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We consider an atomic frequency comb based quantum memory inside an asymmetric optical cavity. In this

configuration it is possible to absorb the input light completely in a system with an effective optical depth of

one, provided that the absorption per cavity round trip exactly matches the transmission of the coupling mirror

(“impedance matching”). We show that the impedance matching results in a readout efficiency only limited

by irreversible atomic dephasing, whose effect can be made very small in systems with large inhomogeneous

broadening. Our proposal opens up an attractive route toward quantum memories with close to unit efficiency.
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I. INTRODUCTION

Quantum memories for photons [1–4] are essential ele-

ments for many applications in quantum information pro-

cessing, including quantum repeaters [5] and linear-optics

quantum computing [6].Most conceivable applications require

memories with storage and readout efficiencies that are at or

above the 90% level (and likely far above that level for quan-

tum computing). While quantum memory experiments have

progressed impressively over the last few years, efficiencies

typically range from a few percent to a few tens of percent

[7–16]. Only a few experiments have reached efficiencies

above the 50% level [17–19], most notably a storage and

readout efficiency close to 70% has been achieved [18] in

a highly absorbing solid-state atomic ensemble using the

gradient echo memory protocol [20].

It is usually thought that implementing memories in

atomic ensembles [3] with efficiencies close to unity will

require optical depths much greater than one [18,21,22].

However, reaching high optical depth is difficult in practice,

in particular for the most attractive solid-state systems, such

as rare-earth ion doped crystals [4]. Individual crystals with

realistic dimensions and doping levels often have very limited

optical depth. One exception is praseodymium-doped Y2SiO5
crystals [18]. But in order to fully exploit the potential of

other materials, having considerably lower optical depth but

otherwise interesting coherence properties, it would be of great

interest to find a general method to overcome this crucial

limitation.

Here we show that memories with unit efficiency can be

realized in a cavity-memory system with an optical depth

of one, by using the impedance matching condition. This

condition is attained [23]when the absorption, per cavity round

trip, is exactly matched to the transmission of the coupling

mirror of the (asymmetric) cavity. The result is a complete

absorption of the incoming light and we show that the resulting

memory readout efficiency reaches 100% for optical depths

around 1. The use of impedance matching had previously

been suggested for quantum memories in homogeneously

broadened systems [24], however, the results of Ref. [21]

later showed that in such systems high effective optical depth

is always required for high efficiency, because the effect

of spontaneous decay cannot be ignored. In homogeneous

systems the efficiency roughly scales with 1− 1/d [21], where
d is the optical depth.

Here we show that the situation is different in systems

with inhomogeneous broadening, for instance in solid-state

approaches [4,22]. In such systems there is an additional

timescale given by the inverse of the inhomogeneously

broadened bandwidth. This can be much shorter than the

spontaneous decay time. As a consequence, the effects of

spontaneous decay can be negligible during absorption and

re-emission even for moderate optical depth. Long storage

times are nevertheless possible because the inhomogeneous

component of the dephasing can be made to be reversible, e.g.,

by tailoring the spectral density in the form of a frequency

comb (AFC) [22] or by using an externally controlled

reversible inhomogeneous broadening (CRIB) [4,20]. As a

consequence, the principle of impedancematching can develop

its full potential in inhomogeneously broadened systems, aswe

will now show in more detail.

II. PERFECT ABSORPTION THROUGH

IMPEDANCE MATCHING

Let us start by considering the absorption of light by an

inhomogeneously broadened atomic ensemble in a one-sided

cavity, see Fig. 1. The readout step will be treated in Sec. III,

for the case of an AFC-based control of the inhomogeneous

dephasing. The dynamical equation for the cavity field E is

Ė = −κE +
√
2κEin + iP̃

∫

dωn(ω)σω, (1)

where κ is the cavity decay rate, P̃ is proportional to the dipole

moment [22], ω is the detuning, n(ω) is the inhomogeneous

atomic spectral distribution, and σω is the atomic polarization

at detuning ω. The equation for the atomic polarization is

σ̇ω = −iωσω − γhσω + iPE, (2)

where γh is the homogeneous linewidth and P is the dipole

moment. Finally the input-output relation for the cavity is

Eout = −Ein +
√
2κE, (3)

which is valid for relatively high cavity finesse. (We will drop

this simplifying assumption later on.)

1050-2947/2010/82(2)/022310(4) 022310-1 ©2010 The American Physical Society



MIKAEL AFZELIUS AND CHRISTOPH SIMON PHYSICAL REVIEW A 82, 022310 (2010)

1
R 1

2
≈R

in
ε

out
ε

PBS

λ/4

∆
γ

δ

QM

FIG. 1. (Color online) We consider a quantum memory (QM)

based on an atomic frequency combwhich is placed in an asymmetric

optical cavity with reflectivity R1 < R2 ≈ 1. The input and output

fields Ein and Eout are separated by a quarter-wave plate (λ/4) and a

polarization beam splitter (PBS). If the QM strongly absorbs only a

particular linear polarization mode, one can also use a Faraday rotator

and a half-wave plate as in Ref. [16]. The atomic comb memory

is based on an inhomogeneously broadened transition, where the

absorption depth d is shaped into a comb structure as function of

detuning δ with periodicity 1 and tooth width γ . The interaction

between the atomic comb structure and a incoming light pulse leads

to a coherent re-emission at t = 2π/1. Longer storage times can be

achieved by using additional ground state levels [22,25].

Putting the solution of Eq. (2) into Eq. (1) gives

Ė(t) = −κE(t)+
√
2κEin(t)

−PP̃

∫ t

−∞
dt ′ñ(t − t ′)e−γh(t−t ′)

E(t ′), (4)

where ñ(t) is the Fourier transform of n(ω). If γi À γh,

where γi is the width of the inhomogeneous distribution

n(ω), then the exponential containing γh can be ignored over

the relevant timescales. If moreover γi is significantly larger

than the bandwidth of the input light, then ñ(t − t ′) can be

approximated as N
γi

δ(t − t ′) (for times around t = 0, i.e., when

the absorption happens, cf. below for much later times), where

N =
∫

dωn(ω) is the total number of atoms, yielding

Ė = −κE +
√
2κEin − 0E, (5)

where 0 = NPP̃

γi
emerges as the absorption rate of the cavity

field by the atomic ensemble.

Under conditions where the input field varies much more

slowly than the cavity lifetime, i.e., when the input spectrum

is in resonance with the cavity, one can now adiabatically

eliminate the cavity mode (i.e., set Ė = 0), which gives

E =

√
2κ

κ + 0
Ein. (6)

Plugging this into Eq. (3) results in

Eout =
κ − 0

κ + 0
Ein. (7)

Total absorption, corresponding to Eout = 0, can thus be

achieved for κ = 0, which is the impedance matching con-

dition in our case. The intuitive explanation is that in this

situation the absorption losses have exactly the same effect as

a second identical mirror would. To the input field the cavity-

memory system therefore looks exactly like a symmetric

Fabry-Perot cavity, leading to zero reflection on resonance

[23]. The ratio 0/κ is exactly the effective optical depth, or the

cooperativityC in the notation of Ref. [21]. Perfect absorption

is thus achieved for an optical depth of one, a very moderate

value. Our results are nevertheless consistent with those of

Ref. [21] in the sense that if allN atomswere concentrated into

the homogeneous linewidth γh rather than the inhomogeneous

linewidth γi , the resulting cooperativity would be very large,

given our assumption that γi À γh. However, fortunately there

is no need for all the N atoms to actually have the same

frequency in the quantum memory schemes based on control

of inhomogeneous dephasing.

III. HIGH-EFFICIENCY READOUT FOR

AN AFC MEMORY

In the context of quantum memories it is crucial to also

obtain an efficient readout of the stored excitation.Herewewill

limit our analysis to the case of an AFC-based [22] quantum

memory. We only briefly remind the reader of the essential

features, for details we refer to Ref. [22]. The inhomogeneous

absorption is shaped into a comb structure, by optical pumping

techniques, having periodicity 1 and peak width γ (see

Fig. 1). The interaction between an incoming light pulse in

resonance with the comb results in a coherent re-emission

after a time t = 2π/1, due to a periodic rephasing of the

atomic coherence (we assume that the input spectrum is larger

than1). Note that freely controllable storage times far beyond

2π/1 can be achieved by using an additional ground state

level [22], as recently also shown experimentally [25].

In the case of a high AFC comb finesse FA = 1/γ , the

efficiency of this echo-type emission can be very large for

large optical depths [22]. For a forward readout configuration

it is limited to 54%due to re-absorption in the sample,while for

a backward readout it can reach 100% due to an interference

effect that is well understood [22]. We will show below that

in our proposed cavity arrangement, the efficiency can reach

100% for a much lower optical depth, also without having to

resort to the backward recall procedure [22].

We thus assume that n(1) has the shape of a comb, as in

Fig. 1. As a consequence ñ(t) has peaks not only at t = 0

(as we used before), but also at integer multiples of 2π/1.

Following Ref. [22] one can derive the following equation for

the cavity field around the first rephasing at t = 2π/1:

Ė(t) = −κE(t)−
PP̃
√
2κ

∫ 0

−∞
dt ′ñ(t − t ′)Ein(t

′)

−PP̃

∫ t

0

dt ′ñ(t − t ′)E(t ′), (8)

similar to Eq. (A15) in Ref. [22]. Using similar arguments as

for the absorption, this reduces to

Ė(t) = −κE(t)− 2
0

√
ηF

√
2κ

Ein

(

t −
2π

1

)

− 0E(t), (9)

which is analogous to Eq. (A16) inRef. [22]. Here ηF describes

the reduction in efficiency due to the fact that the individual

teeth in the frequency comb have finite width, which leads to

irreversible atomic dephasing. In the case of Gaussian peaks

[22] one finds ηF ≈ e−7/F 2
A . This should not be confused with

the cavity finesse FC = π(R1R2)
1
4

1−
√

R1R2
.
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Adiabatically eliminating the cavity mode as before and

using the fact that there is no input field at t = 2π/1 we find

Eout(t) = −
20

√
ηF

κ + 0
Ein

(

t −
2π

1

)

= −
√

ηFEin

(

t −
2π

1

)

,

(10)

where the last equality holds under the impedance matching

condition (κ = 0). One sees that the readout efficiency is

only limited by the finesse of the atomic frequency comb,

which without the cavity would correspond to an infinitely

high optical depth d [22].

The above treatment applies to the regime where R1 ≈ 1

and R2 = 1. More precise results for a general asymmetric

cavity can be obtained in the following way. For the absorption

it is sufficient to include absorption factors into the usual “sum

over all roundtrips” treatment of a Fabry-Perot cavity. This

yields

Eout = Ein
−

√
R1 +

√
R2e

−d̃

1−
√

R1R2e−d̃
(11)

on resonance, where d̃ is the optical depth of the crystal inside

the cavity (averaged over the frequency comb, cf. Ref. [22]).

One sees that perfect absorption is still achievable provided

that
√

R1 =
√

R2e
−d̃ , which is the impedance condition [23].

A similar treatment is possible for the memory readout.

From Ref. [22] it is known that the readout efficiency can

be obtained via a “sum over all amplitudes” approach. For

example, for forward readout the relevant efficiency factor is

given by Eq. (A19) of Ref. [22],

∫ L

0

dze−α̃z/2α̃e−α̃(L−z)/2 = α̃Le−α̃L/2, (12)

where L is the length of the crystal, α̃ is the absorption

coefficient (α̃L = d̃), and one integrates over all possible

points of absorption z. The first factor under the integral

corresponds to the amplitude for the photon to be transmitted

to the point z, the second factor can be interpreted as the

amplitude for absorption and re-emission (in z), and the third

factor is the amplitude to be transmitted from z to the end

of the crystal after re-emission. This can be generalized for a

Fabry-Perot cavity, taking into account the fact that the photon

can do an arbitrary number of round trips in the cavity before

absorption and after re-emission. The result is

2

∫

dz

√
T1e

−α̃z/2

1−
√

R1R2e−d̃
α̃

e−α̃(L−z)/2e−α̃L/2
√

T1R2

1−
√

R1R2e−d̃
, (13)

where T1 = 1− R1 is the transmission of the first mirror.

Again the first factor under the integral corresponds to propaga-

tion before absorption, the second factor is the absorption and

re-emission amplitude, and the third factor is for propagation

after re-emission. The factor of 2 in front of the integral stems

from the fact that the photon can be absorbedwhile propagating

either in forward or in backward direction. Note that inside the

cavity there is no change of direction upon re-emission. (Of

course, the output field of the asymmetric cavity propagates

predominantly in the opposite direction to the input field, but

this is an automatic consequence of the interference between

all the possible paths.) Simplifying the above expression,

and multiplying by
√

ηF to take into account the irreversible

component of the atomic dephasing, one obtains the following

expression for the square root of the total memory efficiency η

(as is customary for quantummemories, we define efficiencies

with respect to intensities, not amplitudes):

√
η =

2d̃e−d̃T1
√

R2
√

ηF

(1−
√

R1R2e−d̃ )2
. (14)

Our previous results correspond to the limit
√

R1 = 1− ε with

ε ¿ 1, R2 = 1, d̃ ¿ 1. In this case Eq. (14) becomes

√
η =

2d̃
√

ηF

ε + d̃
, (15)

so that we recover our previous result (η = ηF ) under the

impedance matching condition, which is now expressed as

ε = d̃ .

IV. IMPLEMENTATION ISSUES AND CONCLUSIONS

The total memory efficiency η (which includes absorption

and re-emission) is shown in Fig. 2 as a function of inputmirror

reflectivity R1. Clearly one can achieve very high efficiency

for low reflectivities (in the context of optical cavities) and for

very reasonable optical depths. For example, a memory with a

peak optical depth d = 1 and AFC finesse FA = 10, such that

d̃ = 0.1, has an efficiency of only 1% without cavity, but can

be boosted to 92% efficiency by an impedance-matched cavity

of finesse FC ≈ 31.

An impedance-matched cavity memory can be operated for

a large variety of conditions. Equation (14) allows us to find

the best working conditions for a particular situation. There

are some assumptions, however, that must be fulfilled. The
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FIG. 2. (Color online) We here show the efficiency of an AFC-

cavity quantum memory in an asymmetric cavity (R2 = 0.999) as

a function of the input mirror reflectivity R1, based on Eq. (14).

We show the result for different comb finesse FA = 10 (solid

line), FA = 6 (dashed line), and FA = 4 (dashed-dotted line). The

single-pass effective absorption depth was set to d̃ = 0.1, which in a

memory without cavity would bound the efficiency to ∼1% [by use
of Eq. (12)]. In the figure one clearly observes the great enhancement

of memory efficiency using an impedance-matched cavity, i.e., at

R1 = exp(−2d̃) ≈ 0.82, reaching η ∼ 92% for FA = 10. At this

point the efficiency is only limited by irreversible atomic dephasing

due to the finite comb finesse FA. We also plot the reflectivity of the

combined AFC-cavity system (dotted line), showing the complete

absorption of light at the optimal point.
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quantum memory bandwidth must be significantly smaller

than the width of the optical cavity in order to fulfill the

resonance condition used above. As an example, if we assume

a cavity length L = 1 cm (reasonable for typical crystal

dimensions) the cavity width would be ≈480MHz for the
example above. We have also assumed that the cavity has no

losses. In general the losses must clearly be significantly lower

than the memory absorption probability (per single pass). The

effect of losses can be evaluated, however, by changing the

reflectivity of the second mirror R2, thus introducing a loss to

the environment. For the example above, R2 = 0.99 instead of

R2 = 0.999 would reduce the efficiency to 84%. Practically

a good AR-coating on the crystal should keep the losses low

enough.

In conclusion, we have shown that impedance matching to

an optical cavity allows the implementation of highly efficient

quantum memories for an effective optical depth of only one.

Our proposal should make it much easier for experiments to

reach the truly high efficiency regime.

Note added. Recently, we became aware of a recent related

proposal [26].
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