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Abstract. Broadband multimode squeezers constitute a powerful quantum
resource with promising potential for different applications in quantum
information technologies such as information coding in quantum communication
networks or quantum simulations in higher dimensional systems. However, the
characterization of a large array of squeezers that coexist in a single spatial mode is
challenging. In this paper we address this problem and propose a straightforward
method to determine the number of squeezers and their respective squeezing
strengths by using broadband multimode correlation function measurements.
These measurements employ the large detection windows of state of the art
avalanche photodiodes to simultaneously probe the full Hilbert space of the
generated state, which enables us to benchmark the squeezed states. Moreover,
due to the structure of correlation functions, our measurements are not affected
by losses. This is a significant advantage, since detectors with low efficiencies
are sufficient. Our approach is less costly than tomographic methods relying
on multimode homodyne detection which is based on much more demanding
measurement and analysis tools and appear to be impractical for large Hilbert
spaces.
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1. Introduction

The study of correlation functions has a long history and lies at the heart of coherence
theory [1]. Intensity correlation measurements were first performed by Hanbury Brown
and Twiss in the context of classical optics [2]. Since then correlation functions have
become an standard tool in quantum optical experiments to study the properties of
laser beams [3], parametric downconversion sources[4, 5] or heralded single-photons
[6, 7, 8]. Current state of the art experiments are able to measure correlation functions
up to the eighth order [9], giving access to diverse characteristics of photonic states.
The normalized second-order correlation function g(2)(0) probes whether the generated
photons are bunched or anti-bunched, with g(2)(0) < 1 being a genuine sign of non-
classicality [10]. The measurement of all unnormalized moments G(n) of a given
optical quantum state provide complete access to the photon-number distribution
for arbitrary single-mode input states [1]. Moreover, it is possible to perform a full
state-tomography with the help of correlation function measurements [11].

The measurement of these correlation functions is, in general, performed in a
time resolved manner g(n)(t1, t2, . . . tn). Limited time resolution has been considered
as a detrimental effect and treated as experimental imperfection [6]. In contrast to
previous work, we employ the finite time resolution of photo-detectors to gain access
to the spectral character of broadband multimode quantum states. Our scheme of
measuring broadband multimode correlation functions of pulsed quantum light is
especially useful for probing squeezed states. These states are commonly generated via
the interaction of light with a crystal exhibiting a χ(2)-nonlinearity, a process referred
to as parametric downconversion (PDC)[12, 13, 14, 15, 16, 17] or with optical fibers
featuring a χ(3)-nonlinearity called four-wave-mixing (FWM) [18, 19].

In general the generated squeezed states exhibit multimode characteristics in the
spectral degree of freedom, i.e. a set of independent squeezed states is created with
each squeezer residing in its own Hilbert space. This inherent multimode character
renders these states powerful for coding quantum information, yet the same feature
impedes a proper experimental characterization in a straightforward manner. Due to
the sheer vastness of the corresponding Hilbert space, standard quantum tomography
methods become time-consuming and ineffective. It is neither easy to determine the
degree of squeezing in each mode, nor the amount of generated independent squeezers.
Nonetheless, these are the key benchmarks defining the potential of a source for
quantum information and quantum cryptography applications. In the following we
investigate how to overcome these issues and elaborate on an alternative approach to
determine the properties of multimode squeezed states based on measuring broadband
multimode correlation functions.

This paper is structured as follows: In section 2 we revisit the general structure
of multimode twin-beam squeezers drawing special attention — but not restricting
— to states generated by parametric downconversion and four-wave-mixing. Section
3 presents the formalism of correlation functions, introduces the intricacies of finite
time resolution and defines broadband multimode correlation measurements. Section 4
combines the findings of sections 2 and 3: We analyze the relation between the number
of generated squeezers, their respective squeezing strengths and broadband multimode
correlation functions, which leads us to proposing our scheme for characterizing
multimode squeezing with the aid of broadband multimode correlation functions.
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2. Multimode Squeezers

In a squeezed state of light one quadrature of the field exhibits an uncertainty
below the standard quantum level at the expense of an increased variance in the
conjugate quadrature, such that the Heisenberg’s uncertainty relation holds at its
minimum attainable value. The standard description of squeezed states usually
considers two different types of squeezers: single-beam squeezers and twin-beam
squeezers. Single-beam squeezers create the squeezing into a single optical mode
Ŝ = exp

(
−ζâ†2 + ζ∗â2

)
, whereas twin-beam squeezers consist of two beams with

inter-beam squeezing Ŝab = exp
(

−ζâ†b̂† + ζ∗âb̂
)

[20]. In these equations ζ labels the

squeezing strength and the operators â†, b̂† create photons in distinct optical modes.
In this section we go beyond the standard description and discuss the theory of

squeezed states, which are generated by the interaction of ultrafast pump pulses with
nonlinear crystals or optical fibers. Here, we concentrate on the spectral structure of
the broadband output beams. In general the utilized optical processes, typically called
optical parametric amplification (OPA) or parametric downconversion (PDC) do not
generate one but a variety of different squeezers in multiple frequency modes. A whole
set of independent squeezed beams is generated in broadband orthogonal spectral
modes within an optical beam. We refer to these states as frequency multimode
single- or twin-beam squeezers [14]. Here the multimode prefix indicates that more
than one squeezer is present in the optical beam and the term single- or twin-beam

identifies whether one squeezed beam or two entangled squeezed beams are created.
Due to the single-pass configuration of our sources losses are negligible, hence we
restrict ourselves to the analysis of pure squeezed states.

2.1. Multimode twin-beam squeezers

The subject of our analysis is twin-beam squeezing generated by the propagation
of an ultrafast pump pulse through a nonlinear medium (single-beam squeezers are
discussed in Appendix B). For simplicity we focus on the collinear propagation of all
involved fields each generated into a single spatial mode. This description is rigorously
fulfilled for PDC in waveguides [21, 22], but can also be applied for other experimental
configurations, since the approximation carries all the complexities of the multimode
propagation in the spectral degree of freedom. If the pump field is undepleted, we
can neglect its quantum fluctuations and describe this OPA process by the effective
quadratic Hamiltonian (see Appendix A for a detailed derivation)

ĤOPA = A

∫

dωs

∫

dωi f(ωs, ωi)â
†
s(ωs)â

†
i (ωi) + h.c. , (1)

in which the constant A denotes the overall efficiency of the OPA, the function
f(ωs, ωi) describes the normalized output spectrum of the downconverted beam, which
— in many cases — is close to a two-dimensional Gaussian distribution. The operators
â†s(ωs) and â

†
i (ωi) are the photon creation operators in the different twin-beam arms,

in general labelled signal and idler, respectively.
The unitary transformation generated by the effective OPA Hamiltonian in

equation (1) can be written in the form

ÛOPA = exp

[

− ı

~

(

A

∫

dωs

∫

dωi f(ωs, ωi)â
†
s(ωs)â

†
i (ωi) + h.c.

)]

. (2)
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By virtue of the singular-value-decomposition theorem [23] we decompose the two
terms in the exponential of equation (2) as

− ı

~
Af(ωs, ωi) =

∑

k

rkψ
∗
k(ωs)φ

∗
k(ωi), and

− ı

~
A∗f∗(ωs, ωi) = −

∑

k

rkψk(ωs)φk(ωi). (3)

Here both {ψk(ωs)} and {φk(ωi)} each form a complete set of orthonormal functions.
The amplitudes of the generated modes ψk(ωs) and φk(ωi) are given by the rk ∈ R

+

distribution. Employing equation (3) and introducing a new broadband mode basis
[24] for the generated state as:

Âk =

∫

dωsψk(ωs)âs(ωs) and B̂k =

∫

dωiφk(ωi)âi(ωi), (4)

we obtain the unitary transformation [13]

ÛOPA = exp

[
∑

k

rkÂ
†
kB̂

†
k − h.c.

]

=
⊗

k

exp
[

rkÂ
†
kB̂

†
k − h.c.

]

=
⊗

k

Ŝab
k (−rk). (5)

In total the OPA generates a tensor product of distinct broadband twin-beam
squeezers as defined in [20] with squeezing amplitudes rk, related to the available
amount of squeezing via: squeezing[dB] = −10 log10

(
e−2rk

)
. The Heisenberg

representation of the multimode twin-beam squeezers is given by independent input-
output relations for each broadband beam

Âk ⇒ cosh(rk)Âk + sinh(rk)B̂
†
k

B̂k ⇒ cosh(rk)B̂k + sinh(rk)Â
†
k. (6)

Note that the squeezer distribution rk and basis modes Âk and B̂k are unique
and well-defined properties of the generated twin-beam. Their exact form is given
by the Schmidt decomposition of the joint spectral amplitude − ı

~
Af(ωs, ωi). This

mathematical transformation directly yields the physical shape of the generated optical
modes ψk(ωs), φk(ωi) with each pair Âk and B̂k being strictly correlated.

In figure 1 we illustrated one possible squeezer distribution and corresponding
broadband modes. The joint spectral distribution f(ωs, ωi) of the generated twin-
beams shown in figure 1 defines the shape of the broadband signal and idler modes
Âk and B̂k. In the special case of a Gaussian spectral distribution the form of the
squeezing modes resembles the Hermite functions. The number of different squeezer
modes is closely connected to the frequency correlations between the signal and
idler beam. In the presented case the spectrally correlated beams lead to over 20
independent squeezers. The total amount of squeezing depends on the constant A
appearing in the Hamiltonian in equation (1), which is directly related to the applied
pump power I and the strength of the nonlinearity χ(2) in the medium (A ∝

√
I, χ(2)).

The OPA state is mainly characterized by the number of squeezed modes and
the overall gain of the process, both being determined by the distribution of the
individual squeezing amplitudes rk. In order to analyze the number of generated
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Figure 1. Visualization of the singular value decomposition in equation (3). The
frequency distribution − ı

~
Af(ωs, ωi) of the generated state defines the shape of

the signal and idler modes ψk(ωs), φk(ωi) and the squeezer distribution rk.

squeezers independently from the amount of squeezing, we split the distribution of
squeezing weights rk into a normalized distribution λk

(∑

k λ
2
k = 1

)
that characterizes

the probability for occupation of different squeezers in the respective optical quantum
state, and an overall gain of the process B ∈ R

+, quantifying the total amount of
generated squeezing according to

rk = B λk. (7)

The characterization of these two fundamental properties of a multimode twin-beam
state is a major experimental challenge. While these states are easily generated in
the lab, a tomography by means of homodyne detection would require to match for
each squeezed mode Âk and B̂k different local oscillator beams with adapted temporal-
spectral pulse shapes. Multimode homodyning [25] may provide a route to circumvent
this difficulty, however an experimental implementation still appears challenging.

3. Correlation functions

The n-th order (normalized) correlation function g(n)(t1, t1, . . . , tn) is generally defined
as a time-dependent function of the electromagnetic field. For quantized electric field
operators, it can be expressed as [26, 10, 1, 27]

g(n)(t1, t2, . . . , tn) =

〈

Ê(−)(t1) . . . Ê
(−)(tn)Ê

(+)(t1) . . . Ê
(+)(tn)

〉

〈

Ê(−)(t1)Ê(+)(t1)
〉

. . .
〈

Ê(−)(tn)Ê(+)(tn)
〉 ,(8)

and it measures the (normalized) n-th order temporal correlations at different points in
time. Note that this definition of the correlation functions is independent of coupling
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losses and detection inefficiencies yielding a loss resilient measure [9]. Realistic
detectors however, suffer from internal jitter and finite gating times. We accommodate
for these resolution effects by weighting the correlation function with the appropriate
detection window T (t) of the applied detectors as presented in [6], and obtain

Figure 2. a) perfect time-resolved detection; b) finite detection gate; c)
broadband detection gate exceeding the pulse duration giving rise to different
types of correlation measures.

g(n)(t1, t2, . . . , tn) =
∫
dt1T (t1) . . .

∫
dtnT (tn)

〈

Ê(−)(t1) . . . Ê
(−)(tn)Ê

(+)(t1) . . . Ê
(+)(tn)

〉

∫
dt1T (t1)

〈

Ê(−)(t1)Ê(+)(t1)
〉

. . .
∫
dtnT (tn)

〈

Ê(−)(tn)Ê(+)(tn)
〉 . (9)

If the employed photo-detectors exhibit flat detection windows, exceeding the length
of the investigated pulses (T (t) → const.), equation (9) can be simplified to

g(n) =

∫
dt1 . . .dtn

〈

Ê(−)(t1) . . . Ê
(−)(tn)Ê

(+)(t1) . . . Ê
(+)(tn)

〉

∫
dt1

〈

Ê(−)(t1)Ê(+)(t1)
〉

. . .
∫
dtn

〈

Ê(−)(tn)Ê(+)(tn)
〉 . (10)

This theoretical model is adequate for the detection of ultrafast pulses with standard
avalanche photodetectors. Furthermore, equation (10) exhibits the convenient
property of time independence and represents our generalized broadband multimode
correlation function. Despite its similarity to the common correlation functions as
defined in equation (8), the broadband multimode correlation function in equation (10)
should no longer be considered as a naive general measure of n-th order coherence.
In figure 2 we illustrate the main difference between the time-integrated and time-
resolved correlation measurements.

Equation (10) is still not optimal for our studies of squeezed light fields. We
transform it further by replacing the electric field operators by photon number creation
and destruction operators (Ê(+)(tn) ∝ â(tn)) and perform a Fourier transform from
the time domain into the frequency domain (â(t) =

∫
dω â(ω)e−ıωt). Equation (10) is

then rewritten as

g(n) =

∫
dω1 . . . dωn

〈
â†(ω1) . . . â

†(ωn)â(ω1) . . . â(ωn)
〉

∫
dω1 〈â†(ω1)â(ω1)〉 . . .

∫
dωn 〈â†(ωn)â(ωn)〉

=

〈
:
(∫

dωâ†(ω)â(ω)
)n

:
〉

〈∫
dωâ†(ω)â(ω)

〉n , (11)

in which 〈: · · · :〉 indicates normal ordering of the enclosed photon creation and
destruction operators. In addition we adapt the correlation function to the basis
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of the measured quantum system, i.e. we perform a general basis transform from â(ω)
to the basis of the measured multimode twin-beam squeezers Âk. This results in:

g(n) =

〈

:
(
∑

k Â
†
kÂk

)n

:
〉

〈
∑

k Â
†
kÂk

〉n (12)

Equations (10), (11) and (12) stress the key difference between time-resolved and
time-integrated correlation function measurements. While time-resolved correlation
functions probe specific temporal modes, time-integrating detectors directly measure a
superposition of all the different modes. This specific feature of broadband multimode
detection is essential for our analysis. The simultaneous measurement of all different
optical modes gives us direct loss-independent access to the squeezer distribution of
the probed state.

3.1. Broadband multimode cross-correlation functions

In the previous section we restricted ourselves to intra-beam correlations. To allow for
measurements of correlations between different beams we extend our analysis. The
identification of such inter-beam correlations is of special importance in quantum
optics and quantum information applications, since they quantify the continuous
variable entanglement between different subsystems, in our case the analyzed optical
beams. In section 2 we have already discussed one of the most employed entanglement
sources: Twin-beam squeezers. These states are not only entangled in their
quadratures, but also in their spectral and spatial degrees of freedom [28]. In order
to probe higher-order cross-correlations between the two different beams [27], or
subsystems a and b of order n and m respectively, we generalize equation (8) to

g(n,m)(t
(a)
1 , t

(a)
2 , . . . , t(a)n ; t

(b)
1 , t

(b)
2 , . . . , t(b)m ) =

=

〈

Ê
(−)
a (t

(a)
1 ) . . . Ê

(−)
a (t

(a)
n )Ê

(+)
a (t

(a)
1 ) . . . Ê

(+)
a (t

(a)
n )× Ê

(−)
b (t

(b)
1 ) . . . Ê

(+)
b (t

(b)
n )

〉

〈

Ê
(−)
a (t

(a)
1 )Ê

(+)
a (t

(a)
1 )

〉

. . .
〈

Ê
(−)
a (t

(a)
n )Ê

(+)
a (t

(a)
n )

〉

× . . .
〈

Ê
(−)
b (t

(b)
n )Ê

(+)
b (t

(b)
n )

〉 .(13)

Taking into account broadband detection windows — exceeding the pulse duration —
the above formula can be reformulated as

g(n,m) =

〈

:
(∫

dt Ê
(−)
a (t)Ê

(+)
a (t)

)n

::
(∫

dt Ê
(−)
b (t)Ê

(+)
b (t)

)m

:
〉

〈∫
dt Ê

(−)
a (t)Ê

(+)
a (t)

〉n 〈∫
dt Ê

(−)
b (t)Ê

(+)
b (t)

〉m .(14)

Again we perform the same simplifications as in equation (11) in section 3, namely
we replace the electric field operators by photon creation and destruction operators,
apply the Fourier transform from the time to frequency domain and finally we adapt
the measurement basis to the given optical state. We find an extended version of
equations (11) and (12)

g(n,m) =

〈

:
(∫

dω â†(ω)â(ω)
)n

::
(∫

dω b̂†(ω)b̂(ω)
)m

:
〉

〈∫
dω â†(ω)â(ω)

〉n
〈∫

dω b̂†(ω)b̂(ω)
〉m (15)

=

〈

:
(
∑

k Â
†
kÂk

)n

::
(
∑

k B̂
†
kB̂k

)m

:
〉

〈
∑

k Â
†
kÂk

〉n 〈
∑

k B̂
†
kB̂k

〉m . (16)
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Further extensions of cross-correlation measurements to systems consisting of more
than two different beams are possible [1], but are not necessary within the scope of
this paper.

4. Probing frequency multimode squeezers via correlation functions

Using the theoretical description of squeezers as well as the derived broadband
multimode correlation functions, we now combine the findings of section 2 and 3.
We establish a connection between the broadband multimode correlation functions
and the properties of the squeezing, i.e. the mode distribution λk and the optical gain
B.

4.1. Probing the number of modes via g(2)-measurements

The foremost important property of frequency multimode squeezers is the number
of independent squeezers in the generated twin-beam state, which is specified by the
mode distribution λk. In contrast to the optical gain B, which is easily tuned by
adjusting the pump power the mode distribution λk is heavily constricted by the
dispersion in the nonlinear material and hence — in general — not easily adjustable
[29]. The effective number of modes in multimode twin-beam state is given by the
Schmidt number or cooperativity parameter K as defined in [30, 31] with

K = 1/
∑

k

λ4k. (17)

Under the assumption of an independent uniform squeezer distribution it directly
reflects the number of occupied modes. The mode number K of a multimode twin-

Figure 3. Setup to measure g(2) of a multimode twin-beam squeezer.

beam squeezer can be directly accessed by measuring the broadband multimode g(2)-
correlation function in the signal or idler arm as depicted in figure 3. This is a result
of the structure of the second-order correlation function, which — by using (12) and
(6) — can be expressed as

g(2) = 1 +

∑

k sinh
4(rk)

[∑

k sinh
2(rk)

]2 . (18)

For our further analysis it is useful to distinguish the low gain from the high
gain regime, corresponding to low and high levels of squeezing. In the low gain
regime corresponding to biphotonic states typically referred to in the context of PDC
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experiments sinh(rk) ≈ rk = Bλk and we are able to simplify equation (18) to

g(2) ≈ 1 +

∑

kB
4λ4k)

(
∑

k B
2λ2k)

2 = 1 +

∑

k λ
4
k

(
∑

k λ
2
k)

2 = 1 +
∑

k

λ4k

= 1 +
1

K
. (19)

Consequently the effective number of modes is directly available from the correlation
function measurement via K = 1/(g(2)− 1). For a single twin-beam squeezer (K = 1)
g(2) = 2, whereas for higher numbers of squeezers (K � 1) the contributions from the
term

∑

k λ
4
k becomes negligible and g(2) approaches one. This direct correspondence

between g(2) and the effective number of modes K is presented in figure 4 (a).
Another way of interpreting equation (19) is to approach the correlation function

measurement from the photon-number point of view. The g(2)-value of a single twin-
beam squeezer, which exhibits a thermal photon-number distribution, evaluates to
g(2)= 2. If more squeezers are involved the detector cannot distinguish between
the different thermal distributions, i.e. it measures a convolution of all the different
thermal photon streams, which gives a Poissonian photon-number distribution [13, 32].
In fact one can show that the g(2)-correlation function in equation (18) is the
convolution of the second-order moments of each individual squeezer.

Once more, we stress that the g(2)-measurement does not give access to the
exact distribution of squeezers λk, but to the effective number of modes under the
assumption that all squeezed states share an identical amount of squeezing. This is
a rather crude model and does not fit very well to many experimental realizations.
Fortunately, there is a common class of squeezed states, for which a much more refined
mode distribution λk is accessible: In the case of a two-dimensional Gaussian joint-
spectral distribution f(ωs, ωi), the distribution λk is thermal λk =

√

1− µ2µk, and
thus it can be characterized by a single distribution parameter µ [33]. The latter can

be retrieved from a g(2)-measurement via µ =
√

2/g(2) − 1, as depicted in figure 4
(b), where we illustrate how the detection of the g(2)-function can provide us directly
with comprehensive knowledge about the underlying spectral mode structure of the
analyzed state.

In conclusion we have shown, that by measuring the second-order correlation
function g(2) of a multimode broadband twin-beam state one can probe the
corresponding distribution of spectral modes λk. Our method displays the advantage
that correlation functions can be measured in a very practical way [34], resulting in an
approach that is much easier than realizing homodyne measurements, which require
addressing individual modes. As a side remark we would like to point out that one can
also determine the effective number of squeezers from the higher moments g(n) , n ≥ 2
similar to the presented approach, yet g(2) is already sufficient for our purposes.

4.2. Probing the optical gain B of a multimode twin-beam squeezer via g(1,1)

measurements

In section 4.1 we determined the number of modes in a loss resilient way by measuring
g(2) for low gains B. Here we investigate the amount of the generated squeezing
determined by the overall optical gain B. In order to probe this value the setup has
to be changed to measure the correlation function g(1,1) of the generated twin-beam
squeezer as presented in figure 5. Using equation (16) and (6) we obtain for g(1,1) the
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Figure 4. a) Plot of the effective mode number K as a function of g(2) for various
effective numbers of modes. b) Visualization of µ as a function of g(2) for different
thermal squeezer distributions.
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Figure 5. Schematic setup to measure g(1,1) of a multimode twin-beam squeezer
generated via PDC.

form

g(1,1) =

∑

k,l sinh
2(rk) sinh

2(rl) +
∑

k sinh
2(rk) cosh

2(rk)
[∑

k sinh
2(rk)

]2

= 1 +
1

∑

k sinh
2(rk)

︸ ︷︷ ︸

1/〈n〉

+

∑

k sinh
4(rk)

[∑

k sinh
2(rk)

]2

︸ ︷︷ ︸

g(2)−1

. (20)

The relevant characteristics we exploit from this measurement is its dependence on
both, the number of modes in the system, as given by the g(2)-function and the mean
photon number in each arm, which is closely connected to the coupling coefficient B.
In the low gain regime (sinh(rk) ≈ rk), g

(1,1) simplifies to

g(1,1) ≈ 1 +
1

B2
+

∑

k λ
4
k

[
∑

k λ
2
k]

2

︸ ︷︷ ︸

g(2)−1

≈ g(2)
︸︷︷︸

≤2

+
1

B2
︸︷︷︸

�1

≈ 1

B2
. (21)

Hence, the optical gain is — in the low gain regime — obtained from the g(1,1)-
measurement via the simple relation B ≈ 1/

√

g(1,1). Mode dependencies of the
coupling value B only occur at high squeezing strengths, where the relation diverges
from equation (21) and takes on a more complicated form. In figure 6 we plot the
dependence of the overall coupling value B on g(1,1)— as presented in equation (20)
— which takes on a high value for small optical gains B but rapidly decreases when
the high gain regime is approached.

In total measuring g(1,1) gives direct loss-independent access to the optical gain
B. This enables a loss tolerant probing of the generated mean photon number which,
in the low gain regime, is even independent of the underlying mode structure.

Taking into account the prior knowledge we gained from section 4.1, we can now
ascertain all parameters needed to fully determine the highly complex multimode
state. The optical gain B defines not only the photon distribution, but quantifies
the generated twin-beam squeezing, i.e. the available CV-entanglement in each mode.
Note that all modes exhibit different entanglement parameters. Depending on the
state and its respective mode distribution determined by the g(2)-measurement all
the entanglement could be generated in a single spectral mode where it is readily
available for quantum information experiments or in a multitude of different squeezed
modes. Note however, that after the state generation process multiple squeezers cannot
be combined into a single optical mode by using only Gaussian operations, since
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Figure 6. The optical gain B plotted as a function of g(1,1). For small values
of B the correlation function g(1,1) takes on a high value, yet rapidly decreases
when the high gain regime is approached.

this operation would be equivalent to continuous-variable entanglement distillation
[35, 36, 37].

5. Outlook

In this paper we focused on the state characterization of ultrafast twin-beam squeezers
in the time domain and their experimental analysis. The presented approach however
is not limited to twin-beam squeezers:

On the one hand, our measurement technique also applies to probe the squeezing
of ultrafast multimode single-beam squeezers as presented in Appendix B. On the
other hand, our approach is easily adapted to spatial multimode squeezed states
[38, 39, 40]. These are characterized by measuring correlation functions that are
broadband in the spatial domain, in a direct analogy to the spectral degree of freedom
analyzed in this work.

6. Conclusion

We elaborated on the generation of multimode squeezed beams and their
characterization with multimode broadband correlation functions. We expanded the
formalism of correlation functions by including the effects of finite time resolution.
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These extended correlation function measurements serve as a versatile tool for the
characterization of optical quantum states such as twin-beam squeezers. They provide
a simple, straightforward and loss independent way to investigate the characteristics
of multimode squeezed states. Our findings are important for the field of efficient
quantum state characterization and have already proven to be a useful experimental
tool in the laboratory [41, 34].
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213681), and QUESSENCE (248095). Katiúscia N. Cassemiro acknowledges support
from the Alexander von Humboldt foundation. The authors thank Agata M. Brańczyk,
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Appendix A. Multimode twin-beam squeezer generation via nonlinear

optical processes

Appendix A.1. Generation of multimode twin-beam squeezers via parametric

downconversion

In the process of parametric downconversion squeezed states are generated by the
interaction of a strong pump field with the χ(2)-nonlinearity of a crystal. Regarding
the generation of twin-beam squeezers the Hamiltonian of the corresponding three-
wave-mixing process is given by [13, 42, 43]:

ĤPDC =

∫ L
2

−L
2

dz χ(2)Ê(+)
p (z, t)Ê(−)

s (z, t)Ê
(−)
i (z, t) + h.c. (A.1)

where we focused on a collinear interaction of all three beams. In equation (A.1) L

labels the length of the medium, χ(2) the nonlinearity of the crystal, and Ê
(+)
p (z, t),

Ê
(−)
s (z, t), Ê

(−)
i (z, t) the pump, the signal and the idler fields. The electric field

operators used in equation (A.1) are defined as follows

Ê(−)
x (z, t) = Ê(+)†

x (z, t) = C

∫

dωx exp [−ı (kx(ω)z + ωt)] â†x(ω), (A.2)

in which we have merged all constants and slowly varying field amplitudes in the
overall parameter C. In order to simplify the Hamiltonian we treat the strong pump
field as a classical wave

Ê(+)
p (z, t) ⇒ Ep(z, t) =

∫

dωp α(ωp) exp [ı (kp(ωp)z + ωpt)] . (A.3)

Here α(ωp) = Ap exp
[
(ωp − µp)

2/(2σ2
p)
]
is the Gaussian pump envelope function

generated by an ultrafast laser system, consisting of a field amplitude Ap, a central
pump frequency µp, and a pump width σp.

The PDC Hamiltonian in equation (A.1) generates the following unitary
transformation:

Û = exp

[

− ı

~

∫ ∞

−∞

dt′ ĤPDC(t
′)

]

(A.4)

In the low downconversion regime we can ignore the time-ordering of the electric field
operators [14, 15] and directly evaluate the time integration. This yields a delta-
function 2πδ(ωs+ωi−ωp) and hence allows us to perform the integral over the pump
frequency ωp. Equation A.4 can be re-expressed as

Û = exp

[

− ı

~

(

A′

∫ L
2

−L
2

dz

∫

dωs

∫

dωi

×α(ωs + ωi) exp [ı∆kz] â
†
s(ωs)â

†
i (ωi) + h.c.

)]

, (A.5)
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in which ∆k = kp(ωs + ωi) − ks(ωs) − ki(ωi) is the so called phase-mismatch and A′

accumulates all constants. Finally, we perform the integration over the length of the
crystal and obtain

Û = exp

[

− ı

~

(

A

∫

dωs

∫

dωi α(ωs + ωi)φ(ωs, ωi)â
†
s(ωs)â

†
i (ωi) + h.c.

)]

, (A.6)

where φ(ωs, ωi) = sinc
(
∆kL
2

)
is referred to as the phasematching function. The

latter combined with the pump distribution α(ωs + ωi) gives the overall frequency
distribution or joint spectral amplitude f(ωs, ωi) of the generated state. The final
unitary squeezing operator of the downconversion process is

Û = exp









− ı

~

(

A

∫

dωs

∫

dωif(ωs, ωi)â
†
s(ωs)â

†
i (ωi) + h.c.

)

︸ ︷︷ ︸

Ĥeff









. (A.7)

The sinc function appearing in equation A.7 can be approximated by a Gaussian
distribution

φ(ωs, ωi) = sinc

(
∆k(ωs, ωi)L

2

)

≈ exp

[

−0.193

(
∆k(ωs, ωi)L

2

)2
]

. (A.8)

With this simplification the joint frequency distribution f(ωs, ωi) takes on the form
of a two-dimensional Gaussian distribution. Applying this approximation the exact
squeezer distribution is accessible as presented in section 4.

Appendix A.2. Generation of multimode twin-beam squeezers via four-wave-mixing

In a four-wave-mixing (FWM) process two strong pump fields interact with the χ(3)-
nonlinearity of a fiber to create two new electric fields. If the two generated fields are
distinguishable the Hamiltonian of the process is given by [44]

ĤFWM =

∫ L
2

−L
2

dz χ(3)Ê
(+)
p1 (z, t)Ê

(+)
p2 (z, t)Ê(−)

s (z, t)Ê
(−)
i (z, t) + h.c. . (A.9)

Again, we assume a collinear interaction of all interacting beams. The electric fields
for signal, idler and pump are defined in equations (A.2) and (A.3). Performing the
same steps as in Appendix A.1 we obtain a similar unitary transformation

Û = exp









− ı

~

(

A

∫

dωs

∫

dωi fFWM(ωs, ωi)â
†
s(ωs)â

†
i (ωi) + h.c.

)

︸ ︷︷ ︸

Ĥeff









. (A.10)

Equation (A.10) resembles equation (A.7) with the exception of the joint frequency
distribution fFWM(ωs, ωi) which takes on a more complicated shape in comparison to
the PDC case

fFWM(ωs, ωi) =

∫

dωp α(ωp)α(ωs + ωi − ωp) sinc

(
∆k(ωp, ωs, ωi)L

2

)

. (A.11)

By comparing the unitary transformation in equation (A.6) and (A.10) it is apparent
that the two different processes both create the same fundamental quantum state:
Multimode twin-beam squeezers.
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Appendix B. Multimode single-beam squeezers

In the main body of the paper we discussed the characterization of multimode twin-
beam squeezers. Here we call attention to the fact that the broadband multimode
correlation function formalism is also applicable to probe multimode single-beam
squeezed states.

Appendix B.1. Generation of multimode single-beam squeezers

Single-beam squeezers are created by PDC and FWM processes similar to the
twin-beam states. The difference between the twin-beam and single-beam squeezer
generation is that in the latter the generated beams are emitted into the same optical
mode, whereas in the former two different optical modes are generated as discussed in
Appendix A.

The PDC Hamiltonian generating a single-beam squeezer is given by

Ĥ =

∫ L
2

−L
2

dz χ(2)Ê(+)
p (z, t)Ê(−)(z, t)Ê(−)(z, t) + h.c. . (B.1)

Performing the same steps as in the case of twin-beam generation we obtain the unitary
transformation

Û = exp









− ı

~

(

A

∫

dωs

∫

dωif(ωs, ωi)â
†(ωs)â

†(ωi) + h.c.

)

︸ ︷︷ ︸

Ĥeff









. (B.2)

If the joint spectral distribution f(ωs, ωi) is engineered to be symmetric under
permutation of signal and idler, the Schmidt decomposition is given by:

− ı

~
Af(ωs, ωi) =

∑

k

rkφ
∗
k(ωs)φ

∗
k(ωi) and (B.3)

− ı

~
A∗f∗(ωs, ωi) = −

∑

k

rkφk(ωs)φk(ωi) (B.4)

Introducing broadband modes we obtain the multimode broadband unitary
transformation

Û = exp

[
∑

k

rkÂ
†
kÂ

†
k − h.c.

]

=
⊗

k

exp
[

rkÂ
†
kÂ

†
k − h.c.

]

=
⊗

k

Ŝ(−rk). (B.5)

This is exactly the form of a frequency multimode single-beam squeezed state [20]. Or
written in the Heisenberg picture:

Âk = cosh(rk)Âk + sinh(rk)Â
†
k (B.6)

Single-beam squeezers are — like twin-beam squeezers — widely employed in quantum
optics experiments [45, 46]. As in the twin-beam squeezer case the same states are
generated by properly engineered FWM processes.
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Appendix B.2. Probing frequency multimode single-beam squeezers via correlation

function measurements

In order to characterize the generated states we have to determine the optical gain B
and mode distribution λk as in the case of multimode twin-beam squeezers (see section
4). Therefore, we adapt the scheme presented in section 4 and probe the correlation
functions g(2) and g(3) as sketched in figure B1. For a multimode single-beam squeezer

Figure B1. Schematic setup to measure a) g(2) and b) g(3) of a frequency
multimode single-beam squeezer.

they can be written as:

g(2) = 1 + 2

∑

k sinh
4(rk)

[∑

k sinh
2(rk)

]2 +
1

∑

k sinh
2(rk)

︸ ︷︷ ︸

1/〈n〉

and (B.7)

g(3) = 1 + 6

∑

k sinh
4(rk)

[∑

k sinh
2(rk)

]2 + 8

∑

k sinh
6(rk)

[∑

k sinh
2(rk)

]3

+
3

∑

k sinh
2(rk)

+ 6

∑

k sinh
4(rk)

[∑

k sinh
2(rk)

]3 . (B.8)

In the single-beam case however g(2) does not directly yield the effective number of
modes K or thermal mode distribution parameter µ as for the multimode twin-beam
squeezers in equation (19). A joint measurement of g(2) and g(3) is necessary, as
sketched in figure B2. Clearly the effective mode number K and the thermal mode
distribution µ are given by the slope s of g(3) vs. g(2). In figure B3 we plotted the
explicit dependence of K and µ on the slope s. Surprisingly the functions exhibit
almost the same shape as in the twin-beam squeezer case.

In order to obtain the gain of a multimode single-beam squeezer a single g(2)-
measurement is sufficient which is sensitive towards the coupling value B as presented
in figure B4 (similar to the g(1,1)-measurement in the twin-beam squeezer case). In

the low gain regime it is given via the relation B = 1/
√

g(2). Again, while describing
a different system, the shape of the function B[g(2)] is very similar to the twin-beam
squeezer case.

In total the theoretical description and derivation of multimode single-beam
squeezers is very similar to the mathematics behind multimode twin-beam states.
These similarities translate to multimode correlations functions which are able to
probe the generated optical gain B and mode distribution λk as in the twin-beam
case.
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Figure B2. g(3) as a function of g(2) for various multimode single-beam
squeezers. The effective number of modes and the thermal mode distributions
parameter µ of a multimode single-beam squeezer are encoded in the slope.
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Figure B3. a) Effective mode numberK as a function of the slope of g(3)[g(2)]. b)
Thermal mode distribution µ as a function of the slope of g(3)[g(2)] for multimode
single-beam squeezed states.
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Figure B4. Optical gain B as a function of g(2) for a multimode single-beam
squeezed state.


