Master-equation approach to optomechanics with arbitrary dielectrics

Printer-friendly versionSend by emailPDF version

A.C. Pflanzer, O. Romero-Isart, and J.I. Cirac


DOI: 10.1103/PhysRevA.86.013802
PACS: 42.50.Pq, 42.50.Wk, 37.10.Vz

We present a master equation describing the interaction of light with dielectric objects of arbitrary sizes and shapes. The quantum motion of the object, the quantum nature of light, as well as scattering processes to all orders in perturbation theory are taken into account. This formalism extends the standard master-equation approach to the case where interactions among different modes of the environment are considered. It yields a genuine quantum description, including a renormalization of the couplings and decoherence terms. We apply this approach to analyze cavity cooling of the center-of-mass mode of large spheres. Furthermore, we derive an expression for the steady-state phonon numbers without relying on resolved-sideband or bad-cavity approximations.