (in ns) for the optical cavity network for the

noiseless (continuous line) and noisy (dashed line) case. The photon

transmission is significantly enhanced by the presence of dephasing.

The error bars are calculated considering a 20% static disorder

(103 samples).

photon pathways and increases remarkably the overall transfer

efficiency from about 40% to more than 70%. In the absence

of dephasing, the photon is trapped in some superposition

(dark) states which are not coupled to site 2, and this explains

the lower transfer efficiency—see Ref. [10] for more details.

Moreover,we consider also the case inwhich the coupling rates

suffer a static disorder of 20%and plot the transfer efficiency as

a function of the dephasing rate in Fig. 6. These results further

support the prediction that noise-assisted transport could be

experimentally observed by the present optical setup.

Finally, to quantify the entanglement dynamics, we study

logarithmic negativity [31], i.e., E(A|B) = log2 ‖ρ0A‖1, mea-
suring the entanglement across a bipartition A|B of a com-

posite system, where 0A is the partial transpose operation of

the density operator ρ with respect to the subsystem A and

‖·‖1 denotes the trace norm. In Refs. [10,11], in the context
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FIG. 6. Dependence of psink at a fixed time t = 20 ns as a

function of the dephasing rate γ . These results show the remarkable

robustness of this process, supporting the possibility that it could be

experimentally observed.
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FIG. 7. (Color online) Degradation of entanglement between two

photons (initially in a maximally entangled state), in which only one

photon is sent to the network through cavity 1. It is measured in terms

of log-negativity between the ancilla photon and the photon leaving

cavity 2 (no detector).

of light-harvesting systems, it was found that the increase in

the transfer efficiency is not strictly related to the presence of

entanglement between the sites of the network, and a similar

behavior has been found here. However, to further explore the

capabilities of this optical cavity network as a conduit for not

just energy (or classical information) but quantum information,

we show in Fig. 7 how another form of entanglement (in this

context more relevant, as it is measureable more directly)

degrades through it. To that end, we introduce an ancillary

photon, which initially shares a maximally entangled state

with the single photon injected into optical cavity 1, i.e.,

in the EPR state 1/
√
2(|0〉anc|0〉1 + |1〉anc|1〉1), with |0〉 and

|1〉 representing, respectively, the absence and presence of
a photon [32,33]. As the system evolves, the entanglement

between the ancillary photon and the photon leaving cavity

2 oscillates in time and almost vanishes in the presence of

dephasing.

V. CONCLUSIONS AND OUTLOOK

We proposed a quantum optical network based on a set

of coupled cavities, in order to investigate the effects of

noise in excitation transfer. A detailed numerical simulation

for experimentally realistic values shows the presence of a

substantial enhancement in the photon transport efficiency

when dephasing noise is introduced in the cavity. Finally,

we note that a similar scheme can also be implemented

by using a network of atoms in suitable ion traps [34].

The results reported here may open interesting perspectives

for a deeper investigation of the fundamental mechanisms

that underly the very highly efficient excitation transfer in

light-harvesting complexes and for possible applications in

solar-cell technology. Finally, this type of experiment can also

trigger significant activity in two different areas, namely the

modeling of complex environments via controlled interactions

and the development of noise-assisted protocols for quantum

communication [13].
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