All : Results

Results of the project.

There are currently 671 records in this database matching the search criteria. Login to add an entry.

You can use the filters below to refine your search.

Format: 2019-11-12
Format: 2019-11-12
Format: 2019-11-12


30th Mar 2012

We exploit the geometry of a zig-zag cold-ion crystal in a linear trap to propose the quantum simulation of a paradigmatic model of long-ranged magnetic frustration. Such a quantum simulation would clarify the complex features of a rich phase diagram that presents ferromagnetic, dimerized antiferromagnetic, paramagnetic, and floating phases, together with previously unnoticed features that are hard to assess by numerics.


30th Mar 2012

A locking protocol between two parties is as follows: Alice gives an encrypted classical message to Bob which she does not want Bob to be able to read until she gives him the key. If Alice is using classical resources, and she wants to approach unconditional security, then the key and the message must have comparable sizes. But if Alice prepares a quantum state, the size of the key can be comparatively negligible. This effect is called quantum locking. Entanglement does not play a role in this quantum advantage.


30th Mar 2012

Squeezed states can be employed for entanglement-based continuous-variable quantum key distribution, where the secure key rate is proportional to the bandwidth of the squeezing. We produced a non-classical continuous-wave laser field at the telecommunication wavelength of 1550 nm, which showed squeezing over a bandwidth of more than 2GHz. The experimental setup used parametric down-conversion via a periodically poled potassium titanyl phosphate crystal (PPKTP).


30th Mar 2012

The strength of classical correlations is subject to certain constraints, commonly known as Bell inequalities. Violation of these inequalities is the manifestation of nonlocality---displayed, in particular, by quantum mechanics, meaning that quantum mechanics can outperform classical physics at tasks associated with such Bell inequalities. Interestingly, however, there exist situations in which this is not the case.


30th Mar 2012

The information causality principle is a generalisation of the no-signalling principle which implies some of the known restrictions on quantum correlations. But despite its clear physical motivation, information causality is formulated in terms of a rather specialised game and figure of merit. We explore different perspectives on information causality, discussing the probability of success as the figure of merit, a relation between information causality and the non-local `inner-product game', and the derivation of a quadratic bound for these games.


30th Mar 2012

According to quantum theory, the outcomes obtained by measuring an entangled state necessarily exhibit some randomness if they violate a Bell inequality. In particular, a maximal violation of the CHSH inequality guarantees that 1.23 bits of randomness are generated by the measurements. However, by performing measurements with binary outcomes on two subsystems one could in principle generate up to two bits of randomness.


30th Mar 2012

Local measurements on bipartite maximally entangled states can yield correlations that are maximally nonlocal, monogamous, and associated to fully random outcomes. This makes these states ideal for bipartite cryptographic tasks. Genuine-multipartite nonlocality constitutes a stronger notion of nonlocality that appears in the multipartite case. Maximal genuine-multipartite nonlocality, monogamy and full random outcomes are thus highly desired properties for multipartite correlations in intrinsically genuine-multipartite cryptographic scenarios.


30th Mar 2012

Quantum mechanics is a nonlocal theory, but not as nonlocal as the no-signalling principle allows. However, there exist quantum correlations that exhibit maximal nonlocality: they are as nonlocal as any nonsignalling correlation and thus have a local content, quantified by the fraction pL of events admitting a local description, equal to zero.


30th Mar 2012

We investigate the relation between unextendible product bases (UPB) and Bell inequalities found recently in [R. Augusiak et al., Phys. Rev. Lett. 107, 070401 (2011)]. We first review the procedure introduced there that associates to any set of mutually orthogonal product vectors in a many-qubit Hilbert space a Bell inequality. We then show that if a set of mutually orthogonal product vectors can be completed to a full basis, then the associated Bell inequality is trivial.


30th Mar 2012

Around the globe several observatories are seeking the first direct detection of gravitational waves (GWs). These waves are predicted by Einsteins general theory of relativity and are generated, for example, by black-hole binary systems. Present GW detectors are Michelson-type kilometre-scale laser interferometers measuring the distance changes between mirrors suspended in vacuum. The sensitivity of these detectors at frequencies above several hundred hertz is limited by the vacuum (zero-point) fluctuations of the electromagnetic field.


9th Mar 2012

Time: 18.4.2012
Place: NH Hotel Bingen,  Museumstrasse 3, 55411 Bingen

The second QUIE2T review will take place within the traditional QIPC Cluster Review Meeting. Also, as usual, there will be an open day and some social activities. See the website for program and details.

See also the Event page.


2nd Feb 2012

A call for proposals for the next QUIE2T sponsored QIPC conference has been published.


20th Jan 2012

The Information Day - FP7-Call-9 took place on 18 Jan 2012 in Brussels and was attended by some ~250 people. The slides of the presentation are available for download from the Info Day Agenda.


9th Jan 2012

We investigate the implementation of a controlled-Z gate on a pair of Rydberg atoms in spatially separated dipole traps where the joint excitation of both atoms into the Rydberg level is strongly suppressed (the Rydberg blockade). We follow the adiabatic gate scheme of Jaksch et al. [1], where the pair of atoms are coherently excited using lasers, and apply it to the experimental setup outlined in Ga\"etan et al. [2]. We apply optimisation to the experimental parameters to improve gate fidelity, and consider the impact of several experimental constraints on the gate success.


9th Jan 2012

We numerically investigate the performance of atomic transport in optical microtraps via the so called spatial adiabatic passage technique. Our analysis is carried out by means of optimal control methods, which enable us to determine suitable transport control pulses. We investigate the ultimate limits of the optimal control in speeding up the transport process in a triple well configuration for both a single atomic wave packet and a Bose-Einstein condensate within a regime of experimental parameters achievable with current optical technology.

Syndicate content