41.95.+m Quantum magnetometry

A single ion as a shot noise limited magnetic field gradient probe

Date: 
2011-06-23
Author(s): 

A. Walther, U. Poschinger, F. Ziesel, M. Hettrich, A. Wiens, J. Welzel, F. Schmidt-Kaler

Reference: 

Phys. Rev. A 83, 062329 (2011)
ariXiv:1103.2253
doi: 10.1103/PhysRevA.83.062329

It is expected that ion trap quantum computing can be made scalable through protocols that make use of transport of ion qubits between sub-regions within the ion trap. In this scenario, any magnetic field inhomogeneity the ion experiences during the transport, may lead to dephasing and loss of fidelity. Here we demonstrate a scalable way to measure the magnetic field gradient inside a segmented ion trap, by transporting a single ion over variable distances.

Sub-optical resolution of single spins using magnetic resonance imaging at room temperature in diamond

Date: 
2010-03-29
Author(s): 

Chang Shin, Changdong Kim, Roman Kolesov, Gopalakrishnan Balasubramanian, Fedor Jelezko, Jörg Wrachtrup, Philip R. Hemmer

Reference: 

Journal of Luminescence 130- 1635-1645 (9)

There has been much recent interest in extending the technique of magnetic resonance imaging (MRI) down to the level of single spins with sub-optical wavelength resolution. However, the signal to noise ratio for images of individual spins is usually low and this necessitates long acquisition times and low temperatures to achieve high resolution. An exception to this is the nitrogen-vacancy (NV) color center in diamond whose spin state can be detected optically at room temperature.

Syndicate content