15.20.Mc Magnetic atom chips

Electron beam driven alkali metal atom source for loading a magneto-optical in a cryogenic enviroment


S. Haslinger, R. Amusuess, Ch. Koller, C. Hufnagel, N. Lippok, J. Majer, J. Verdu, S. Schneider, and J. Schmiedmayer
submitted http://arxiv4.library.cornell.edu/PS_cache/arxiv/pdf/1003/1003.5144v2.pdf, accepted in Applied Phys. B
Applied physics B - Lasers and Optics, 102 (2011), pp. 819 - 823
doi 10.1007/s00340-011-4447-x

We present a versatile and compact electron beam driven source for alkali metal atoms which can operate even with a heat dissipation of less than 1mW, and can therefore be implemented inside a closed cycle cryostat. Atoms are loaded into a Magneto-Optical Trap (MOT) and at a given thermal input power, loading rates three orders of magnitude higher than in a typical MOT loaded by an alkali metal dispenser are achieved.

Imaging of microwave fields using ultracold atoms


P. Böhi, M. F. Riedel, T. W. Hänsch, and P. Treutlein
Applied Physics Letters 97, 051101 (2010)

We report a technique that uses clouds of ultracold atoms as sensitive, tunable, and non-invasive probes for microwave field imaging with micrometer spatial resolution. The microwave magnetic field components drive Rabi oscillations on atomic hyperfine transitions whose frequency can be tuned with a static magnetic field. Readout is accomplished using state-selective absorption imaging. Quantitative data extraction is simple and it is possible to reconstruct the distribution of microwave magnetic field amplitudes and phases.

Syndicate content