Y-L. Tang, H-L. Yin, S-J.Chen, Y. Liu, W-J. Zhang, X. Jiang, L. Zhang, J. Wang, L-X. You, J-Y. Guan, D- X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T-Y. Chen, Q. Zhang, and J-W. Pan

Phys. Rev. Lett. 113, 190501 (2014)

Measurement-device–independent quantum key distribution (MDIQKD) represents a valid alternative for quantum cryptography. It requires fewer assumptions for security than standard prepare-and-measure schemes, while its implementation is less demanding than fully device-independent protocols.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert Nature Physics 10, 321-326 (2014)

*A quantum gate between a flying optical photon and a single trapped atom*

A. Reiserer, N. Kalb, G. Rempe, S. Ritter

Nature 508, 237-240 (2014);

*Nanophotonic quantum phase switch with a single atom*

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletic, M. D. Lukin Nature 508, 241-244 (2014);

*Nonlinear π phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom*

J. Volz, M. Scheucher, C. Junge, A. Rauschenbeutel

Nature Photonics 8, 965-970 (2014);

*Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory*

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B Verma, S.W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, N. Gisin

Nature Photonics 8, 775-778 (2014);

*Unconditional quantum teleportation between distant solid-state quantum bits*

W. Pfaff, B.J. Hensen, H. Bernien, S.B. van Dam, M.S. Blok, T.H. Taminiau, M.J. Tiggelman, R.N. Schouten, M. Markham, D.J. Twitchen, R. Hanson

L. Duca, T. Li, M. Reitter, I. Bloch, M. Schleier-Smith, U. Schneider Science 347, 288 (2015), published online Science Express (Dec. 2014)

The geometric structure of a single-particle energy band in a solid is fundamental for a wide range of many- body phenomena and is uniquely characterized by the distribution of Berry curvature over the Brillouin zone.

D. Marcos, P. Widmer, E. Rico, M. Hafezi, P. Rabl, U.-J. Wiese, P. Zoller Annals of Physics 351, 634-654 (2014)

Despite significant progress and efforts, lattice gauge theories remain to be challenging to be simulated on classical computers. A quantum simulator of U(1) lattice gauge theories can however be implemented with superconducting circuits. This allows, for instance, the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models.

I. Ferrier-Barbut, M. Delehaye, S. Laurent, A. T. Grier, M. Pierce, B. S. Rem, F. Chevy, C. Salomon Science 345, 1035-1038 (2014)

Superfluidity and superconductivity, are striking signatures of quantum mechanics at the macroscopic level, resulting in extraordinary features like the absence of viscosity or resistance in superconducting metals. In liquid helium and dilute gases, Bose and Fermi superfluidity has been observed separately, but producing a mixture in which both the fermionic and the bosonic components are superfluid is challenging.

*Non-local propagation of correlations in quantum systems with long-range interactions*

P. Richerme, Z.-X. Gong, A. Lee, C. Senko, J. Smith, M. Foss-Feig, S. Michalakis, A. V. Gorshkov, C. Monroe

Nature 511, 198-201 (2014);

*Quasiparticle engineering and entanglement propagation in a quantum many-body system*

P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, C. F. Roos Nature 511, 202-205 (2014)

M. Atala, M. Aidelsburger, M. Lohse, J. T. Barreiro, B. Paredes, I. Bloch

Nature Physics 10, 588–593 (2014)

M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, S. Nascimbène, N. R. Cooper, I. Bloch, N. Goldman

Nature Physics 11, 162-166 (2015), published online AOP 3171 (2014)

The quantum Hall effect has led to a deeper understanding of topological (or geometrical) effects in physics and has found generalizations in the spin quantum Hall effect and topological insulators. The plateaux in conductivity in this effect are attributed to the Chern numbers, a topological invariant characterizing the Bloch bands.