Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits

Printer-friendly versionSend by emailPDF version
Date: 
2012-04-01
Author(s): 

D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O'Brien and M. G. Thompson

Reference: 

New J. Phys. 14, 045003 (2012)

Integrated quantum photonic waveguide circuits are a promising approach to realizing future photonic quantum technologies. Here, we present an integrated photonic quantum technology platform utilizing the silicon-on-insulator material system, where quantum interference and the manipulation of quantum states of light are demonstrated in components orders of magnitude smaller than previous implementations. Two-photon quantum interference is presented in a multi-mode interference coupler, and the manipulation of entanglement is demonstrated in a Mach–Zehnder interferometer, opening the way to an all-silicon photonic quantum technology platform.