Journal of the Optical Society of America B 27, A99 (2010)
Selected for publication in the July 2010 issue of Virtual Journal of Quantum Information
doi:10.1364/JOSAB.27.000A99
We report transport operations with linear crystals of 40Ca+ ions performed by applying complex electric time-dependent potentials. For their control we use the information obtained from the ions’ fluorescence. We demonstrate that by means of this feedback technique, we can transport a predefined number of ions and also split and unify ion crystals.
arXiv:1105.1710 (2011)
The present paper describes the experimental implementation of a measuring technique employing a slowly moving, near resonant, optical standing wave in the context of trapped ions. It is used to measure several figures of merit that are important for quantum computation in ion traps and which are otherwise not easily obtainable. Our technique is shown to offer high precision, and also in many cases using a much simpler setup than what is normally used.
New Journal of Physics 12, 065023 (2010)
G. Huber, F. Ziesel, U.G. Poschinger, K. Singer, F. Schmidt-Kaler
Applied Physics B: Lasers and Optics 100, 725 (2010)
http://arxiv.org/abs/1003.3735
We introduce a measurement scheme that utilizes a single ion as a local field probe. The ion is confined in a segmented Paul trap and shuttled around to reach different probing sites. By the use of a single atom probe, it becomes possible characterizing fields with spatial resolution of a few nm within an extensive region of millimeters. We demonstrate the scheme by accurately investigating the electric fields providing the confinement for the ion. For this we present all theoretical and practical methods necessary to generate these potentials.
A. del Campo, G. De Chiara, G. Morigi, M. B. Plenio and A. Retzker
Structural defects in ion crystals can be formed during a linear quench of the transverse trapping frequency across the mechanical instability from a linear chain to the zigzag structure. The density of defects after the sweep can be conveniently described by the Kibble-Zurek mechanism. In particular, the number of kinks in the zigzag ordering can be derived from a time-dependent Ginzburg-Landau equation for the order parameter, here the zigzag transverse size, under the assumption that the ions are continuously laser cooled.
Rev. Mod. Phys. 82, 2609 (2010)
Trapped laser-cooled atoms and ions are quantum systems which can be experimentally controlled with an as yet unmatched degree of precision. Due to the control of the motion and the internal degrees of freedom, these quantum systems can be adequately described by a well-known Hamiltonian. In this colloquium, powerful numerical tools for the optimization of the external control of the motional and internal states of trapped neutral atoms, explicitly applied to the case of trapped laser-cooled ions in a segmented ion-trap are presented.